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Abstract: Regenerative medicine represents a growing hot topic in biomedical sciences, aiming at
setting out novel therapeutic strategies to repair or regenerate damaged tissues and organs. For this
perspective, human mesenchymal stem cells (hMSCs) play a key role in tissue regeneration, having
the potential to differentiate into many cell types, including chondrocytes. Accordingly, in the last
few years, researchers have focused on several in vitro strategies to optimize hMSC differentiation
protocols, including those relying on epigenetic manipulations that, in turn, lead to the modulation
of gene expression patterns. Therefore, in the present study, we investigated the role of the class
II histone deacetylase (HDAC) inhibitor, MC1568, in the hMSCs-derived chondrogenesis. The
hMSCs we used for this work were the hMSCs obtained from the amniotic fluid, given their greater
differentiation capacity. Our preliminary data documented that MC1568 drove both the improvement
and acceleration of hMSCs chondrogenic differentiation in vitro, since the differentiation process
in MC1568-treated cells took place in about seven days, much less than that normally observed,
namely 21 days. Collectively, these preliminary data might shed light on the validity of such a new
differentiative protocol, in order to better assess the potential role of the epigenetic modulation in the
process of the hypertrophic cartilage formation, which represents the starting point for endochondral
ossification.

Keywords: human mesenchymal stem cell (hMSC); regenerative medicine; histone deacetylase
(HDAC) inhibitor; chondrogenic differentiation; epigenetic modulation; cartilage

1. Introduction

The loss of organs and tissues, even if partial, due to diseases and traumas, motivates
the development of therapies that can regenerate tissues by reducing the dependence on
transplants. Regenerative medicine is a branch of translational, interdisciplinary research
that applies the principles of tissue and molecular engineering to promote the development
of biological substitutes (cells tissue and organs) to restore, maintain or improve normal
tissue function or a whole organ [1]. The encouraging preclinical data obtained so far are
very promising for the treatment and eradication of both chronic and acute diseases in a
wide range of systems and organs [2–4]. To achieve these goals, regenerative medicine
uses, among others, very innovative techniques such as gene therapy, stem cells, cell
reprogramming, and tissue engineering, including the use of new high-tech materials [5].

Mesenchymal stem cells (hMSCs), today more properly called “mesenchymal stromal
cells”, are multipotent adult stem cells capable of self-renewal and differentiation into
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various cell types (neurons, glia, adipocytes, cardiomyocytes, chondrocytes, osteocytes,
etc.), both in vitro and in vivo in controlled conditions [6–8]. hMSCs can be isolated not
only from many adult tissues, including peripheral blood, periosteum, muscles, adipose
tissue, connective tissue, skin, bone marrow, and brain, but also from embryonic annexes
such as placenta, umbilical cord blood, and amniotic fluid [9–12].

In addition to this function and to the maintenance of tissue homeostasis in phys-
io/pathological conditions, hMSCs are also able to give rise to cells of other tissues (multi-
potency), even outside the embryonic sheet they belong to (trans-differentiation) [13–17].

Recently, being the hMSC secretome, a principal source of autocrine/paracrine bioac-
tive factors (cytokines, chemokines, growth factors, etc.) [18–23], it has been evaluated for
its capability to regulate the immune response. This finding result is important to monitor
the efficacy in reparative processes (anti-inflammatory and immunomodulatory effects) in
various pathological conditions [24–27].

In this study, hMSCs derived from the amniotic fluid of pregnant women between
the 17th and 21st weeks were used, subjected to a diagnostic test of amniocentesis at the
request of the gynecologist (prenatal genetic diagnosis), who signed the informed con-sent
for the purpose of the research.

In this work, we decided to use hMSCs obtained from amniotic fluid and not cells
isolated from many adult tissues, including the bone marrow, mainly because cells found
in the amniotic fluid derived directly from the exfoliation of the fetus are considered more
“primitive”, maintaining a greater differentiation capacity (see the presence of oct4 and
nanog in [9]).

It is well-known that cartilage tissue is a specialized connective tissue, constituted
fundamentally by chondrocytes, surrounded by a gelatinous and highly hydrated extracel-
lular matrix (ECM), in which fibrous proteins are immersed; it also allows the diffusion of
nutrients, metabolites, and hormones between the blood and the chondrocytes, since the
cartilage has no blood vessels. Chondroblasts are housed in gaps in the extracellular matrix
where they can divide to form small cell groups (isogenic groups).

The potential for chondrogenic differentiation of hMSCs has been demonstrated in
many cell culture systems with or without a matrix [28–37]. Specifically, in the pellet
culture system of Johnstone and Yoo [37,38], hMSCs are “packed” to obtain a high cell
density to imitate their behavior during chondrogenesis. These cells are maintained in a
defined chondrogenic medium, composed of the transforming growth factor-beta (TGF-β),
in the absence of serum. Interestingly, hMSC cultures are subjected to chondrogenesis-
expressed genes associated with chondrocyte hypertrophy, including COL10A1, alkaline
phosphatase (ALP), matrix metallopeptidase 13 (MMP-13), vascular endothelial growth
factor (VEGF), and parathyroid hormone-related protein receptor (PTHrP-R) [37–41]. This
finding suggests that hMSCs chondrogenic differentiation may reach the hypertrophic
chondrocytes stage, which normally is characterized by intra-chondral ossification during
skeletal development. Chondrocyte hypertrophy in neo-cartilage could ultimately lead to
apoptosis, vascular invasion, and ossification, as observed in the cartilage growth plate or
epiphyseal plate. Furthermore, after the in vivo ectopic implantation of cartilage constructs
derived from hMSCs, the mineralization and vascular invasion or de-differentiation of the
chondrocytes takes place, depending on the pre-differentiation status of constructs [41–43].

Recently, class II histone deacetylases (HDAC class II) have been reported to act as
negative regulators of chondrocyte hypertrophy. It has been hypothesized that HDAC4
could promote TGF-β-induced hMSC chondrogenesis by inhibiting chondrogenically dif-
ferentiated stem cell hypertrophy. HDAC4’s suppression of chondrocyte hypertrophy
differentiates it from class IIa HDACs. Knockout mice lacking HDAC5 or 9 are viable and
show no skeletal abnormalities [44,45], while HDAC7-free mice die during average gesta-
tion resulting from cardiovascular defects [46]. Instead, HDAC4-null mice show premature
ossification of developing bones due to early-onset ectopic chondrocyte hypertrophy, mim-
icking the phenotype from the constitutive expression of Runx2 in the chondrocytes. In
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contrast, in vivo HDAC4 overexpression in chondrocyte proliferation inhibits chondrocyte
hypertrophy and differentiation, mimicking a Runx2 loss-of-function phenotype [47].

HDACs are the enzymes that catalyze the deacetylation of histone and non-histone
proteins and modulate the growth and differentiation of various cell types by governing the
structure of chromatin and repressing the activity of specific transcription factors [48–50].
The 18 human HDACs are divided into four classes: I (HDAC1, -2, -3, and -8), II (HDAC4,
-5, -7, and -9 form the subclass IIa, while HDAC6 and -10 belong to the subclass IIb), III or
sirtuins (SIRT1−7), and IV (HDAC11). Classes I, II, and IV HDACs are zinc-dependent
enzymes, while class III HDACs are NAD+-dependent. Class I HDACs are exclusively
nuclear and are believed to act primarily at the chromatin level, while class II HDACs move
between the cytoplasm and the nucleus and their expression is tissue-specific [51]. Class
I/II/IV HDACs can be recruited from known repressor multiprotein complexes (containing
DNA-binding proteins such as Rb and RB-like protein, N-CoR, SMRT, MEF, MeCP2, and
sin3A) to suppress transcription of their target genes [52–57].

This scenario can be reversed by the use of HDAC inhibitors (HDACi), which activate
the transcription of a small set of genes, thus regulating cell proliferation and cell cycle
progression [58]. HDACi can be divided into four main classes (hydroxamic acids, cyclic
peptides, short fatty acids, and benzamides). Suberoyl anilide hydroxamic acid (SAHA),
a pan-inhibitor, and MC1568, a class II inhibitor of HDAC (selective for HDAC4 and -6),
belong to the class of hydroxamic acids, while MS-275, an inhibitor of class I, belongs to the
benzamides class (Table 1) [51,59,60].

Table 1. HDAC inhibitors.

Compound Inhibition
type

HDACi
Class

Chemical
Structure

Conc.
[µM]

Inhibition
grade

SAHA
(vorinostat) Pan Hydroxamic

Acid
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Hydroxamic 
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5  
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HDAC1, -2, 
-3, -4, -6, -7, 

and -9 
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HDAC8 

MS-275  
(entinostat) 

Class I  Benzamides 

 

5  

 High: 
HDAC1 and 

-9 
Low: 

HDAC2 and 
-3 

5

High:
HDAC1, -2,
-3, -4, -6, -7,

and -9
Low:

HDAC8

MS-275
(entinostat) Class I Benzamides
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2. Results
2.1. Morphological Analysis of the Formation of Compact Three-Dimensional Structures
(Spheroid-Like) in the Function of the Differentiation Protocols Adopted

Amniocytes were grown in RPMI 1640 at 20% fetal bovine serum (FBS) after a few
steps, then split and plated at a high density (1 × 106 cells in 200 µL of the total medium)
on a multiple well from 96 to conical bottom. The high cell density and the conical bottom
ensured that the cells did not adhere to the plastic of the well but joined together, forming
a solid three-dimensional structure, more or less spheroidal, made up of only cells. In
the presence of a differentiation medium (DM), adult stem cells were induced towards
a chondrogenic fate by specific pathways. This differentiation was further assisted by a
high oxygen consumption which led to a situation of strong anoxia, mimicking, as a whole,
what occurred in vivo in the cartilage growth plate or epiphyseal plate. The strong anoxia,
essential for the differentiation of adult stem cells into chondrocytes, was obtained not only
precisely from a very high concentration of cells/mL of the culture medium, but also from
the formation of the spheroid, while the cells exposed on the surface of the spheroid were
in direct contact with the culture medium, as it descended into the internal layers of the
spheroid and the gas exchanges became more and more difficult until it reached the center
of the sphere in a total state of anoxia.

Under these conditions, hMSCs, especially those present in the innermost part of the
spheroid, changed the morphology and began to synthesize specific components of the
extracellular matrix such as glycosaminoglycans (GAGs) [61,62].

For each treatment, the cells were induced with DM for ctr(+), i.e., the standard
protocol, or with DM co-induced by HDAC inhibitors (DM + MS-275; DM + SAHA; DM
+ MC1568), while the ctr(−) cells were grown in RPMI 1640 supplemented with 20% FBS.
The medium of each treatment was changed every seven days.

The cells were photographed after 1, 2, 3, 7, 14, and 21 days of induction, to observe
the spheroid-like formation in the various treatments. As reported in Figure 1, after one
day of plating, the ctr(−) cells were not yet aggregated, while the cells treated with DM
or DM plus HDAC inhibitors (MS-275 or SAHA) began to associate, forming clouds of
loose cells. At the same time in the group treated with MC1568, from the first day, four
very compact cell-like spheroids were originated, and they appeared gradually merged
into a single larger spheroid-like structure. At 2 days from the plating, the cells of the
ctr(−) began to aggregate as well, forming a small very loose cell cloud which gradually
thickened more and more as the days went by. At the same time and for the next 21 days,
the treated cells formed very dense cell structures and with an increasingly large radius
due to the hypertrophy of the cells in the chondro-osteocytic differentiation. It is important
to underline that the cells treated with MC1568 not only were the fastest to aggregate, but
also showed a higher cell density especially in the center of the scaffolding that was created,
so far as to be clearly visible even with the naked eye.
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The three-dimensional structures present after 21 days of incubation were photo-
graphed. As shown in Figure 2, all treatments including ctr(−) induced the formation of a 
three-dimensional structure suitable for differentiation, but only the group of MC1568 
treatment showed a clear dark blue coloring. Differently, in the other wells, including 
ctr(+), such coloring was not discriminated due to the strong compaction of the cells and 
the low percentage of GAG fibers present in them. 

Figure 1. Photos taken 1, 2, 3, 7, 14, and 21 days after the inductions [ctr(−), ctr(+), MS-275, SAHA, and
MC1568] of the three-dimensional structures (spheroid-like) that were formed by the condensation of
high-concentration hMSCs (1 × 106 cells/200 µL) plated in 96 wells with a conical bottom.

2.2. The Effectiveness of Chondrogenic Stimulation of Amniocytes

Once verified, the ability of the cells to form a compact three-dimensional structure that
allowed the development of an anoxic micro-environment such as to favor chondrogenic
differentiation, the presence of GAG molecules for the formation of the extracellular matrix
typical of chondrocytes was tested.

To demonstrate the presence of GAG in the three-dimensional aggregates, the cells
were incubated for three weeks with a specific medium for each of the protocols imple-
mented, namely ctr(−), ctr(+), MS-275, SAHA, and MC1568. The medium of each treatment
was changed every seven days.

The three-dimensional structures present after 21 days of incubation were photographed.
As shown in Figure 2, all treatments including ctr(−) induced the formation of a three-
dimensional structure suitable for differentiation, but only the group of MC1568 treatment
showed a clear dark blue coloring. Differently, in the other wells, including ctr(+), such
coloring was not discriminated due to the strong compaction of the cells and the low
percentage of GAG fibers present in them.
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Figure 2. Alcian blue assay performed after 21 days of inductions [ctr(−), ctr(+), MS-275, SAHA, and
MC1568] for the detection of the GAGs present in the three-dimensional structures formed by the
condensation of the hMSCs.

2.3. Analysis of Gene Expression

In order to demonstrate the level of differentiation achieved by the cells during differ-
ent treatments, from a molecular point of view, the degree of expression of specific markers
associated to the endochondral ossification was assessed. In detail, the markers assayed
were as follows: CD44 (marker of chondrogenic differentiation); COL10a1 (marker of hy-
pertrophic chondrocytes during endochondral ossification); SPP1/osteopontin (osteoblast
marker). Moreover, for a more complete evaluation, the expression levels of both VEGF and
bFGF/FGF2 were analyzed. The former is a growth factor that induces vascular endothelial
cell proliferation and migration, while the latter has mitogenic and angiogenic activity.

A time-course of the 5 markers was carried out at 3, 7, and 14 days in order to check
their progresses over time. The medium of each treatment was changed every seven days.
For each point of the various treatments [ctr(−), ctr(+), Ms-275, SAHA, and MC1568], five
wells were used, in triplicate, for a total of 15 wells (for three independent experiments).

As shown in Figure 3, CD44 showed a stronger induction already at the 3rd day
(relative expression: 28.77 ± 0.493) compared to MC1568, and then, it level fell down on
the 7th and the 14th days (relative expressions: 9.40 ± 0.062 and 4.41 ± 0.52, respectively).
The other inhibitors and ctr(+) showed an increasing trend over time, but with an up-
regulation lower than that already present in MC1568 on the 3rd day. Only MS-275 showed
a substantial decrease in relative expression between the 7th and 14th days of induction
(from 23.02 ± 0.34 to 14.76 ± 1.05).

A similar trend was observed for COL10a1. In fact, three days after induction, the
RNA reached the maximum peak in the cells induced with MC1568 (relative expression
of about 2374.38 ± 0.39) and then decreased widely immediately after reaching almost
zero between the 3rd and the 14th day of induction. In addition, for COL10a1, the trend of
the other inhibitors was uniformly increased. Only ctr(+) demonstrated a slight decrease
between the 3rd and 7th days and then returned to grow between the 7th and 14th days.

SPP1 showed a trend similar to that already observed for CD44 and COL10a1. In this
case, the cells induced with MC1568 displayed its peak on the 3rd day and then decreased
between the 3rd and the 14th days, while both the ctr(+) and the other inhibitors showed
an increasing linear trend, with the exception of SAHA which at 14 days showed a strong
up-regulation at 14 days of treatment.

As for the expression of VEGF, only a small and constant up-regulation occurred in
all treatments. Only the induction with MC1568 showed a different behavior in which
between the 3rd and the 7th days there was a down-regulation and then it went up again
between the 7th and the 14th days, oscillating between the minimum relative expression of
0.48 ± 0.38 and the maximum relative expression of about 1 ± 0.13.

Finally, in regard to bFGF, for all treatments, a moderately increasing up-regulation
was observed over time, with only MS-275 which showed, between the 7th and the 14th
days, an up-regulation of about 72 ± 0.1.
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Figure 3. The qRT-PCR analysis for chondrocyte differentiation markers of amniocytes treated or
not treated with the different protocols, presented as the fold change (2−∆∆CT) in the level of their
expression, which has been normalized to the reference gene GAPDH. The points represent the mean
value ± SD (three independent experiments). Two-way ANOVA statistical analyses were performed
using GraphPad Prism v9.4.0. The multiple comparison was performed by comparing the mean
value of each treated group with the others over time. Tukey’s test was used to correct for multiple
comparisons. The asterisks show the significances of the adjusted p-values. * p < 0.05; ** p < 0.01;
*** p < 0.005.

3. Discussion

The lesions and diseases affecting the bone system are manifold and of different
origins: Paget’s disease, osteogenesis imperfecta, osteoarthritis, osteoporosis, bone tumors,
trauma, etc., representing one of the most widespread social health problems in the world,
causing complex disabilities, significant morbidity, reduced quality of life, severe functional
limitations, and death. The management and treatment of these pathologies consequently
entails a huge social and economic impact.

Recent scientific progress in cellular and molecular biotechnology has led to the
development of therapeutic protocols based on the use of new technologies such as gene
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therapy, stem cells, cell reprogramming, and tissue engineering, capable of promoting the
“process of engineering, regeneration and replacement of human cells, tissues or organs to
restore their pre-existing physiological state“ [1]. In particular, experiments on adult stem
cells (hMSCs) were very promising.

The formation of bone tissue can occur in two ways: (i) intramembranous or direct
ossification; (ii) endochondral or indirect ossification. In both cases, the ossification process
involves the replacement of the mesenchymal tissue with bone tissue. In intramembranous
ossification, there is a direct passage from the mesenchymal to the bone tissue, while in the
endochondral one it passes through an intermediate cartilaginous phase.

The protocols currently in use, for the generation of bone tissue starting from the
condensation of adult mesenchymatic cells (direct or indirect ossification), take about 21
days for the differentiation of hMSCs into osteocytes. Unfortunately, this timing is not
compatible with most bone generation and replacement interventions after a traumatic
injury in which the speed of the intervention can significantly affect the effectiveness of
the therapy. Hence, a new and more effective protocol for the development of innovative
therapies is needed in the field of regenerative medicine.

The present study aimed to create a new protocol for the regeneration of bone tissue
that excludes the use of direct differentiation of hMSCs in osteoblasts and proposed the re-
modeling of the hypertrophic cartilage template in order to recapitulate the morphogenetic
processes of the so-called “endochondral ossification”, typical of embryonic skeletogenesis
(indirect ossification), together with the use of HDAC inhibitors with epigenetic effects,
which allow the manipulation of the processes underlying the differentiation of hMSCs
in hypertrophic chondrocytes in a very short time (less than three days) with a significant
reduction in terms of times and costs.

Based on the current knowledge of the main pathways involved in the formation
of hypertrophic chondrocytes starting from the condensation of mesenchymatic cells, it
has been postulated and then demonstrated that the use of inhibitors of specific classes
of HDAC allows modulation, in a targeted way, of some key genes of endochondral
ossification.

Members of the TGF-β superfamily play a key role in the different stages of carti-
lage development. TGF-β up-regulates the gene expression of the transcription factor
Sox9, while its down-regulation induces the transition from proliferating chondrocytes
to hypertrophic chondrocytes [63], simultaneously inhibiting osteoblast differentiation
by repressing Runx2. Recently, class IIa HDACs have been shown to act as powerful
negative regulators of chondrocyte hypertrophy; in particular, HDAC4 regulates chondro-
cyte hypertrophy derived from hMSC condensation [51], interacting and inhibiting Runx2
activity [47]. This repression occurs through the recruitment not only of HDAC4, but also
of HDAC5 by the Smad3/Runx2 complex in the Runx2-binding DNA sequence [64]. It
has also been shown that HDAC4 knockout mice exhibit premature ossification due to
early ectopic hypertrophy. The same result is obtained from the constitutive expression of
Runx2 in the chondrocytes. In contrast, HDAC4 overexpression or Runx2 silencing inhibit
hypertrophy of chondrocytes in vivo, suggesting the importance of HDAC4 as a central
regulator of chondrocyte hypertrophy and skeletogenesis [47].

In this context, it was decided to use some HDAC inhibitors as powerful modulators
of gene expression, directing hMSCs already induced by the chondrogenic medium, by the
very high cell density towards an osteogenic fate, and by recapitulating the endochondral
formation of long bones in vitro.

HDAC inhibitors were chosen based on their specific inhibition characteristics. MC1568
is a class II HDACi and specifically inhibits HDAC4 and -6 (Table 1), while MS-275, a class I
HDACi, inhibits HDAC1 and -9 and more weakly HDAC2 and -3 (Table 1). This allowed us
to use MS-275 as a “negative control” of the inhibition compared to MC1568. Finally, SAHA
a powerful pan-inhibitor, in addition to showing a strong inhibition towards HDAC4,
strongly inhibited HDAC1, -2, and -3 (class I), HDAC7 and -9 (class IIa), and HDAC6
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(class IIb) (Table 1). The inhibition implemented by SAHA was considered as an additional
“control”, as it was capable to inhibit other HDACs beyond 4.

The data obtained here strongly showed that the specific inhibition of HDAC4 by
MC1568 allowed a faster packing of the hMSCs already at 24 h from induction (formation
of the spheroid-like; Figure 1) with a strong anoxia given from the very close cell−cell
interactions, while in all the other protocols (ctr(+), MS-275, and SAHA; Figure 1), the
formation of the spheroid-like structure was slower, with cell−cell interaction less present
giving their lower compaction and with still high gas exchanges.

Once the higher compaction rate of the cells induced with MC1568 was determined,
we demonstrated that the cells differentiated into pre-hypertrophic (still proliferating)
chondrocytes before and hypertrophic chondrocytes after secreting the components of the
extracellular matrix such as glycosaminoglycans, thanks to the vital coloring Alcian blue
assay (Figure 2). Only in cells induced with MC1568, we can see a dark blue coloration due
to the greater presence of glycosaminoglycans among the cells, while, in the other wells
including ctr(+), this coloring could not be distinguished due to the strong cell compaction
coupled to a low percentage of GAG fibers present in them.

Finally, we demonstrated the level of differentiation achieved by the mesenchymatic
cells in the different treatments (ctr(−), ctr(+), MS-275, SAHA, and MC1568) from a molecu-
lar point of view, photographing the expression level of three important markers at 3, 7, and
14 days of induction, in the three main stages of differentiation, which from proliferating
chondrocytes (CD44) led to osteocytes (SPP1), passing through the stage of hypertrophic
chondrocytes (COL10a1) (Figure 3). From the data obtained with the qRT-PCR, regarding
the cells induced with MC1568, it can be seen that in all three markers examined at already
three days of induction, the level of expression was at the plateau and then suddenly
dropped in the following days. Conversely, in cells induced using other protocols, the
expression levels of all three tested markers gradually increased over time, never reaching
the expression levels induced by MC1568. From these data, it can be deduced that the
strong inhibition implemented by the HDACi “MC1568” against HDAC4 greatly matched
the result obtained by Vega et al. with HDAC4-null mice, in which the lack of HDAC4
produced a phenotype where Runx2 was constitutively expressed in chondrocytes, with
the premature formation of developing bones caused by early-onset ectopic chondrocyte
hypertrophy [47].

In hMSCs induced with TGF-β3, co-induction with the pan-inhibitor SAHA, although
presenting, on average, a greater formation of hypertrophic chondrocytes compared to
ctr(+), their differentiation occurred in a time comparable to for ctr(+) itself (21 days;
Figure 3), demonstrating that the only down-regulation of HDAC4 was necessary and
sufficient to accelerate its differentiation towards an osteogenic fate, while the inhibition of
other HDACs besides HDAC4 implemented by SAHA did not allow it.

Once it was shown that induction with MC1568 accelerated the formation of hyper-
trophic chondrocytes, we would like to ascertain whether this induction could also induce
the regulation of the main growth factors stimulating angiogenesis and therefore the inva-
sion of blood vessels during endochondral ossification. Both VEGF and bFGF were found
to be unregulated by any of the protocols tested (except for the MS-275 21-day induction).
This turns out to be a fundamental point of the protocol we designed, as the up regulation
of both VEGF and bFGF, being powerful mitogens, could invalidate its use as a new and
more powerful bone regeneration protocol.

The final goal of this project is, therefore, to develop a new and more powerful system
for the regeneration of bone tissue that will allow in the near future the “replacement of
cells, tissues, organs compromised by diseases, by aging, by congenital or trauma defects”
in the shortest possible time.
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4. Materials and Methods
4.1. Amniocytes Cell Culture Conditions and Differentiation Protocol

The amniocytes were obtained from human amniotic fluid-derived hMSCs.
The collection of amniotic fluid or amniocentesis was performed by ultrasound-guided

transabdominal puncture between the 17th and 21st weeks of pregnancy. Once withdrawn,
amniotic fluid was centrifuged at approximately 1200 rpm for 10 min to concentrate the
cells. The supernatant was aspirated from the centrifuge tube, leaving approximately 0.5
mL above the cell pellet (or approximately 2 times the volume of the pellet) of amniotic
fluid. The cell pellet was resuspended in a small volume of the patient’s amniotic fluid.
Then, about 7 mL of high-content high-glucose RPMI 1640 media (4.5 g/L) (Euroclone,
Wetherby, UK), 100 U/mL of pen-strep (Lonza, Verviers, Belgium), 2 mM of L-glutamine
(Lonza, Verviers, Belgium) were added, supplemented with 20% fetal bovine serum (FBS)
(Euroclone, Wetherby, UK) and kept in an incubator at 37 ◦C and 5% CO2 in a completely
humidified atmosphere.

For chondrogenic differentiation [65], amniocytes cells were cultured in 96-well Clear
Round Bottom TC-treated Cell Culture Microplate (Falcon®, BD Biosciences, Sunnyvale,
CA, USA) at a concentration of 1 × 106 cells/well in 200 µL of a differentiation medium
(DM) containing 10 ng/mL of TGF-β3, 100U/mL pen-strep, 2 mM L-glutamine in the
absence of a serum in high-glucose RPMI 1640 media (4.5 g/L) for ctr(+) group, 5 µM SAHA
(MERCK, Readington, NJ, USA) for the “DM + SAHA” group, 5 µM MS-275 (Schering
AG, Berlin-Wedding, Germany) for the “DM + MS-275” group, and 5 µM MC1568 (Sigma-
Aldrich, St. Louis, MO, USA) for the “DM + MC1568” group. Negative control ctr(−) cells
were cultured in high-glucose RPMI 1640 media (4.5 g/L) with 20% FBS. The medium of
each treatment was changed every 7 days.

The cells were photographed with a 10× magnification optical microscope equipped
with a Nikon CoolPix 995 digital camera.

4.2. Alcian Blue Assay

Sixty milliliters of ethanol (98–100%) were mixed with 40 mL of acetic acid (98–100%).
Ten milligrams of Alcian blue 8 GX (stable solution for 1 year) were dissolved in this
solution. One hundred and twenty milliliters of ethanol were mixed with 80 mL of acetic
acid (98%–100%) to obtain the bleaching solution.

The process for the assay is shown as follows: the culture medium was gently aspirated
from a multiwell taking extreme care not to aspirate the spheroid-like structure. It was
washed twice with phosphate buffer saline (PBS) 1× without Ca++/Mg++. A sufficient
amount of neutral buffered formalin (10%) was added to cover the spheroid-like structure,
and the mixture was incubated at room temperature for 60 min. Formalin was carefully
aspirated and washed 2 times in H2O. Distilled water was carefully aspirated, and enough
Alcian blue coloring solutions were added to generously cover the cartilage spheroids, as
some evaporation occurred. The mixture was incubated overnight at room temperature
and in the dark.

The Alcian blue stain solution was carefully aspirated, wash the cells were washed
with the bleaching solution for 20 min. The washing step was repeated twice. The bleaching
solution was carefully aspirated, and PBS was added.

The cells were then observed and photographed with a 5× magnification optical
microscope equipped with a Nikon CoolPix 995 digital camera.

4.3. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted using TRIZOL reagent (Life Technologies, Monza, Italy)
according to the manufacturer’s instructions. RNA concentration and integrity were
determined by spectrophotometric measurements using a NanoDrop spectrophotometer
(Nanodrop Technologies Inc., Rockland, DE, USA). Then, the RNA (2 µg) was transcribed
using the VILO cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, USA) SuperScript according
to the manufacturer’s protocol.
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Real-Time PCR was performed using iQTM SYBR Green Supermix (Bio-Rad Labora-
tories Hercules, CA, USA) in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad
Laboratories Hercules, CA, USA). The sequences of primers used for cDNA amplification
are shown in Table 2. The amplification reactions were performed with 2 µL of cDNA,
0.1 µL of the primer mix (final primer concentration of 0.5 µM each), and 10 µL of 2×
iQTM SYBR Green Supermix in a final volume of 20 µL in sterile water. Thermal cycling
conditions included an initial phase at 95 ◦C for 15 min, followed by 40 cycles at 95 ◦C for
15 s, 62 ◦C for 30 s, and 72 ◦C for 30 s. A final dissociation phase was always carried out
to obtain the melting curves (thermal profile) of the amplicons obtained in the reactions.
All reactions were performed in triplicate, and GAPDH was used as an internal control
gene. Gene expression levels were quantified from qRT-PCR data using the comparative
threshold cycle (Ct) method. The qRT-PCR analyses for chondrocyte differentiation markers
of amniocytes treated or not treated with the different protocols are presented as the fold
change (2−∆∆CT) in the level of their expression, which has been normalized to the reference
gene GAPDH. The points represent the mean value ± SD (three independent experiments).
Two-way ANOVA statistical analyses were performed using GraphPad Prism v9.4.0 [66,67].
The multiple comparison was performed by comparing the mean value of each treated
group with the others over time. Tukey’s test was used to correct for multiple comparisons.
The asterisks show the significances of the adjusted p-values (* p < 0.05; ** p < 0.01; *** p <
0.005).

Table 2. Real-time PCR primers.

Primer Name Primer Sequence

CD44 Forward cagggagaaaggggtagtgatac
CD44 Reverse tccaagtgagggactacaacag

COL10a1 Forward tgcctgtgtctgcttttactg
COL10a1 Reverse acccaaacatgagtccctttcac

SPP1 (osteopontin) Forward tccagtaccctgatgctacag
SPP1 (osteopontin) Reverse ctctggtcatccagctgactcg

VEGF Forward gagtacatcttcaagccatcctg
VEGF Reverse aggaagctcatctctcctatgtg

FGF2/bFGF Forward cagaagagagaggagttgtgtct
FGF2/bFGF Reverse ggtgtatttccttgaccggtaag

hGAPD Forward caccatcttccaggagcgag
hGAPD Reverse tcacgccacagtttcccgga

In Figure 3, only significant comparisons were shown.

5. Conclusions and Future Perspectives

One of the fundamental problems for the application of cellular and molecular therapy
regarding the regenerative medicine of bone tissue is the differentiation speed of mes-
enchymal cells, which replaces the diseased or damaged part of the tissue. The protocols
currently in use for osteogenic differentiation (direct or indirect) require a time of about 21
days, which represents a very long time considering the impact of speed in bone generation
and thus the effectiveness of the therapy.

Our preliminary study proposed a new and more powerful chondro/osteogenic
differentiation protocol lasting only three days (compared to 21 days for classic protocols),
thanks to the application of “targeted epigenetic modulators” (MC1568) that amplify and
accelerate formation of osteocytes in a suitable time for the preparation of replacement
bone tissue.

The cells thus differentiated were used to “seed” a 3D scaffold in a bio-compatible and
bio-degradable material [68] made with a 3D printer [69,70]. This technology can faithfully
reproduce the bone morphology to be replaced by the anatomical information obtained
from CT or MRI reconstructions.
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In the “three-dimensional” structure obtained, the adult stem cells in chondrocyte
differentiation occupy, within the scaffold, biological niches created along the bone-like
trabeculae which represent, after the surgical implantation, the platform and trigger the
formation of a microenvironment in which hypertrophic chondrocytes produce and release
specific molecules for the mineralization and vascularization of tissue.

In particular, the metalloproteinases of the matrix (MMP) contribute to the mineral-
ization of the same and the vascular endothelial growth factor (VEGF) to attract blood
vessels by distributing osteoblasts, osteoclasts, and hematopoietic pre-cursors, in order to
reabsorb the scaffold and promote the formation of bones. These will contain the so-called
“stromal sinusoids”, responsible for the formation of the microenvironment suitable for
hematopoiesis [71].

At the end of the process described above, both the mesenchymal cells of the scaffold
and the scaffold itself will disappear without a trace.

Naturally, since this is a preliminary work, further and more in-depth studies must be
conducted for the simultaneous use and in synergy of the most innovative technologies
in the field of cell/molecular biology, bioengineering of materials (scaffold), epigenetics,
etc. in order to bring the protocol from a purely experimental basis to an effective clinical
implementation.
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PTHrP-R parathyroid hormone-related protein receptor
SAHA suberoyl anilide hydroxamic acid
SIRT sirtuin
TGF-β transforming growth factor-beta
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