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Abstract
Automatic speech recognition systems based on end-to-end models (E2E-ASRs) can achieve comparable performance to

conventional ASR systems while reproducing all their essential parts automatically, from speech units to the language

model. However, they hide the underlying perceptual processes modelled, if any, and they have lower adaptability to

multiple application contexts, and, furthermore, they require powerful hardware and an extensive amount of training data.

Model-explainability techniques can explore the internal dynamics of these ASR systems and possibly understand and

explain the processes conducting to their decisions and outputs. Understanding these processes can help enhance ASR

performance and reduce the required training data and hardware significantly. In this paper, we probe the internal dynamics

of three E2E-ASRs pre-trained for English by building an acoustic-syllable boundary detector for Italian and Spanish based

on the E2E-ASRs’ internal encoding layer outputs. We demonstrate that the shallower E2E-ASR layers spontaneously form

a rhythmic component correlated with prominent syllables, central in human speech processing. This finding highlights a

parallel between the analysed E2E-ASRs and human speech recognition. Our results contribute to the body of knowledge

by providing a human-explainable insight into behaviours encoded in popular E2E-ASR systems.

Keywords Automatic speech recognition � Deep learning � End-to-end models � Long short-term memory model �
Conformers � Transformers � Psycho-acoustics � Syllables

1 Introduction

Deep-learning architectures are becoming increasingly

complex, and their required training datasets are increas-

ingly extensive [1]. Automatic speech recognition (ASR)

systems based on deep-learning models (DL-ASRs) can

reach very high performance on controlled speech and have

opened the way to a vast range of voice-activated appli-

cations [2–4]. However, these powerful models only par-

tially disclose how they achieve speech recognition. They

leave open questions such as (i) which underlying rhythmic

processes are being modelled, if any, and (ii) whether their

unexplained, brute force modelling approach could be

substituted by a psycho-acoustic-inspired and less hard-

ware-demanding approach. These aspects are essential to

enhance ASR performance and efficiency. Psycho-acous-

tic-inspired ASRs can indeed achieve comparable perfor-

mance to DL-ASRs with much less (even of orders of

magnitude) training material and computational time and

energy expense [5]. Moreover, human speech recognition’s

effectiveness strongly depends on the supra-segmental

processing of speech (including rhythm). Human speech

processing has indeed been explored from multiple per-

spectives in recent decades. In particular, the role of

rhythmic scan has attracted interest as a way to describe

attentional patterns supporting acoustic information

weighting in real time [6, 7]. The concept of syllable has
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1 UrbanECO, Università degli Studi di Napoli Federico II,

Corso Umberto I, 40, 80138 Naples, Italy

2 Istituto di Scienza e Tecnologie dell’Informazione

‘‘Alessandro Faedo’’, CNR, Via Moruzzi, 1, 56124 Pisa, Italy

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-09435-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7232-191X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09435-1&amp;domain=pdf
https://doi.org/10.1007/s00521-024-09435-1


been extensively used to describe acoustic correlates of

rhythmic patterns. From a phonetic point of view, a syl-

lable has been defined [8] as ‘‘a continuous voiced segment

of speech organised around one local loudness peak, and

possibly preceded and/or followed by voiceless segments’’.

In a more acoustic-oriented definition [9, p. 70] that con-

siders co-articulation dynamics, the syllable consists of ‘‘a

centre which has little or no obstruction to airflow and

which sounds comparatively loud; before and after that

centre [...] there will be a greater obstruction to airflow and/

or less loud sound’’. Consequently, a syllable has been

described as a 100–250-ms signal segment constructed

around a high energy peak (nucleus), possibly preceded by

an increasing energy slope (onset) and followed by a tail of

decreasing energy (coda). Syllables have been used as the

basis for theories describing how speech processing has

developed in human beings over time [10], and several

studies have highlighted their crucial importance in speech

perception and recognition [11–16]. Syllables can indeed

be perceived even if they are reduced or not actually

uttered [17–19]. However, syllabic speech units pose dif-

ficulties in linguistics and psycho-acoustics, e.g. different

language experts sometimes disagree on positioning their

boundaries [20, 21].

A high-performance DL-ASR might internally repro-

duce linguistic information at different levels of abstrac-

tion; in particular, we argue that one of these possible

representations could be related to acoustic syllables

‘spontaneously’, in a way that could be sufficient to teach

another automatic system to recognise these syllables

simply using the internal vector embeddings as features.

These representations could be found in the deep-learning

model’s encoding layers and would be automatically

formed, while the model learns to recognise speech units

and language [22]. End-to-end (E2E) models belong to this

class of deep-learning models (Sect. 2). They automati-

cally model all speech recognition mechanisms, from base

speech units to the language model. Through model-ex-

plainability techniques, it is possible to verify if the specific

internal dynamics of these models resemble those of

human speech perception. If these dynamics exist, they can

be explored, understood, and explicitly re-embedded in the

ASR model. This approach can lead to significant tech-

nological breakthroughs because a psycho-acoustics-in-

spired ASR model would require much less training data

and simpler hardware to achieve a high performance [5].

This research would thus support a more computationally

accessible artificial intelligence, a relevant problem in

modern technology [23, 24] (Sect. 2).

In the present paper, we use the syllable as the central

acoustic unit of an investigation of end-to-end ASR models

(E2E-ASRs). We analyse the internal learning processes of

a single E2E-ASR architecture with three different sizes of

internal encoding and decoding modules. We demonstrate

that these models automatically developed in their shal-

lower layers a model of rhythmic patterns related to syl-

lables. These patterns resembled syllabic-scale human

speech perception processes that past linguistic and psy-

cho-acoustic studies have also described [12, 13, 25–32].

To this aim, we built automatic syllable boundary detectors

working on the vectors extracted from the internal ASR

models’ encoding layers. These detectors allowed us to

identify the layers where syllable-related information was

formed and calculate rhythmic and intensity properties.

This paper is organised as follows: Sect. 2 reports

background and related work on deep-learning-based ASRs

and their explainability. Section 3 describes the end-to-end

ASRs used in our experiment, the syllable boundary

detectors we built, and the data we used for the evaluation.

Section 4 reports the performance of our syllable boundary

detectors and supports the demonstration that the inner

layers of the used ASRs contain syllable-related informa-

tion. Finally, Sect. 5 draws the conclusions.

2 Background and related works

An E2E-ASR automatically transforms a sequence of input

acoustic feature vectors (possibly raw samples) from an

audio signal into a sequence of graphemes or words rep-

resenting the audio transcription [3]. Conventional ASR

systems usually train acoustic, pronunciation, and language

models separately and require specific modelling and

training of these parts. E2E-ASRs overcome the difficulties

and cost-ineffectiveness of the data preparation and mod-

elling phases of conventional systems, by committing the

model to learn all parts automatically. E2E-ASRs can

perform comparable to conventional systems but require

far more training data [5].

Despite the great interest by academics and industry in

E2E-ASRs, their usage in production environments

encountered obstacles due to practical issues like insuffi-

cient client streaming capabilities, high latency, and low

multi-application-context adaptability [33]. Moreover,

having all information hidden in a complex deep learning

model limits understanding the model’s internal dynamics

and the confidence in using an E2E-ASR for commercial or

industrial applications. Additionally, the continuous incre-

ment in the models’ size (i.e. the number of layers and

parameters) limits their executions to powerful machines

only—usually residing in cloud computing infrastruc-

tures—rather than to the local users’ computers or small

embeddable devices. The required data volume and com-

putational capacity to handle model training from scratch

increase with model complexity and size so fast that sig-

nificant investments are necessary to train even one model.
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Today, this trend allows only a few institutions and com-

panies to develop state-of-the-art E2E-ASRs.

This section describes the deep-learning models typi-

cally used in E2E-ASRs (Sect. 2.1). Then, it provides an

overview of the methodologies used to explain the internal

information representation formed in these models

(Sect. 2.2).

2.1 End-to-end automatic speech recognition
models

Using E2E models has been a turning point in automatic

speech recognition [33]. E2E models enabled the possi-

bility of merging acoustic and language modelling into one

system whose task was to convert an input vector sequence

into another (Fig. 1). Today, E2E-ASRs are frequently

based on Transformer deep-learning architectures [22, 34].

A Transformer processes sequences of acoustic data vec-

tors and automatically models the information in the vector

sequence as a whole and the vectors’ inter-dependencies.

As a result, it automatically infers speech units and the

language model. Transformers commonly use an encoder–

decoder architecture: The encoder forms an internal rep-

resentation of the raw input (e.g. speech units-related data)

that also contains information on inter-vector relations. A

sequence of encoding layers is usually adopted to create

more and more abstract data representations. The decoder

translates the encoded data into an output vector sequence.

A sequence of decoding layers can be used to refine the

output sequence iteratively. The final output of a Trans-

former-based ASR model is the phonetic or word tran-

scription of the audio input. Transformer-based ASRs

require a far more extensive training set than conventional

ASR systems to achieve comparable performance [35–37].

A Transformer ASR model typically includes a self-at-

tention module in its architecture [38–40]. Self-attention

estimates the influence of all preceding and subsequent

input data vectors when processing each single data vector.

This mechanism was introduced to mimic human cognitive

attention because it relates one data vector in the input

sequence to all its contextual data vectors. Through reverse

engineering or deep-layer probing, it is possible to analyse

the outputs of each encoding, decoding, and self-attention

layer to understand whether these reflect perception-related

processes [41–44].

The Transformer encoder can be implemented as a

sequence of ‘ Conformer’ blocks [45] (Fig. 2), each com-

bining a four Feed-Forward Artificial Neural Network

sequence with a final normalisation layer. The name

‘Conformer’ is commonly used to indicate a Transformer

with this encoding method. The Transformer decoder can

be substituted by (or combined with) a Connectionist

Temporal Classification (CTC) model [35] or a Recurrent

Neural Network Transducer (RNN-T) [46]. CTC is a non-

auto-regressive speech transcription technique which col-

lapses consecutive, all-equal transcription labels (character,

word piece, etc.) to one label unless a special label sepa-

rates these. The result is a sequence of labels shorter or

equal to the input vector sequence length. The CTC is one

of the most diffused decoding techniques. As non-auto-

regressive, it is also considered computationally effective

because it requires less time and resources for the training

and inference phases. Conversely, the RNN-T (also named

Transducer) is an auto-regressive speech transcription

technique which overcomes CTC’s limitations, i.e. non-

auto-regressive and limited label sequence length. An

RNN-T (also named Transducer) is a speech transcription

technique which can produce label-transcription sequences

Fig. 1 Example architectural

schema of an end-to-end

automatic speech recognition

model
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longer than the input vector sequence and models long-

term transcription elements’ inter-dependency. A Trans-

ducer typically comprises two sub-decoding modules: one

that forecasts the next transcription label based on the

previous transcriptions (prediction network) and the other

that combines the encoder and prediction-network outputs

to produce a new transcription label (joiner network).

These features improve transcription speed and perfor-

mance with respect to CTC at the expense of more training

and computational resources required [46].

2.2 Model explainability

Among the drawbacks of modern deep learning systems,

the most frequently cited are the low accessibility of suf-

ficient training corpora, the high demand for computational

resources, and their poor interpretability (i.e. the explana-

tion, understanding, and trust of the decisions and outputs)

[47–57]. DL-ASRs are not exempt from these issues

[58, 59]. However, the interpretation of the internal model

dynamics and overall ‘behaviour’ can be studied through

model-output backtracking or simulated via explainable

methods [60–65]. Alternatively, ‘probes’ can be installed

on the encoding (and/or decoding) layers at different

‘depths’ of the layer sequence [66, 67]. The probes allow

observing and then analysing the vectors produced by the

layers (emissions or emission vectors) to classify some

phenomenon and consequently characterise the information

contained in these vectors [68]. For example, in computer

vision, model probing allows associating focus areas or

abstraction patterns to specific deep neural network layers

[69].

Probing is often used to interpret specific E2E-ASRs’

layers [66, 67]. For example, the DeepSpeech2 E2E-ASR

[70] was probed to study the differences between the

models trained in English and Arabic [71]. The probed

emissions were classified through a Feed-Forward neural

network to evidence that the two models were learning

specific linguistic characteristics related to articulation

manner and place. Other probing studies have analysed,

through classification and measurements, how accent

influences the DeepSpeech2 performance [72, 73]. These

studies also evidenced how the contextual phonetic infor-

mation contained in the emissions influenced the classifi-

cation tasks. Probing has also been used to investigate the

multi-temporal modelling of phonetic information in the

Wav2Vec2.0 E2E-ASR [74, 75]. A recent study [76] has

proposed an in-depth analysis of the layer-wise encoded

information of the pre-trained Wav2Vec2.0 large and

small-sized models. The study evidenced the presence of

phone-level and word-level information at layers 11–12/

17–18 (phone) and layers 11–19 (word) for the large-sized

model. Some studies have also proposed a spectrogram-

like representation of emissions that could be used for

speaker identification and speech synthesis [77].

Probing studies have seldom analysed the possible

multi-scale (e.g. phonetic, syllabic, word), supra-segmental

(e.g. rhythm, pitch), modelling occurring in E2E-ASRs,

e.g. the presence of syllabic-scale or rhythmic components

also existing in human speech recognition [78]. The exis-

tence of these components would indicate the presence of

interpretable information in the emissions, which could

adequately be re-embedded in the ASR model to improve

performance while decreasing computational complexity

[5]. For example, syllabic information can be primary in

data pre-processing for efficiently selecting informative

data from large corpora that would improve ASR perfor-

mance and make it comparable to a system using a much

larger amount of data [79]. When used within a maximum-

entropy principle for acoustic feature selection and uncer-

tainty quantification [80], syllabic information can help

choose training utterances contributing to homogenising

information distribution across speech units [81, 82].

Moreover, syllabic spectral analysis can reveal syllabic

structural changes related to language evolution and

anthropological dynamics [83, 84]. Moreover, syllables are

often central speech units in the design of ASRs targeting

Fig. 2 Typical architectural schema of a Conformer block within a generic deep-learning model’s encoder

Neural Computing and Applications

123



under-resourced languages or limited-vocabulary applica-

tions [85–90].

3 Materials and method

This section describes our probing of three state-of-the-art

Transformer-based ASR models. Rather than searching for

word or phonetic scale representations forming within the

Transformer encoding layers, we focused on syllable-scale

representations. We investigated whether the emissions of

the three analysed Transformers were valuable for building

a high-performance acoustic-syllable boundary detector.

Moreover, we explored whether specific Transformer lay-

ers formed syllable-related representations.

The present section is organised as follows: Sect. 3.1

describes the base Transformer ASR models analysed.

Section 3.2 describes the syllable boundary detectors we

built for the probing task. Finally, Sect. 3.3 describes the

data used for training and testing the syllable boundary

detectors.

3.1 Transformer ASR models

The Transformer ASR model architecture we probed was a

Conformer model from the Nvidia NeMo Automatic

Speech Recognition toolkit [91]. Nvidia distributes three

pre-trained versions of this ASR model with different

‘sizes’—corresponding to different Conformer block

sequence lengths—based on the NeMo ASRSET-2.0 open-

source corpus in English (Table 1). The NeMo toolkit and

the pre-trained models aim to provide academic and

industrial researchers with state-of-the-art tools to build

conversational agents.

The used Conformers contain a Conformer block

sequence in its encoder module (encoding layers). The

decoder uses a Transducer for word-based decoding or,

alternatively, a CTC model for character-based decoding.

For the present study, we used word-based decoding

because we addressed the detection of speech units with a

larger scale than the phonetic scale (which roughly corre-

sponds to character-based decoding). Table 2 reports the

number of encoding and decoding layers across the pre-

trained Conformers.

In the present experiment, we probed the encoding

layers’ emissions of the three Nvidia Nemo Conformers

(hereafter generally indicated as Transformer ASR models)

to search for evidence of syllable-related information

automatically forming in these layers.

3.2 Syllable boundary detection

To investigate whether the Transformer ASR models

internally formed a rhythmic or syllabic-scale component

in specific encoding layers, we trained new machine-

learning models with the emission vectors of different

encoding layers. Each model was trained to classify one

emission vector from one encoding layer as corresponding

to syllabic boundary presence or absence. We trained one

detector for each encoding layer and Transformer ASR

model size to verify (i) whether specific encoding layers

contained sufficient information for syllable boundary

detection and (ii) whether the correct detections could be

associated with long and intense (prominent) syllables,

which are integral to human speech recognition [11–16].

We used new training and test material to build the

syllable boundary detectors (Sect. 3.3). The Transformer

ASR models were preliminarily executed on the training

set audio files to produce word-level transcriptions. Prob-

ing was conducted by acquiring tensors (later flattened into

vectors) at the output of one encoding layer at a time.

Specifically, all emission vectors fel;mg (of length h),

belonging to the probing of the l-th layer (between 1 and 16

or 17) of Transformer m (with m among Small, Medium,

and Large) were saved as the training data for a new syl-

lable boundary detection model.

The syllable boundary detection model was a Long

Short-Term Memory (LSTM) model followed by a binary-

classifying Feed-Forward artificial neural network (Fig. 3).

LSTMs are suited models for classifying a time series of

observation vectors [95] and making predictions out of

Table 1 Summary of the three transformer-based automatic speech

recognisers used as the basis of our experiment

Name Language Version Parameters Training set

Small [92] English 1.6.0 � 14 M ASRSET 2.0

Medium [93] English 1.6.0 � 32 M ASRSET 2.0

Large [94] English 1.6.0 � 120 M ASRSET 2.0

Table 2 Number of layers and neurons-per-network in the encoder

and decoder modules of the three Transformer Automatic Speech

Recognisers probed

Model Encoder Decoder

Layers Neurons Predictor Joiner

Layers Neurons Layers Neurons

Small 16 176 1 320 1 320

Medium 16 256 1 640 1 640

Large 17 512 1 640 1 640
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historical data [96–99]. In the conventional architecture, an

LSTM consists of one computational unit that iteratively

processes all input time series vectors. This unit comprises

three gates that process one vector at a time while com-

bining this vector with information extracted from the

previously processed vectors. All gates are realised as one-

layer Feed-Forward neural networks with the same number

of output neurons (hidden-layer length, n) and tanh or

sigmoid activation functions. The gates’ outputs are further

processed by an output gate that produces an output vector

with size n for the input vector processed at time t. The

LSTM hidden-layer length is the crucial model parameter

to optimise for gaining optimal classification performance.

Our LSTM processed a sequence of fel;mg emission vectors

(each of length h) and produced a new sequence of vectors

with size n. The two sequences were aligned over time. For

each time step t, the Feed-Forward network produced a

binary decision for syllable boundary presence (1) or

absence (0) based on the LSTM hidden-layer output. In

summary, we trained and tested different LSTM-based

syllabic boundary detectors (Ln;m;l) for all possible n, m,

and l combinations and studied the models’ performance

while searching for evidence of syllable-related properties

in the models’ decisions. To reduce overfitting risk, we also

enabled a dropout neuron-selection strategy for the LSTM

gates, which statistically excluded (with a 0.2 probability)

one neuron and its weights at each training iteration [100].

Notably, our syllabic boundary detectors’ temporal sensi-

tivity (the minimum difference between consecutive time

steps) was 40 ms because all Transformer ASR models

produced emissions at this rate.

3.3 Experimental data

For testing the syllable boundary detectors’ performance,

we used a dataset annotated by Italian and Spanish experts,

available for the members or customers of the CLARIN

research infrastructure [101]. The Italian corpus contained

68 wave files from 11 speakers recorded at a 16-kHz

sampling frequency for a total of 3.5 min of annotated

audio. The Spanish corpus contained 45 recordings from 6

speakers for a total of 2.8 min of annotated audio.

Annotations were available in Textgrid format [102] and

contained the following annotation levels:

• Word: the word-by-word orthophonic transcription of

the speech signal;

• Syllable-phonetic: the phonetic pronunciation of the

uttered syllables;

• Syllable-phonologic: the expected syllable transcription

according to the word-level transcription and the

phonologically predictable reduction processes.

These three annotation levels did not necessarily corre-

spond to synchronised boundaries because they were pro-

duced independently from each other, and perceptive

differences exist in the human recognition of the different

levels [15]. In our experiment, we used the syllable-pho-

netic level to detect acoustic-related syllable boundaries.

Acoustic-related syllables are indeed the only syllable

types an ASR model can extract from the raw audio signal

without using an externally provided linguistic model.

Additionally, merging the Italian and Spanish corpora was

plausible because these languages belong to the same lin-

guistic family and have similar syllable boundary defini-

tions. The merged corpus allowed us to produce

statistically significant results.

We used the Italian-Spanish merged corpus to train and

test our LSTM-based syllable boundary detectors. We split

the corpus into train, validation, and test sets using 60, 20,

and 20% percentages while ensuring that these sets did not

share the same speakers. This choice aimed at guaranteeing

that results were mostly speaker-independent. In the data

preparation phase, we associated the Transformer ASR

models’ emissions with syllable boundary presence or

absence and then used this association for model devel-

opment and testing. Therefore, we prepared separate vector

datasets for each probed emission layer of each Trans-

former ASR model. Based on these data, we conducted a

two-step analysis: First, we detected the three most

promising parametrisations of the LSTM-based syllable

boundary detectors. These models were selected as having

very different lengths of the LSTM hidden layer and

achieving comparable high performance on the validation

data. They allowed us to study performance variation

across different resolutions of emissions’ encoding and

processing in the LSTMs. Second, we compared the syl-

lable boundary detectors’ performance across the Trans-

former ASR models and encoding layers. We also tested

whether syllabic information detection was independent of

emission encoding resolution in the LSTM.

Using Italian and Spanish corpora to train and test the

syllable boundary detectors—although the Transformer

ASR models were originally trained in English—was a

reasoned experimental choice. Indeed, our target was to

study rhythmic, syllable-related information rather than

Fig. 3 Schema of our syllable boundary detector: t indicates the

temporal index of the currently analysed frame; n is the LSTM

hidden-layer length; h is the probed Transducer model’s emission-

vector length; d is the binary decision (0/1) produced by a

classification feed-forward artificial neural network
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syllable recognition. Rhythm is a language-independent

feature, whereas syllable recognition is a language-depen-

dent one [103]. Therefore, using languages other than

English in the probing task allowed us to study the lan-

guage-independent features of the syllabic and rhythmic

components modelled by the Transformer ASR models.

4 Results

This section reports the performance measurements of our

LSTM-based syllable boundary detectors across the probed

encoding layers of the Transformer ASR models. In par-

ticular, Sect. 4.1 reports standard evaluation metrics for

detecting the optimal LSTM parametrisation per Trans-

former ASR model, and Sect. 4.2 reports a syllable-ori-

ented acoustic characterisation of the detected syllable

boundaries.

4.1 Error rate and statistical significance

4.1.1 Considered metrics and measurements

We evaluated all possible Ln;m;l models to identify the

optimal LSTM hidden-layer length (n) and encoding layer

depth (l) per Transformer ASR model size (m). The three

best models achieving an overall high performance, with

sufficiently different n, had the following hidden-layer

lengths: 160, 320, and 740. We compared these models

across all m and l combinations for a total of 172 L models

trained and tested.

We used the SCTK1 evaluation suite of the National

Institute of Standards Technologies (NIST), a commonly

used reference tool, to measure the Ln;m;l models’ perfor-

mance. In particular, in compliance with other syllable

boundary detectors [104–106], we measured the model

Word Correct Rate (WCR) as the fraction of correctly

classified words (i.e. WCR ¼
Number of correctly classified words

Total words
). The Word Error

Rate metric, commonly used by other works, corresponds

to 1 � WCR. In our experiments, word corresponds to a

syllable-boundary label indicating presence or absence in a

40-ms segment.

4.1.2 Evaluation

Figure 4a–c reports the WCR charts grouped by LSTM

hidden-layer length. The x-axis indicates the probed

Transformer ASR model’s layer depth index, and the col-

ours indicate the three Transformer ASR models analysed.

The y-axis reports the WCR. For example, in Fig. 4a, x ¼ 0

compares the syllable boundary detector with n ¼ 160,

trained on the emissions extracted from the first layer

(l ¼ 1) of the Small, Medium, and Large Transformer ASR

models separately (i.e. for all m values).

The general trend emerging from the charts is that lower

encoding layers contained higher discriminant information

for syllable boundary detection, which decreased in deeper

layers. Layers with depth indexes between 3 and 6 con-

tained the most valuable information, with the 4th and 5th

depth-index layers being the most informative. This

observation was valid across all Transformer ASR models.

The detectors’ WCRs were more similar across the

Transformer ASR models as far as the LSTM hidden-layer

length increased. This observation indicates similar infor-

mation encoding in ‘long’ LSTMs, which compensated for

smaller Transformer ASR model sizes (Fig. 4c).

We also tested the statistical significance of the mea-

sured performance differences. After fixing m and n, we

cross-compared the ðLn;m;li ; Ln;m;ljÞ WCRs for all i and j

layers (with i 6¼ j). Significance tests were two-tailed tests

with the null hypothesis that there was no significant WCR

difference. For example, Table 3 reports all significance

tests for a syllable boundary detector with a 320 hidden-

layer length using the emissions of the Small Transformer

ASR model (all other tables are reported in Appendix).

Columns Sys 1 and Sys 2 indicate the li and lj indices. The

Win column indicates which detector achieved the highest

performance. The Relevance column classifies the mini-

mum significance level p-value as ‘*’ (p ¼ 0:001), ‘**’

(p ¼ 0:01), ‘***’ (p ¼ 0:05), or non-significant (empty).

Therefore, the most significant discrepancies were those

indicated with one ‘*’. The table demonstrates that the

LSTM with a 320 hidden-layer length achieved the highest

performance using the emissions of the 4th-index encoding

layer of the Small Transformer ASR model. This perfor-

mance was significantly higher than the one achieved using

the other encoding layers. The comparisons across all n and

m values confirmed that the 4th and 5th Transformer ASR

model’s encoding layer indexes always corresponded to the

highest and most significant WCRs.

4.2 Optimal model identification and energy-
pitch characterisation of the classifications

4.2.1 Considered metrics and measurements

We measured the overall performance of the Ln;m;l models

after fixing l to the most informative emission layer for

syllable boundary detection per (n, m) pair. We used

standard measurements (Accuracy, Precision, Recall, F1)

based on the experts’ corpus annotations. We also used
1 https://github.com/usnistgov/SCTK.
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Fig. 4 Word correct rate of our

LSTM-based syllable boundary

detectors across the emission

vectors extracted from three

Transformer ASR models

(small, medium, and large). The

x-axis reports the depth of the

Transformer ASR model layer

from which vectors were

extracted. The three charts

correspond to different LSTM

hidden-layer lengths, i.e. a 160,

b 320, and c 740
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Cohen’s kappa to measure the agreement between the

manual and automatic annotations with respect to the

chance agreement. In this comparison, true positives

(TPs) were 40-ms segments where both the manual and

automatic annotations indicated the presence of a syl-

labic boundary. Likewise, true negatives (TNs) were

segments where both the annotations indicated the

absence of a syllabic boundary. False negatives (FNs)

were segments where only the manual annotation indi-

cated a syllabic-boundary presence. Finally, false posi-

tives (FPs) were segments where only the automatic

annotation indicated a syllabic-boundary presence. In

summary, the following performance measurements were

used:

Table 3 Summary of the

pairwise statistical significance

tests between LSTM-based

syllable boundary detectors with

a 320 hidden layer length,

trained on the features vectors

extracted from the Small

Transducer ASR model

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 2 14 2 ** 6 12 6 ***

0 2 2 15 2 *** 6 13 6 ***

0 3 3 4 6 14 6 ***

0 4 4 * 3 5 6 15 6 ***

0 5 3 6 7 8

0 6 3 7 7 9 7 ***

0 7 3 8 7 10 7 **

0 8 3 9 3 *** 7 11 7 ***

0 9 3 10 3 ** 7 12 7 ***

0 10 3 11 3 *** 7 13 7 ***

0 11 3 12 3 *** 7 14 7 ***

0 12 3 13 3 *** 7 15 7 ***

0 13 0 * 3 14 3 *** 8 9 8 ***

0 14 0 * 3 15 3 *** 8 10 8 **

0 15 0 *** 4 5 4 * 8 11 8 **

1 2 4 6 8 12 8 ***

1 3 3 * 4 7 8 13 8 ***

1 4 4 ** 4 8 4 * 8 14 8 ***

1 5 4 9 4 *** 8 15 8 ***

1 6 6 * 4 10 4 *** 9 10

1 7 4 11 4 *** 9 11

1 8 4 12 4 *** 9 12

1 9 4 13 4 *** 9 13

1 10 4 14 4 *** 9 14

1 11 4 15 4 *** 9 15 9 ***

1 12 5 6 10 11

1 13 1 * 5 7 10 12

1 14 1 * 5 8 10 13

1 15 1 *** 5 9 5 ** 10 14

2 3 5 10 5 ** 10 15 10 ***

2 4 4 ** 5 11 5 ** 11 12

2 5 5 12 5 ** 11 13

2 6 5 13 5 *** 11 14

2 7 5 14 5 *** 11 15 11 ***

2 8 5 15 5 *** 12 13

2 9 2 * 6 7 12 14

2 10 6 8 12 15 12 ***

2 11 2 * 6 9 6 *** 13 14

2 12 2 * 6 10 6 *** 13 15 13 **

2 13 2 ** 6 11 6 *** 14 15 14 **
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Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN

Precision ¼ TP

TP þ FP

Recall ¼ TP

TP þ FN

F1 ¼ 2 � Precision � Recall

ðPrecision þ RecallÞ

4.2.2 Evaluation

We used Accuracy and F1 as the principal measurements to

identify the optimal model because Accuracy calculates the

overall fraction of correctly detected boundaries, and F1

summarises Precision and Recall through their harmonic

mean. Generally, high Accuracy was measured for all

detectors, i.e. they could extract valuable syllable bound-

ary-related information. The assessment indicated that the

overall optimal model was an LSTM-based model with a

320 hidden layer length, operating on the output of the 4th

layer index of the Small Transformer ASR model

(Table 4). The kappa agreement was ‘‘good’’ according to

Fleiss’ classifications [107] for all detectors but was

slightly better for the optimal model (0.54). The optimal

model achieved a lower Recall than the other models

because of a higher number of false positives. However,

the model compensated for the Recall loss with a higher

Precision, resulting in a higher F1 overall.

As an additional step, we characterised the optimal

model’s classification categories (TP–TN–FP–FN) over

40-ms segments by studying their average energy and

pitch-level distributions. Energy is here intended as the

squared sum of the signal-segment samples divided by the

total number of segment samples (signal-segment power).

Pitch, a rhythm-related feature, was estimated as the

average pitch of 10-ms windows within the 40-ms classi-

fied segments. It was calculated through Boersma’s sound-

to-pitch algorithm [108] within a 60–250-Hz frequency

band. The energy and pitch distributions across the clas-

sification categories allowed for characterising specific and

shared properties of these categories (Table 5 and Fig. 5).

Generally, the TPs corresponded to segments with higher

energy than FPs (? 31%) and TN (? 14%) but had slightly

lower energy than FNs (- 6%) (Table 5). Higher energy

(? 25%) was also observable for expert-annotated syllabic

boundaries (corresponding to TP ? FN) compared to non-

annotated segments (TN ? FP). Conversely, TPs corre-

sponded to an averagely lower pitch than FPs (- 1%) but

an averagely higher pitch than TNs (? 18%) and FNs

(? 7%). However, the experts’ annotations presented an

average higher pitch (? 5%) in the syllabic-boundary

segments than in non-syllabic-boundary segments.

Notably, TPs fell in energy islands (signal segments char-

acterised by an increasing onset, a nucleus, and a

decreasing coda) of syllabic scale (100–200 ms) and with

averagely double the duration of the TNs’ energy islands

(40–100 ms).

A range of energy values over 34.4E5 mainly corre-

sponded to TPs (Fig. 5a), which would enforce the clas-

sification confidence of these segments as syllabic

boundaries, should energy be used as a weighting classi-

fication factor. FNs presented moderately high energy

(11.48E5 median) and pitch (124.29 Hz median and

157.53 Hz at the 75th percentile) (Fig. 5b). High pitch in

FNs was a distinctive characteristic compared to TNs

(119.66 Hz median value and 147.70 Hz at the 75th per-

centile) that would allow for automatically revising the

classification of non-syllabic boundaries. As for FPs, the

corresponding segments presented a median energy com-

parable with the TNs’ energy (9.99E5 vs 9.64E5) but had

lower median energy than the FNs (11.48E5). Therefore,

energy was not a discriminant property of FPs. However,

the FPs presented a generally higher pitch than TNs

(129.64 Hz vs 119.66 Hz), which could help detect and

correct some FPs.

5 Discussion and conclusions

This paper has described a probing experiment for end-to-

end Transformer ASR models based on automatic syllable

boundary detection. Our goal was to verify if such archi-

tectures internally modelled a rhythmic component similar

to what humans appear to do while processing speech.

Syllable boundary detection was based on an LSTM pro-

cessing the feature vectors extracted from a Transformer

ASR model’s encoding layer. The most informative vectors

were produced by the smallest-size Transformer ASR

model and were optimally recognised through an LSTM

with a 320 hidden-state length (medium size). Our syllable

boundary detector also reached a higher accuracy

(� 87%) than alternative systems for Italian

[104, 109, 110].

One significant result of the present study is that our

syllable boundary detectors’ performance depended on a

rhythmic component modelled by the inner layers of the

analysed Transformers, correlated with psycho-acoustic

syllables. In fact, our evaluation highlighted that an

acoustic component with high energy and long duration

was primarily contained in the shallower Transformer’s

encoding layers (� 4), fading out in deeper layers (� 16),

and was valuable for automatic syllable boundary detec-

tion. This result suggests that the Transformer ASR models

captured syllable separation (and rhythm, consequently) in

the earliest stage of the encoding process, in agreement
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with studies that have explored automatic and human

speech-processing similarities from a medical perspective

[111]. It also aligns with other studies [76] that detected

phone-level and word-level positive reactions in layers

likely compatible with those we detected as reacting to

syllables. A detailed analysis of the optimal syllable

boundary detector output indicated that the true-positive

classifications were associated with highly energetic

boundaries within syllabic-scale energy islands

(100–200 ms) having double the duration of the true neg-

atives’ duration. This observation indicates a correlation

between the detected syllable boundaries and syllabic

prominence [15]. The wrongly classified boundaries (false

positives) had similar medium–low energy profiles to true

negatives but an averagely higher pitch. Therefore, a high

pitch and medium–low energy segment should lower the

syllable boundary detection confidence, whereas a high

energy segment should increase the detection confidence

[104, 110].

Among the missed boundaries (false negatives), a subset

was characterised by higher energy and pitch than true

negatives. These cases might correspond to the boundaries

of stressed syllables at the end of words (present in Italian

and Spanish). Therefore, they could be due to the dis-

crepancy between the Transformer ASR model and the

syllable detector training languages. One point of discus-

sion is indeed the consequence of training the Transformer

in English and the syllable boundary detector in Italian and

Spanish. The representation formed in the Transformer’s

shallower layers was related to English syllables, i.e. to the

specific energy, length, and pitch profiles of a stress-timed

language. Conversely, Italian and Spanish are syllable-

timed languages. This discrepancy mainly increased the

number of false negatives, although not enough to com-

promise the overall performance. The underlying reason

Table 4 Summary of the performance of our syllable boundary

detectors reported per LSTM hidden-layer length. Each row reports

the corresponding Transformer ASR model used and the optimal

encoding layer used for feature extraction. Red numbers indicate the

highest values for each measurement. The overall optimal model is

highlighted in green

LSTM hidden layer

length

Transformer’s

size

Transformer’s optimal

layer depth

Accuracy Precision Recall F1 TP TN FP FN Cohen’s

Kappa

160 Large 4 85.84 66.79 57.09 61.56 169 1111 84 127 0.53

320 Large 4 86.11 68.46 55.74 61.44 165 1119 76 131 0.53

740 Large 4 86.65 71.55 54.39 61.8 161 1131 64 135 0.53

160 Medium 5 86.25 70.4 53.04 60.49 157 1129 66 139 0.52

320 Medium 4 86.31 70.35 53.71 60.91 159 1128 67 137 0.52

740 Medium 5 86.58 71.42 54.05 61.53 160 1131 64 136 0.53

160 Small 5 86.72 72.07 54.05 61.77 160 1133 62 136 0.53

320 Small 4 86.85 72.12 55.06 62.44 163 1132 63 133 0.54

740 Small 5 86.31 70.35 53.71 60.91 159 1128 67 137 0.52

Table 5 Proportions and

relative variations of average

energy and pitch in 40-ms

length audio segments

Energy and pitch proportions and relative variations

Ratio Relative variation

Average TP Energy/Average FP Energy 1.44 31%

Average TP Energy/Average TN Energy 1.17 14%

Average TP Energy/Average FN Energy 0.95 - 6%

Average TP ? FN Energy/Average TN ? FP Energy 1.33 25%

Average TP Pitch/Average FP Pitch 0.99 - 1%

Average TP Pitch/Average TN Pitch 1.22 18%

Average TP Pitch/Average FN Pitch 1.07 7%

Average TP ? FN Pitch/Average TN ? FP Pitch 1.05 5%

The table compares the values of the true positive classifications (TP) with those of the false positive (FP),

true negative (TN), and false negative (FN) classifications
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was likely that the emissions contained an important

rhythmic component that was language-independent.

In this work, we have focused on syllable units rather

than phonemes or words since the size of the considered

analysis windows does not allow for capturing phonemic-

related characteristics [76]. On the other hand, the encod-

ing layer does not contain word-level information. In the

future, we will consider finer- and coarse-grained units for

analysis in more extended models. Moreover, we will

explore how performance might change when all training

sets belong to the same language. We will also study

whether, in these conditions, true positives mostly corre-

spond to long and intense syllables (i.e. to syllabic acoustic

prominence). Having a way to detect prominent syllables

would be crucial to improve syllabic ASR models’ per-

formance while drastically reducing the training set

dimension [5] and would help refine the perceptive and

acoustic definition of syllable [15].

Our results create an interesting parallel between human

speech recognition, relying on psycho-acoustic syllable-

related units, and DL-ASR internal processing. They pro-

vide insight and location about human-explainable

processes inside E2E-ASR systems related to the formation

of syllabic-scale unit representations. Other scientific

studies have also conjectured that the internal knowledge

representation formed in deep learning models can produce

new definitions of speech units and emerging dynamics

similar to the internal human brain’s speech representations

[112, 113]. However, it is difficult to understand the

influence of the spontaneously formed speech units on the

E2E-ASR performance due to the large number of

parameters, training material, and the diverse training

methodologies used [22, 114]. One common research

question in this context is if we can learn from the psycho-

acoustic-like dynamics in ASRs to enhance other ASRs’

performance and efficiency. This question has been

investigated in under-represented languages, limited-vo-

cabulary ASRs, and robust spontaneous speech recognition

in noisy environments [13, 22, 28, 115–117]. The question

gains more interest if we highlight the gap between con-

ventional ASRs (which use an explicit speech-unit and

language modelling) and E2E-ASRs as the number of

parameters used by the two system types. For example, the

Wav2Vec2.0 E2E-ASR requires 108 parameters to

Fig. 5 Box plots displaying the

distributions of a energy and

b pitch values across true

positive (TP), true negative

(TN), false positive (FP), and

false negative (FN)

classifications
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overcome the performance of a conventional ASR (with

102 parameters) on a large-vocabulary recognition task

[114]. Performance is lower than conventional ASRs’

performance when using 107 parameters. The combination

of low complexity and high performance in conventional

ASRs is due to their explicit modelling approach. How-

ever, new solutions might exist in the 106 gap of used

parameters, which could rely on deep learning architectures

using information from conventional ASR modelling [5].

Multi-channel E2E-ASRs are exploring this possibility by

injecting supra-segmental and non-verbal characteristics in

encoding layers to enhance noisy-speech recognition

[118, 119]. They usually represent these characteristics as

additional (latent) variables or pre-trained sub-models

[120, 121]. Other approaches use the vectors extracted

from the hidden layers of large E2E-ASRs (distilled fea-

tures) to train smaller ASRs and achieve higher perfor-

mance on specific tasks [122]. Conversely, other systems

use distilled features instead of standard acoustic features

to improve the performance of conventional ASRs

[33, 123, 124].

Our experiment identified a particular type of distilled

features related to rhythm and syllables that can be used in

other ASRs. These features are suitable for Few-shot

Learning, i.e. to make an ASR model generalise over new

data categories using limited training data [125]. Distilled

features similar to the ones we detected have indeed shown

potential to reduce the hypothesis space, avoid overfitting,

ensure heterogeneity in the prediction space, and conse-

quently improve ASR effectiveness over the small datasets

available for low-resourced languages and applications

[126]. For example, they have been used as prototype

vectors for internal encoding classes (e.g. speech units) to

enhance class centroid representations and achieve better

generalisation [127–129]. Moreover, they have been pro-

posed to focus a Few-shot Learning model on islands of

prominent-speech segments having high-quality pronunci-

ation and thus being more clearly recognisable [5, 130].

Generally, ASR performance improvement deriving

from integrating syllabic-scale features has been long

reported and inspired the present work. Acoustic features

enriched with syllable-boundary information or syllabic-

scale features can sensibly improve continuous and spon-

taneous automatic speech recognition, especially in high

noise and reverb scenarios [131–134]. Moreover, syllabic-

scale features derived from deep learning models are crit-

ical for diagnostic systems based on prosodic information,

such as those for pathological speech detection in syllable-

timed languages [135, 136]. Recent studies have also

highlighted the centrality of these features in contexts

where prosody is the primary information source, such as

infant cry detection and classification [137, 138]. The

highly prosodic nature of infant cry indeed makes syllable-

scale acoustic features central for these tasks, especially

when extracted through deep learning models [99], and

allows interpreting a newborn’s psychological and clinical

status [139–141]. Finally, another field of application of

syllabic-scale features is the improvement of ASR robust-

ness to adversarial attacks (e.g. hidden voice commands),

which requires introducing new paradigms for attack

evaluation [142–144]. Some studies have indeed high-

lighted that syllabification (which can be based on syllabic-

scale features, like in our case) is critical to discovering

potential attacks and consequently improving ASR

robustness [145, 146].

In summary, all mentioned application cases would

likely benefit from syllable-related distilled features, e.g.

those extracted from the 4th-index encoding layer of the

present paper’s 320 hidden-state Transformer ASR. In

future experiments, we will verify this statement in all

mentioned contexts.

Appendix

See Tables 6, 7, 8, 9, 10, 11, 12, 13, and 14.
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Table 6 Summary of the

pairwise statistical significance

tests between LSTM-based

syllable classifiers with a 160

hidden layer length, trained on

the features vectors extracted

from the Small Transducer ASR

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 2 14 2 *** 6 12 6 ***

0 2 2 15 2 *** 6 13 6 ***

0 3 3 * 3 4 6 14 6 ***

0 4 3 5 6 15 6 ***

0 5 5 ** 3 6 7 8

0 6 3 7 7 9 7 *

0 7 3 8 3 * 7 10 7 **

0 8 3 9 3 ** 7 11 7 *

0 9 3 10 3 *** 7 12 7 ***

0 10 3 11 3 ** 7 13 7 **

0 11 3 12 3 *** 7 14 7 ***

0 12 0 ** 3 13 3 *** 7 15 7 ***

0 13 0 * 3 14 3 *** 8 9

0 14 0 * 3 15 3 *** 8 10 8 *

0 15 0 *** 4 5 8 11

1 2 4 6 8 12 8 ***

1 3 4 7 8 13 8 *

1 4 4 8 8 14 8 **

1 5 5 ** 4 9 4 ** 8 15 8 ***

1 6 4 10 4 *** 9 10

1 7 4 11 4 *** 9 11

1 8 4 12 4 *** 9 12 9 **

1 9 4 13 4 *** 9 13

1 10 1 ** 4 14 4 *** 9 14

1 11 1 * 4 15 4 *** 9 15 9 ***

1 12 1 *** 5 6 10 11

1 13 1 ** 5 7 5 ** 10 12

1 14 1 ** 5 8 5 *** 10 13

1 15 1 *** 5 9 5 *** 10 14

2 3 5 10 5 *** 10 15 10 **

2 4 5 11 5 *** 11 12 11 **

2 5 5 * 5 12 5 *** 11 13

2 6 5 13 5 *** 11 14

2 7 5 14 5 *** 11 15 11 ***

2 8 5 15 5 *** 12 13

2 9 2 * 6 7 12 14

2 10 2 ** 6 8 6 * 12 15

2 11 2 * 6 9 6 ** 13 14

2 12 2 *** 6 10 6 *** 13 15 13 **

2 13 2 ** 6 11 6 *** 14 15 14 **
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Table 7 Summary of the

pairwise statistical significance

tests between LSTM-based

syllable classifiers with a 320

hidden layer length, trained on

the features vectors extracted

from the Small Transducer ASR

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 2 14 2 ** 6 12 6 ***

0 2 2 15 2 *** 6 13 6 ***

0 3 3 4 6 14 6 ***

0 4 4 * 3 5 6 15 6 ***

0 5 3 6 7 8

0 6 3 7 7 9 7 ***

0 7 3 8 7 10 7 **

0 8 3 9 3 *** 7 11 7 ***

0 9 3 10 3 ** 7 12 7 ***

0 10 3 11 3 *** 7 13 7 ***

0 11 3 12 3 *** 7 14 7 ***

0 12 3 13 3 *** 7 15 7 ***

0 13 0 * 3 14 3 *** 8 9 8 ***

0 14 0 * 3 15 3 *** 8 10 8 **

0 15 0 *** 4 5 4 * 8 11 8 **

1 2 4 6 8 12 8 ***

1 3 3 * 4 7 8 13 8 ***

1 4 4 ** 4 8 4 * 8 14 8 ***

1 5 4 9 4 *** 8 15 8 ***

1 6 6 * 4 10 4 *** 9 10

1 7 4 11 4 *** 9 11

1 8 4 12 4 *** 9 12

1 9 4 13 4 *** 9 13

1 10 4 14 4 *** 9 14

1 11 4 15 4 *** 9 15 9 ***

1 12 5 6 10 11

1 13 1 * 5 7 10 12

1 14 1 * 5 8 10 13

1 15 1 *** 5 9 5 ** 10 14

2 3 5 10 5 ** 10 15 10 ***

2 4 4 ** 5 11 5 ** 11 12

2 5 5 12 5 ** 11 13

2 6 5 13 5 *** 11 14

2 7 5 14 5 *** 11 15 11 ***

2 8 5 15 5 *** 12 13

2 9 2 * 6 7 12 14

2 10 6 8 12 15 12 ***

2 11 2 * 6 9 6 *** 13 14

2 12 2 * 6 10 6 *** 13 15 13 **

2 13 2 ** 6 11 6 *** 14 15 14 **
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Table 8 Summary of the

pairwise statistical significance

tests between LSTM-based

syllable classifiers with a 740

hidden layer length, trained on

the features vectors extracted

from the Small Transducer ASR

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 2 14 2 *** 6 12 6 ***

0 2 2 15 2 *** 6 13 6 ***

0 3 3 * 3 4 6 14 6 ***

0 4 4 * 3 5 6 15 6 ***

0 5 5 * 3 6 7 8 7 *

0 6 3 7 7 9 7 ***

0 7 3 8 7 10 7 ***

0 8 3 9 3 ** 7 11 7 ***

0 9 3 10 3 ** 7 12 7 ***

0 10 3 11 3 ** 7 13 7 ***

0 11 3 12 3 *** 7 14 7 ***

0 12 0 * 3 13 3 *** 7 15 7 ***

0 13 3 14 3 *** 8 9 8 *

0 14 0 * 3 15 3 *** 8 10 8 *

0 15 0 *** 4 5 8 11

1 2 2 * 4 6 8 12 8 *

1 3 3 ** 4 7 8 13 8 *

1 4 4 ** 4 8 4 * 8 14 8 *

1 5 5 ** 4 9 4 *** 8 15 8 ***

1 6 6 * 4 10 4 *** 9 10

1 7 7 * 4 11 4 *** 9 11

1 8 4 12 4 *** 9 12

1 9 4 13 4 *** 9 13

1 10 4 14 4 *** 9 14

1 11 4 15 4 *** 9 15 9 ***

1 12 5 6 10 11

1 13 5 7 10 12

1 14 1 * 5 8 5 ** 10 13

1 15 1 *** 5 9 5 *** 10 14

2 3 5 10 5 *** 10 15 10 **

2 4 5 11 5 *** 11 12

2 5 5 12 5 *** 11 13

2 6 5 13 5 *** 11 14

2 7 5 14 5 *** 11 15 11 ***

2 8 5 15 5 *** 12 13

2 9 2 ** 6 7 12 14

2 10 2 ** 6 8 6 * 12 15 12 **

2 11 2 ** 6 9 6 *** 13 14

2 12 2 *** 6 10 6 *** 13 15 13 ***

2 13 2 *** 6 11 6 ** 14 15 14 **
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Table 9 Summary of the

pairwise statistical significance

tests between LSTM-based

syllable classifiers with a 160

hidden layer length, trained on

the features vectors extracted

from the Medium Transducer

ASR

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 2 14 2 *** 6 12 6 ***

0 2 2 15 2 *** 6 13 6 ***

0 3 3 *** 3 4 6 14 6 ***

0 4 4 *** 3 5 6 15 6 ***

0 5 5 *** 3 6 7 8 7 **

0 6 6 *** 3 7 7 9 7 ***

0 7 7 * 3 8 3 ** 7 10 7 ***

0 8 3 9 3 *** 7 11 7 ***

0 9 3 10 3 *** 7 12 7 ***

0 10 3 11 3 *** 7 13 7 ***

0 11 3 12 3 *** 7 14 7 ***

0 12 0 ** 3 13 3 *** 7 15 7 ***

0 13 3 14 3 *** 8 9

0 14 0 * 3 15 3 *** 8 10

0 15 0 ** 4 5 8 11 8 *

1 2 4 6 8 12 8 **

1 3 3 ** 4 7 8 13 8 *

1 4 4 ** 4 8 4 *** 8 14 8 **

1 5 5 ** 4 9 4 *** 8 15 8 **

1 6 6 ** 4 10 4 *** 9 10

1 7 4 11 4 *** 9 11

1 8 4 12 4 *** 9 12

1 9 1 * 4 13 4 *** 9 13

1 10 1 * 4 14 4 *** 9 14

1 11 1 ** 4 15 4 *** 9 15

1 12 1 *** 5 6 10 11

1 13 1 ** 5 7 10 12

1 14 1 *** 5 8 5 *** 10 13

1 15 1 *** 5 9 5 *** 10 14

2 3 3 ** 5 10 5 *** 10 15

2 4 4 ** 5 11 5 *** 11 12

2 5 5 ** 5 12 5 *** 11 13

2 6 6 ** 5 13 5 *** 11 14

2 7 5 14 5 *** 11 15

2 8 5 15 5 *** 12 13

2 9 2 ** 6 7 12 14

2 10 2 ** 6 8 6 *** 12 15

2 11 2 *** 6 9 6 *** 13 14

2 12 2 *** 6 10 6 *** 13 15

2 13 2 *** 6 11 6 *** 14 15
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Table 10 Summary of the

pairwise statistical significance

tests between LSTM-based

syllable classifiers with a 320

hidden layer length, trained on

the features vectors extracted

from the Medium Transducer

ASR

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 1 ** 2 14 2 *** 6 12 6 ***

0 2 2 * 2 15 2 *** 6 13 6 ***

0 3 3 *** 3 4 6 14 6 ***

0 4 4 *** 3 5 6 15 6 ***

0 5 5 *** 3 6 7 8 7 ***

0 6 6 *** 3 7 7 9 7 ***

0 7 7 ** 3 8 3 ** 7 10 7 ***

0 8 3 9 3 *** 7 11 7 ***

0 9 3 10 3 *** 7 12 7 ***

0 10 0 * 3 11 3 *** 7 13 7 ***

0 11 0 * 3 12 3 *** 7 14 7 ***

0 12 3 13 3 *** 7 15 7 ***

0 13 0 * 3 14 3 *** 8 9

0 14 0 * 3 15 3 *** 8 10 8 ***

0 15 0 ** 4 5 8 11 8 ***

1 2 4 6 8 12 8 *

1 3 4 7 8 13 8 **

1 4 4 ** 4 8 4 *** 8 14 8 **

1 5 5 * 4 9 4 *** 8 15 8 ***

1 6 6 * 4 10 4 *** 9 10 9 ***

1 7 4 11 4 *** 9 11 9 **

1 8 4 12 4 *** 9 12 9 *

1 9 1 * 4 13 4 *** 9 13 9 *

1 10 1 *** 4 14 4 *** 9 14 9 **

1 11 1 *** 4 15 4 *** 9 15 9 ***

1 12 1 *** 5 6 10 11

1 13 1 *** 5 7 10 12

1 14 1 *** 5 8 5 *** 10 13

1 15 1 *** 5 9 5 *** 10 14

2 3 3 * 5 10 5 *** 10 15

2 4 4 ** 5 11 5 *** 11 12

2 5 5 ** 5 12 5 *** 11 13

2 6 6 ** 5 13 5 *** 11 14

2 7 5 14 5 *** 11 15

2 8 5 15 5 *** 12 13

2 9 2 * 6 7 12 14

2 10 2 *** 6 8 6 *** 12 15

2 11 2 *** 6 9 6 *** 13 14

2 12 2 ** 6 10 6 *** 13 15

2 13 2 *** 6 11 6 *** 14 15
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Table 11 Summary of the

pairwise statistical significance

tests between LSTM-based

syllable classifiers with a 740

hidden layer length, trained on

the features vectors extracted

from the Medium Transducer

ASR

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 2 14 2 *** 6 12 6 ***

0 2 2 15 2 *** 6 13 6 ***

0 3 3 ** 3 4 4 * 6 14 6 ***

0 4 4 *** 3 5 6 15 6 ***

0 5 5 *** 3 6 7 8 7 *

0 6 6 *** 3 7 7 9 7 **

0 7 3 8 7 10 7 ***

0 8 3 9 3 ** 7 11 7 ***

0 9 3 10 3 *** 7 12 7 ***

0 10 0 * 3 11 3 *** 7 13 7 ***

0 11 0 * 3 12 3 *** 7 14 7 ***

0 12 0 ** 3 13 3 *** 7 15 7 ***

0 13 0 ** 3 14 3 *** 8 9

0 14 0 * 3 15 3 *** 8 10 8 ***

0 15 0 *** 4 5 8 11 8 ***

1 2 4 6 8 12 8 ***

1 3 4 7 8 13 8 ***

1 4 4 *** 4 8 4 ** 8 14 8 ***

1 5 5 ** 4 9 4 *** 8 15 8 ***

1 6 6 ** 4 10 4 *** 9 10 9 *

1 7 4 11 4 *** 9 11 9 **

1 8 4 12 4 *** 9 12 9 ***

1 9 4 13 4 *** 9 13 9 **

1 10 1 ** 4 14 4 *** 9 14 9 **

1 11 1 ** 4 15 4 *** 9 15 9 ***

1 12 1 *** 5 6 10 11

1 13 1 *** 5 7 5 * 10 12 10 *

1 14 1 ** 5 8 5 *** 10 13

1 15 1 *** 5 9 5 *** 10 14

2 3 5 10 5 *** 10 15 10 *

2 4 4 *** 5 11 5 *** 11 12

2 5 5 *** 5 12 5 *** 11 13

2 6 6 ** 5 13 5 *** 11 14

2 7 5 14 5 *** 11 15

2 8 5 15 5 *** 12 13

2 9 6 7 12 14

2 10 2 ** 6 8 6 ** 12 15

2 11 2 *** 6 9 6 *** 13 14

2 12 2 *** 6 10 6 *** 13 15

2 13 2 *** 6 11 6 *** 14 15
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Table 12 Summary of the pairwise statistical significance tests between LSTM-based syllable classifiers with a 160 hidden layer length, trained

on the features vectors extracted from the Large Transducer ASR

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 2 12 2 *** 5 16 5 *** 10 16

0 2 2 ** 2 13 2 *** 6 7 11 12 12 *

0 3 3 *** 2 14 2 *** 6 8 11 13

0 4 4 ** 2 15 2 *** 6 9 6 *** 11 14

0 5 5 ** 2 16 2 *** 6 10 6 *** 11 15

0 6 6 ** 3 4 6 11 6 *** 11 16

0 7 7 * 3 5 6 12 6 *** 12 13

0 8 3 6 6 13 6 *** 12 14

0 9 3 7 6 14 6 *** 12 15 12 **

0 10 0 * 3 8 6 15 6 *** 12 16 12 *

0 11 0 *** 3 9 3 *** 6 16 6 *** 13 14

0 12 0 * 3 10 3 *** 7 8 13 15

0 13 0 ** 3 11 3 *** 7 9 7 *** 13 16

0 14 0 ** 3 12 3 *** 7 10 7 *** 14 15

0 15 0 *** 3 13 3 *** 7 11 7 *** 14 16

0 16 0 *** 3 14 3 *** 7 12 7 *** 15 16

1 2 3 15 3 *** 7 13 7 ***

1 3 3 * 3 16 3 *** 7 14 7 ***

1 4 4 * 4 5 7 15 7 ***

1 5 4 6 7 16 7 ***

1 6 4 7 8 9 8 ***

1 7 4 8 8 10 8 ***

1 8 4 9 4 *** 8 11 8 ***

1 9 1 ** 4 10 4 *** 8 12 8 ***

1 10 1 *** 4 11 4 *** 8 13 8 ***

1 11 1 *** 4 12 4 *** 8 14 8 ***

1 12 1 *** 4 13 4 *** 8 15 8 ***

1 13 1 *** 4 14 4 *** 8 16 8 ***

1 14 1 *** 4 15 4 *** 9 10

1 15 1 *** 4 16 4 *** 9 11 9 *

1 16 1 *** 5 6 9 12

2 3 5 7 9 13

2 4 5 8 5 * 9 14

2 5 5 9 5 *** 9 15 9 **

2 6 5 10 5 *** 9 16 9 *

2 7 5 11 5 *** 10 11

2 8 5 12 5 *** 10 12

2 9 2 *** 5 13 5 *** 10 13

2 10 2 *** 5 14 5 *** 10 14

2 11 2 *** 5 15 5 *** 10 15 10 *
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Table 13 Summary of the pairwise statistical significance tests between LSTM-based syllable classifiers with a 320 hidden layer length, trained

on the features vectors extracted from the Large Transducer ASR

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 2 12 2 *** 5 16 5 *** 10 16

0 2 2 ** 2 13 2 *** 6 7 11 12

0 3 3 ** 2 14 2 *** 6 8 6 * 11 13

0 4 4 *** 2 15 2 *** 6 9 6 *** 11 14

0 5 5 ** 2 16 2 *** 6 10 6 *** 11 15

0 6 6 ** 3 4 6 11 6 *** 11 16

0 7 3 5 6 12 6 *** 12 13

0 8 3 6 6 13 6 *** 12 14

0 9 3 7 6 14 6 *** 12 15

0 10 0 * 3 8 3 * 6 15 6 *** 12 16

0 11 0 * 3 9 3 *** 6 16 6 *** 13 14

0 12 0 ** 3 10 3 *** 7 8 13 15

0 13 0 ** 3 11 3 *** 7 9 7 *** 13 16

0 14 0 ** 3 12 3 *** 7 10 7 *** 14 15

0 15 0 ** 3 13 3 *** 7 11 7 *** 14 16

0 16 0 ** 3 14 3 *** 7 12 7 *** 15 16

1 2 3 15 3 *** 7 13 7 ***

1 3 3 16 3 *** 7 14 7 ***

1 4 4 ** 4 5 7 15 7 ***

1 5 5 * 4 6 7 16 7 ***

1 6 4 7 8 9 8 **

1 7 4 8 4 ** 8 10 8 ***

1 8 4 9 4 *** 8 11 8 ***

1 9 1 * 4 10 4 *** 8 12 8 ***

1 10 1 *** 4 11 4 *** 8 13 8 ***

1 11 1 *** 4 12 4 *** 8 14 8 ***

1 12 1 *** 4 13 4 *** 8 15 8 ***

1 13 1 *** 4 14 4 *** 8 16 8 ***

1 14 1 *** 4 15 4 *** 9 10

1 15 1 *** 4 16 4 *** 9 11 9 *

1 16 1 *** 5 6 9 12 9 **

2 3 5 7 9 13 9 **

2 4 5 8 5 ** 9 14 9 **

2 5 5 9 5 *** 9 15 9 ***

2 6 5 10 5 *** 9 16 9 **

2 7 5 11 5 *** 10 11

2 8 5 12 5 *** 10 12

2 9 2 *** 5 13 5 *** 10 13

2 10 2 *** 5 14 5 *** 10 14

2 11 2 *** 5 15 5 *** 10 15
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Data availability Source code for syllabic unit boundary detection and

the analysis results are publicly available and downloadable from the

D4Science e-Infrastructure [147–149] at the following public link

https://data.d4science.net/3Jk5.

Table 14 Summary of the pairwise statistical significance tests between LSTM-based syllable classifiers with a 740 hidden layer length, trained

on the features vectors extracted from the Large Transducer ASR

Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance Sys 1 Sys 2 Win Relevance

0 1 2 12 2 *** 5 16 5 *** 10 16 10 *

0 2 2 13 2 *** 6 7 11 12

0 3 3 * 2 14 2 *** 6 8 6 ** 11 13

0 4 4 *** 2 15 2 *** 6 9 6 *** 11 14

0 5 5 * 2 16 2 *** 6 10 6 *** 11 15

0 6 6 * 3 4 6 11 6 *** 11 16 11 *

0 7 3 5 6 12 6 *** 12 13

0 8 3 6 6 13 6 *** 12 14

0 9 0 * 3 7 6 14 6 *** 12 15

0 10 0 ** 3 8 3 * 6 15 6 *** 12 16 12 **

0 11 0 *** 3 9 3 *** 6 16 6 *** 13 14

0 12 0 ** 3 10 3 *** 7 8 7 * 13 15

0 13 0 *** 3 11 3 *** 7 9 7 *** 13 16

0 14 0 *** 3 12 3 *** 7 10 7 *** 14 15

0 15 0 *** 3 13 3 *** 7 11 7 *** 14 16 14 *

0 16 0 *** 3 14 3 *** 7 12 7 *** 15 16 15 *

1 2 3 15 3 *** 7 13 7 ***

1 3 3 16 3 *** 7 14 7 ***

1 4 4 *** 4 5 7 15 7 ***

1 5 4 6 7 16 7 ***

1 6 4 7 4 * 8 9 8 *

1 7 4 8 4 *** 8 10 8 ***

1 8 4 9 4 *** 8 11 8 ***

1 9 1 * 4 10 4 *** 8 12 8 ***

1 10 1 *** 4 11 4 *** 8 13 8 ***

1 11 1 *** 4 12 4 *** 8 14 8 ***

1 12 1 *** 4 13 4 *** 8 15 8 ***

1 13 1 *** 4 14 4 *** 8 16 8 ***

1 14 1 *** 4 15 4 *** 9 10

1 15 1 *** 4 16 4 *** 9 11 9 *

1 16 1 *** 5 6 9 12

2 3 5 7 9 13 9 **

2 4 4 * 5 8 5 ** 9 14 9 *

2 5 5 9 5 *** 9 15 9 *

2 6 5 10 5 *** 9 16 9 ***

2 7 5 11 5 *** 10 11

2 8 5 12 5 *** 10 12

2 9 2 ** 5 13 5 *** 10 13

2 10 2 *** 5 14 5 *** 10 14

2 11 2 *** 5 15 5 *** 10 15
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