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Abstract
A new class of Asymptotically Entropy Conserva-

tive schemes is proposed for the numerical simulation
of compressible (shock-free) turbulent flows. These
schemes consist of a suitable spatial discretization of
the convective terms in the Euler equations, which re-
tains at the discrete level many important properties of
the continuous formulation, resulting in enhanced reli-
ability and robustness of the overall numerical method.
In addition to the Kinetic Energy Preserving prop-
erty, the formulation guarantees the preservation of
pressure equilibrium in the case of uniform pressure
and velocity distributions, and arbitrarily reduces the
spurious production of entropy. The main feature of
the proposed schemes is that, in contrast to existing
Entropy Conservative schemes, which are based on
the evaluation of costly transcendental functions, they
are based on the specification of numerical fluxes in-
volving only algebraic operations, resulting in an ef-
ficient and economical procedure. Numerical tests on
a highly controlled one-dimensional problem, as well
as on more realistic turbulent three-dimensional cases,
are shown, together with a cost-efficiency study.

1 Introduction
Numerical simulation of turbulent compressible

flows is a very active research topic in fluid dynamics
and aerospace engineering. The coexistence of several
physical phenomena related to compressibility effects
(i.e. acoustics, shock waves, etc.) adds tough chal-
lenges to the already complex phenomenology of tur-
bulent flows. This reflects not only in a difficulty in the
interpretation and understanding of the physical mech-
anisms but also in the design of accurate and robust
numerical methods. The advent of high-performance
computing facilities has increased the interest in the
numerical investigation of this type of flow, and has
pushed the numerical community towards the design
of more reliable and fast discretization procedures.

Modern numerical methods for compressible
flows are usually required to satisfy some physics-
compatible constraints which typically amount to the
discrete enforcement of the induced balance of suit-
ably selected secondary quantities.

Kinetic Energy Preserving (KEP) methods are

probably the most famous example. They are numer-
ical discretization procedures able to guarantee that
the divergence structure of the convective terms in
the induced kinetic-energy equation is discretely pre-
served. KEP methods are well known to improve
the robustness of the simulations and have been ex-
plored quite extensively in recent years (Coppola et
al. (2019a)). The enforcement of the KEP property
requires that the mass and momentum equations are
discretized in a coordinated manner, without any con-
straint on the energy equation. As shown in Coppola
et al. (2019b), in the context of Finite Difference (FD)
methods based on the direct discretization of advective
or divergence forms of the convective terms in the Eu-
ler equations, KEP schemes can be specified as mem-
bers of a one-parameter family of locally conservative
schemes. This means that one can formulate a locally-
conservative, KEP formulation with a certain latitude,
which can be used to enforce additional constraints.
From the Finite Volume (FV) point of view, for which
the method is defined by the specification of numeri-
cal fluxes, KEP schemes require a specific form of the
momentum flux, leaving the mass flux as a degree of
freedom (Jameson (2008) and Veldman (2019)).

Alongside KEP, also Entropy Conservative (EC)
schemes have been extensively studied starting from
the pioneering papers by Tadmor (1987) and Tadmor
(2003). Entropy conservation requires that mass and
energy equations are coordinately discretized to in-
duce a conservative structure of the convective terms
in the discrete entropy equation; i.e. the overall method
can guarantee a correct balance of entropy: an impor-
tant additional property for both the reliability and ro-
bustness of the overall procedure. EC schemes have
been almost exclusively introduced in the context of
FV methods, and typically require the specification
of nonlinear fluxes involving the evaluation of tran-
scendental functions, which are more expensive than
the classical algebraic fluxes associated with FD dis-
cretizations. Moreover, popular EC fluxes are based
on the logarithmic mean of density and internal en-
ergy, with additional issues associated with division
by zero in the case of uniform spatial distribution of
the variables.

Finally, Pressure Equilibrium Preserving (PEP)



discretizations are numerical procedures able to pre-
serve the property that an initial condition with a con-
stant distribution of pressure p and velocity u induces
time derivatives ∂tp and ∂tu everywhere zero: the evo-
lution of density waves is correctly reproduced by the
discretization (Shima et al. (2021) and Ranocha and
Gassner (2022)). This last condition can be enforced
by treating the convective terms for the energy equa-
tion in such a way that the induced discrete pressure
equation has in turn convective terms in conservation
form.

2 Existing KEP schemes
The satisfaction of the conditions required for a

numerical scheme to be simultaneously KEP, EC and
PEP is quite a difficult task. No method based on a
classical FD discretization of the advective or diver-
gence forms of the convective terms is known to ex-
actly satisfy the requirements to be KEP, EC and PEP.
When central schemes are adopted, FD discretiza-
tions can be expressed as a difference of numerical
fluxes, which are based on bilinear or trilinear interpo-
lations (Pirozzoli (2010), Coppola et al. (2019b), and
Coppola and Veldman (2023)). Since these formula-
tions cannot satisfy the conditions for KEP, EC and
PEP schemes, one should turn to more general nonlin-
ear fluxes.

Among the formulations based on non-algebraic
fluxes, the recent scheme by Ranocha and Gassner
(2022) is here selected because it is able to satisfy all
the required conditions by using the logarithmic mean
as an interpolator in the mass and internal energy equa-
tions. In fact, it can be expressed by specifying the
(two-point, second-order) convective fluxes for mass,
momentum, and internal energy as:

Fρ = ρlog u,

Fρu = Fρ u,

Fρe = Fρ

[
(1/e)

log]−1

,

(1)

where the fluxes are expressed in a one-dimensional
setting, the three-dimensional extension being ob-
tained by adding analogous contributions along the
other directions. In Eq. (1) F is the ‘right’ flux
F i+1/2, where we assume that in a semidiscretized
framework the convective convective evolution of a
generic variable ρϕ at node xi is governed by the
locally conservative ‘difference of fluxes’ formula
∂ρiϕi/∂t = −

(
F i+1/2

ρϕ −F i−1/2
ρϕ

)
/h. In the spec-

ification of the flux functions ϕ = (ϕi + ϕi+1) /2 is
the arithmetic mean and ϕ

log
= δϕi/δ log ϕi is the

logarithmic mean, where δψi = ψi+1 − ψi. Density,
velocity and pressure are denoted by ρ, u and p, re-
spectively, whereas e is the internal energy per unit
mass. Perfect gas model is assumed, for which p =
(γ − 1) ρe, where γ = 1.4 is the ratio of specific heats.
The physical entropy is given by s = log(p/ργ).

Note that in Eq. (1) only the convective fluxes
are considered. The total flux for momentum should
also include a pressure term, which is typically dis-
cretized as p, whereas the internal energy equation
has a pressure term in nonconservative form. More-
over, the original version of the Ranocha flux was for-
mulated in terms of fluxes for mass, momentum and
total energy, in place of internal energy. However,
since the kinetic-energy part of the flux was assumed
exactly as the one induced by the discretization of
mass and momentum (Coppola and Veldman (2023)),
i.e. Fρu2/2 = Fρ uiui+1/2, for exact time integration
the total energy flux can be equivalently formulated as
a flux for internal energy (see De Michele and Coppola
(2023) for further details).

Eq. (1) will be compared to the more standard KEP
scheme formulated by using only arithmetic means:

Fρ = ρ u,

Fρu = Fρ u,

Fρe = Fρ e.

(2)

This scheme can be obtained as a FD discretization
of the fully triple splitting of the convective terms in
mass, momentum, and internal energy, as considered
by Kennedy and Gruber (2008) and Pirozzoli (2010),
and for this reason, it has been termed KGP(ρe) in
Coppola et al. (2019b). For exact time integration,
it can be equivalently expressed as a set of fluxes
for mass, momentum and total energy ρE by using
the kinetic-energy convective flux induced by the dis-
cretization of mass and momentum, as for the Ra-
nocha flux. In this form it is equivalent to the KEEP
scheme by Kuya et al. (2018). The method defined by
Eq. (2) has been analyzed in several publications in re-
cent years (Kuya et al. (2018), Coppola et al. (2019b),
Tamaki et al. (2022), and De Michele and Coppola
(2023)) and is known to exhibit excellent entropy con-
servation properties, although strictly speaking it is not
EC.

The scheme defined by Eq. (2) is also not PEP,
and its use in simple density wave tests shows spuri-
ous perturbations of the uniform pressure and velocity
distributions. An exemplary KEP and PEP scheme is
expressed by the fluxes:

Fρ = ρ u,

Fρu = Fρ u,

Fρe = u ρe.

(3)

This method is known in the literature (Shima et al.
(2021)) as KEEPPE and has been proposed as an exem-
plary PEP (and KEP) method. However, being based
on arithmetic means, it is not EC, as can be easily
seen in standard test cases (De Michele and Coppola
(2023)).

3 Numerical efficiency of KEP schemes



Flux KEP PEP EC Iter. time (sec) Rel. Diff.

Ranocha, (Eq. (1)) ✓ ✓ ✓ 8.3836× 10−3 –

KGP(ρe), (Eq. (2)) ✓ × × 6.0735× 10−3 −27.6%

KEEPPE, (Eq. (3)) ✓ ✓ × 5.9882× 10−3 −28.6%

Table 1: Conservation properties and performances of the selected schemes

Tab. 1 (first three columns) summarizes the conser-
vation properties of the schemes illustrated in the pre-
vious section. It is readily seen that the Ranocha flux is
the most complete scheme in terms of structural prop-
erties. To the our best knowledge, it is the only scheme
possessing KEP, PEP and EC properties, which has
also a mass flux that does not depend on pressure (Ra-
nocha and Gassner (2022)). On the other hand, the
schemes defined by the fluxes in Eq. (2) and Eq. (3)
probably constitute the best performing ones, in terms
of robustness and computational burden, within the
class of fluxes based on bilinear or trilinear interpo-
lations, which can be also expressed as a classical FD
discretizations of the divergence and advective forms
of the convective terms.

The nice conservation properties of the Ranocha
formulation come with an increased computational
cost, due to the evaluation of the logarithmic mean.
To quantify this drawback, we implemented the three
schemes here considered in the open-source code
STREAmS-2 (Bernardini et al. (2023)), which is a
GPU parallel, high-order compressible flow solver,
and performed a numerical simulation of the invis-
cid 3D Taylor Green Vortex (TGV) test at Mach num-
ber 0.085. The simulation was carried out on a 323

uniform grid with the 6th order version of the spatial
fluxes and a classical 4th order Runge-Kutta method
(RK4) at CFL = 0.1. Calculations were made on the
Marconi100 machine at the Italian CINECA consor-
tium, on which the simulations were performed using
one node with 4 GPUs. The performance results are
summarized in the last two columns of Tab. 1, from
which we infer that the increase in computational cost
due to the evaluation of the logarithmic mean is around
28% on the computation of the inviscid part of the
solver, as compared to standard formulations.

These results motivate the search for more eco-
nomical (i.e. based on algebraic operations) formu-
lations which are able to retain the nice conserva-
tion properties of the Ranocha flux. This task is ac-
complished by devising a class of Asymptotically En-
tropy Conservative (AEC) methods based on alge-
braic fluxes which, while retaining the classical KEP
property, provide a hierarchy of approximations with
increasingly accurate entropy-conservative properties.
In contrast to existing asymptotic expansions approxi-
mating exact EC fluxes (Tamaki et al. (2022)), the pro-
posed approach is able to retain the PEP property at

each order of approximation. In line with the methods
introduced in Sec. 2, the new method will be formu-
lated by specifying the fluxes for mass, momentum,
and internal energy, although it can be equivalently ex-
pressed by specifying the total energy flux.

4 Specification of AEC numerical fluxes
To overcome the disadvantage of the evaluation of

transcendental functions in Eq. (1), it is possible to ex-
pand the logarithmic mean of a generic variable ϕ in a
Taylor series in the small parameter δϕ = ϕi+1 − ϕi.
This approach was already used in Ismail and Roe
(2009) to resolve the singularity of the logarithmic
mean when uniform distribution of ϕ appears. Starting
from a different perspective, a similar formulation is
obtained also in Tamaki et al. (2022), who propose an
asymptotically EC formulation that shares many sim-
ilarities with the approach used here. However, our
formal expansion of the logarithmic mean in density
and internal energy fluxes leads to a different formula-
tion, whose first-order approximation involves the har-
monic mean for e in place of the arithmetic mean.

We start by expressing the difference of logarithms
for a generic quantity ϕ as

δ log ϕi = log
(
1 + ϕ̂i

)
− log

(
1− ϕ̂i

)
(4)

with ϕ̂i = δϕi/2ϕi . Since the quantity |ϕ̂| is always
less than one for a positive ϕ, it is possible to use the
Taylor series expansion for the logarithm and obtain

δ log ϕ =

(
δϕ

ϕ

) ∞∑
n=0

ϕ̂2n

2n+ 1
. (5)

Applying this substitution to δ log ρ and δ log e

in the logarithmic means ρlog and e−1
log

=
−(δ log e)/(δe−1) in Eq. (1) and truncating the sum
to finite N , we obtain the class of AEC fluxes

Fρ = ρ u

(
N∑

n=0

ρ̂2n

2n+ 1

)−1

,

Fρu = Fρ u ,

Fρe = Fρ e
H

N∑
n=0

ê2n

2n+ 1
.

(6)

where eH = eiei+1/e is the harmonic mean of e.
Note that this expansion differs from that adopted by



Tamaki et al. (2022), denoted as KEEP(n), which in
our notation reads:

Fρ = ρ u

(
N∑

n=0

ρ̂2n

2n+ 1

)−1

,

Fρu = Fρ u ,

Fρe = Fρ e

(
N∑

n=0

ê2n

)−1 N∑
n=0

ê2n

2n+ 1
,

(7)

since the asymptotic expansion is applied to δ log e
in the internal energy flux, but not to δe−1. In fact,
it leads to the appearance of the harmonic mean in
place of the arithmetic mean in the internal energy
flux. Eq. (6) reduces to the formulation

Fρ = ρ u,

Fρu = Fρ u,

Fρe = Fρ e
H

(8)

in the first-order case N = 0, and to Eq. (1) for N →
∞. One additional property of the class of schemes in
Eq. (6) is that it is always PEP, no matter the value of
N , as long as it is chosen consistently for density and
internal energy expansions.

In order for a scheme to be PEP, the conditions on
the fluxes are that for constant u = U and p = P the
momentum flux (convective plus pressure) reduces to
Fρ U + const (in which the constant is only function
of U and P ) and that the internal energy flux is equal
to a constant dependent on only U and P (Ranocha
and Gassner (2022)). These conditions are satisfied
by our formulation, as it can be easily verified, since
eH = P/[(ρ (γ− 1)] and ê = −ρ̂, so Eq. (6) results in
the convective internal energy flux

Fρe =
UP

γ − 1
(9)

which proves the PEP property for the fluxes in
Eq. (6). The same condition is not satisfied by the
fluxes defined by the formulations in Eq. (2) and (7)
which, in fact, are not PEP.

5 Numerical results
In this section, two test cases are presented to

assess the accuracy and robustness of the proposed
formulation and to compare it with existing KEP
schemes. In the first test, we consider a 1D steady
shock wave case, which allows the evaluation of the
entropy-preserving capabilities in the presence of dis-
continuities. In the second one, we simulate a classi-
cal inviscid Taylor-Green vortex to test the proposed
fluxes in a three-dimensional case in which an ini-
tially smooth flow experiences distortion and instabil-
ity, with the eventual formation of small unresolved
scales.

For the stationary shock wave test, we used the
same parameters as in Tamaki et al. (2022). The values

Figure 1: Time evolution of entropy integral for the station-
ary shock wave for different numerical fluxes. For
the meaning of the colors see text.

of ρ, u and p upstream and downstream of the wave are
derived from the Rankine-Hugoniot relations so that
the shock speed is zero. The domain has size L = 100
and is discretized with 101 nodes. Periodic boundary
conditions have been imposed to avoid the influence of
the boundaries on entropy conservation. The schemes
are compared by considering the temporal evolution of
the quantity ⟨ρs⟩, which is the normalized global en-
tropy production (ρ̃s− ρ̃0s0)/(ρ̃0s0), with ρ0s0 being
the initial value and the ˜ sign indicating integration
over the domain. Figure 1 shows that the scheme de-
fined in Eq. (8) using the harmonic mean (black line)
exhibits some improvement in entropy conservation
when compared with the KEEPPE scheme defined in
Eq. (2) (green line) and with the KGP(ρe) (Eq. (2), red
line). The schemes based on asymptotic expansions
defined in Eq. (6) and (7) show improved conservation
properties, as expected. Even in the case N = 1, we
observe a marked decrease in spurious entropy produc-
tion for both AEC(1) (Eq. (6)) and KEEP(1) (Eq. (7))
schemes, denoted with magenta and blue lines, respec-
tively. The EC scheme of Ranocha (Eq. (1)) is also
shown, denoted with a cyan line. As expected, it has
machine-zero production of entropy.

The second test case has been simulated by imple-
menting the schemes here discussed in the STREAmS-
2 code with only some slight modifications on the time
integration procedure. We took advantage of the high-
order structure of the code to embed the two-point
fluxes illustrated in the previous sections in the general
procedure to obtain high-order versions of our fluxes.
The initial conditions for the Taylor-Green vortex are

ρ(x, y, z) = 1

u(x, y, z) = sin(x) cos(y) cos(z)

v(x, y, z) = − cos(x) sin(y) cos(z)

w(x, y, z) = 0

p(x, y, z) = 10 +
(cos(2x) + cos(2y))(cos(2x) + 2)− 2

16
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Figure 2: Time evolution of entropy integral for the inviscid
Taylor-Green vortex test using different numerical
fluxes. For the meaning of the colors see text.

with a pressure value corresponding to a Mach number
M ≈ 0.26. The triperiodic domain has side length 2π
in all directions and is discretized using 32× 32× 32
nodes. For the spatial discretization, the 6th-order ver-
sion of the fluxes is used, whereas for time integration
a standard RK4 procedure is used at CFL = 0.1, which
is sufficiently small that linear invariants are exactly
conserved to machine precision for all schemes. The
time evolution of the entropy integral for this test is
shown in Fig. 2 and it is in agreement with the previ-
ous results. The better performances from the novel
scheme based on the harmonic mean of Eq. (8), when
compared to KEEPPE and KGP(ρe) schemes, are more
evident in this case. As in the previous test, an im-
provement can be obtained using an additional term
in the expansions and KEEP(1) and AEP(1) are the
schemes that more closely achieve a constant value for
the entropy integral, exhibiting a behavior almost iden-
tical to that of the EC Ranocha scheme even for the
lowest correction N = 1.

6 Conclusions
We proposed a new class of asymptotically

entropy-preserving fluxes for the discretization of the
convective terms in the compressible Euler equations
with interesting properties. It provides a consis-
tent asymptotic approximation of an existing entropy-
preserving scheme based on the logarithmic mean, and
it consists of economical algebraic fluxes based on
the harmonic mean. Moreover, at all orders of ap-
proximation, the numerical fluxes have the pressure-
equilibrium preservation property. The theoretical pre-
dictions are confirmed on two test cases, demonstrat-
ing good entropy conservation properties even in the
presence of discontinuities. It was also shown that the
error on entropy can be significantly reduced by using
additional terms in the expansion of the AEC fluxes.

These results suggest that AEC fluxes could be
good candidates for the discretization of compressible

flow equations in high-performance solvers. Due to
their algebraic form, they are less computationally ex-
pensive than the fluxes based on the logarithmic mean,
while retaining many important properties. In fact,
they guarantee the KEP and PEP properties, combined
with arbitrarily small errors on entropy preservation.
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