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COMPANION VARIETIES FOR HESSE,
HESSE UNION DUAL HESSE ARRANGEMENTS

PIETRO DE POI AND GIOVANNA ILARDI

Unexpected hypersurface is a name given an element to some particular linear system introduced by Cook,
Harbourne, Migliore and Nagel, motivated by work of Di Gennaro, Ilardi and Vallès and of Faenzi and
Vallès, and it is a field of great study since then. It attracts many people because of their close ties to
various other areas of mathematics including vector bundles, arrangements of hyperplanes, geometry of
projective varieties, etc. Harbourne, Migliore, Nagel and Teitler introduced the concept of unexpected
hypersurfaces and explained the so-called BMSS duality showing that unexpected curves are in some
sense dual to their tangent cones at their singular point. In this paper, we continue the study of BMSS
duality. We revisit the configuration of points associated to Hesse arrangement and Hesse union dual
Hesse arrangement, and we study the geometry of the associated varieties and their companions.

1. Introduction

In the present note we study companion varieties of unexpected hypersurfaces associated to some famous
arrangements in projective spaces.

A central tool in algebraic geometry for studying varieties is to find maps to projective spaces, i.e., to
study their linear systems. Even in the simplest cases — for example, the case of Pn — this study can be
very difficult.

It is of particular interest to study linear systems with imposed base loci, i.e., those of the form
3 := H 0(X; L ⊗ I (Z)), where L is a positive (e.g., ample or very ample) line bundle on a smooth variety
X and Z is a subscheme of X .

If X is the projective plane, L is the line bundle OP2(d) for d>0 and Z is a zero-dimensional subscheme
of P2 computing the dimension of the vector space 3 is, even in this simple case, an open problem,
as it is shown in the following two open conjectures: one due to Nagata (1959) [9] and the other the
SHGH-conjecture package due to Segre (1969), Harbourne (1986), Gimigliano (1987) and Hirschowitz
(1989). We expect that a single general point, or a fat point scheme concentrated in a single general point
impose independent conditions on homogeneous polynomials of any fixed degree in a projective space
of arbitrary dimension. It was surprising that a single general fat point might impose less conditions
than expected on the linear system of homogeneous polynomials with assigned base loci, as found by
Cook, Harbourne, Migliore and Nagel [2], inspired by an example of Di Gennaro, Ilardi and Vallès [3].
In this the so-called unexpected hypersurfaces were born; see Section 2 for precise definitions. Szpond
[11] began this study for the B3 root system. The linear system of quadric hypersurfaces vanishing at
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configuration points determines, after passing to the blow up of P2 in these points, a morphism to P5

whose image is a surface S such that at every point P of S, there is a hyperplane in P5 tangent to P to
order 2 (in other words: cutting out on S a curve which passes through P with multiplicity at least 3). It
has been observed additionally that there is another surface S′, which we call a companion surface of S,
which also exhibits interesting geometrical properties. This example motivates our present work.

We study the companions of two important arrangements, continuing the work started in [9] and
motivated by the introduction of the BMSS duality in [1]. Assume that there is a set of points Z in PN

which admits a unique unexpected hypersurface HZ ,P of degree d and multiplicity m at a general point
P = (a0 : · · · : aN ) ∈ PN . Let

FZ ((x0 : · · · : xN ), (a0 : · · · : aN ))= 0

be a homogeneous polynomial equation of HZ ,P . Let g0, . . . , gM be a basis of the vector space [I (Z)]d

of homogeneous polynomials of degree d vanishing at all points of Z . Under some mild hypothesis the
unexpected hypersurface HZ ,P comes from a bihomogeneous polynomial FZ ((x0 : · · · : xN ), (a0 : · · · : aN ))

of bidegree (m, d) [6]. Indeed, FZ can be written in a unique way as a combination

(1) FZ = h0(a0 : · · · : aN )g0(x0 : · · · : xN )+ · · · + hM(a0 : · · · : aN )gM(x0 : · · · : xN ),

where g0(x0 : · · · : xN ), . . . , gM(x0 : · · · : xN ) are homogeneous polynomials of degree d and h0(a0 : · · · :aN ),

. . . , hM(a0 : · · · : aN ) are homogeneous polynomials of degree m. Therefore, there are two rational maps
naturally associated to equation (1):

ϕ : PN
∋ (x0 : · · · : xN ) 7→ (g0(x0 : · · · : xN ) : · · · : gM(x0 : · · · : xN )) ∈ PM

and

ψ : PN
∋ (a0 : · · · : aN ) 7→ (h0(a0 : · · · : aN ) : · · · : hM(a0 : · · · : aN ) ∈ PM .

The images of these maps are the companion varieties. The purpose of this note is to continue to study
their properties and relations. We have that H is always the pull-back of the hyperplane bundle under the
appropriate blow up.

We study two famous configurations: the Hesse arrangement and the union of Hesse and dual Hesse
arrangement, continuing the study of famous arrangements begun in [4], and we prove the following:

Theorem 1.1. The image S of ϕ is a smooth arithmetically Cohen–Macaulay (aCM for short) rational
surface in the case of Hesse and Hesse ∪ dHesse. In particular:

(1) In the case of Hesse, with S of degree 13, it is the plane blown-up in the 12 points of Z(Hesse),
embedded in P8 with the complete linear system of the quintics through Z(Hesse). Its ideal I (S) is
generated by 15 quadrics.

(2) In the case of Hesse ∪ dHesse, with S of degree 43, it is the plane blown-up in the 21 points
of Z(Hesse ∪ dHesse), embedded in P23 with the complete linear system of the 8-tics through
Z(Hesse ∪ dHesse). Its ideal I (S) is generated by 210 quadrics.

We work over the field of complex numbers C.
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2. Unexpected hypersurfaces

In [2], Cook, Harbourne, Migliore and Nagel introduced the concept of unexpected curves. This notion
was generalized to arbitrary hypersurfaces in the subsequent article [6] by Harbourne, Migliore, Nagel
and Teitler.

Definition 2.1. We say that a reduced set of points Z ⊂ PN admits an unexpected hypersurface of degree
d if there exists a sequence of nonnegative integers m1, . . . ,ms such that for general points P1, . . . , Ps

the zero-dimensional subscheme P = m1 P1 +· · ·+ms Ps fails to impose independent conditions on forms
of degree d vanishing along Z and the set of such forms is nonempty. In other words, we have

h0(PN
; OPN (d)⊗ I (Z)⊗ I (P)) >max

{
0, h0(PN

; OPN (d)⊗ I (Z))−
s∑

i=1

( N +ms −1
N

)}
.

3. Companion varieties for Hesse arrangement

Example 3.1 (Hesse). The most famous example of a free arrangement is the one that corresponds to the
Hesse configuration of 12 lines through the nine inflection points of a smooth plane cubic. These nine
points are defined by the intersection of the smooth Fermat cubic f = x3

+ y3
+ z3 and its hessian curve

H( f )= xyz. Set w = e2π i/3; then the projective coordinates of the nine inflection points are

[0 : 1 : −1], [1 : 0 : −1], [1 : −1 : 0],

[0 : 1 : −w], [1 : 0 : −w], [1 : −w : 0],

[0 : 1 : −w2
], [1 : 0 : −w2

], [1 : −w2
: 0].

In the pencil ( f, H( f )) there are four singular cubics, more precisely four triangles x3
+y3

+z3
−3axyz =0

with a = ∞, 1, w,w2. The nine points lie on these 12 projective lines, which are the four degenerate
cubics corresponding to the parameter value a = ∞ and a3

= 1. The equations of the 12 lines are
x = 0, y = 0, z = 0, and x +wi y +w j z = 0, where i, j = 0, 1, 2. Then the arrangement of 12 lines has 9
quadruple points (t4 = 9) and 12 double points (t2 = 12) in correspondence with the edges of the triangles.
Indeed in any triangle the choice of one side gives an opposite vertex. It is well known that the Hesse
arrangement is free with exponents (4, 7); see [5, Example 3.5].

Example 3.2 (dual Hesse). The dual set of the Hesse arrangement, consisting of 9 lines in P2∨ with
12 triple points (t3 = 12) is also free according to [10, Theorem 6.60], as it is a reflection arrangement
corresponding to the irreducible complex reflection group G25 by [10, Example 6.30]. This set of 9 points
is the well known obstruction to extend the Sylvester problem from R to C. This problem was proposed
by Sylvester in 1893, then by Erdős in 1943 and solved on R by E. Melchior in 1941 and with a simpler
proof by Kelly in 1948. D0(Z) is free with exponents (4, 4) [7, Proposition 5.13].

Example 3.3 (union of Hesse and dual Hesse). The union of the two arrangements presented in Examples
3.1 and 3.2 turns out to be an interesting arrangement in its own right. This arrangement, consisting of
21 = 9 + 12 lines in P2 with 57 singular points is also free with exponents (7, 13), as we prove in [7,
Proposition 4.6]. A computation shows that the singular points split into double, quadruple and quintuple
points and the tally of their numbers is t2 = 36, t4 = 9, t5 = 12.
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Proposition 3.4. The union of the Hesse arrangement and the dual Hesse arrangement is a free arrange-
ment.

Proof. By [10, Example 6.30] the union of the Hesse arrangement and the dual Hesse arrangement is a
reflection arrangement corresponding to the irreducible reflection group G26, and thus by [7, Theorem 4.1],
this arrangement is free of type (7, 13). □

The Hesse arrangement. The set Z(Hesse) consists of 12 points, whose coordinates can be chosen as

(2)

P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1],

P4 = [1 : 1 : 1], P5 = [1 : w : w], P6 = [1 : w2
: w2

],

P7 = [1 : w : 1], P8 = [1 : 1 : w], P9 = [1 : w2
: 1],

P10 = [1 : 1 : w2
], P11 = [1 : w : w2

], P12 = [1 : w2
: w],

where we set, as above, w := e2π i/3, i.e., w is (up to a renumbering of the points) a primitive cubic root
of unity.

The saturated ideal I (Hesse) is generated by

(3) x3z − y3z, xy3
− xz3, x3 y − yz3,

and we note that these generators are three reducible quartics, each formed by 4 lines:

x3z − y3z = z(x − y)(x −wy)(x −w2 y),

xy3
− xz3

= x(y − z)(y −wz)(y −w2z),

x3 y − yz3
= y(x − z)(x −wz)(x −w2z);

in sum, 12 lines, 9 that correspond to the points of the Hesse configuration, i.e.,

ℓ1 :=Z(x − y), ℓ2 :=Z(x −wy), ℓ3 :=Z(x −w2 y),

ℓ4 :=Z(y − z), ℓ5 :=Z(y −wz), ℓ6 :=Z(y −w2z),

ℓ7 :=Z(x − z), ℓ8 :=Z(x −wz), ℓ9 :=Z(x −w2z),

and each of these lines contains four points of Hesse; and the three coordinate lines

X := Z(x), Y := Z(y), Z := Z(z),

which contain two points each. More precisely,

P1, P2 ∈ Z , P3, P4, P8, P10 ∈ ℓ1, P3, P6, P9, P12 ∈ ℓ2, P3, P5, P7, P11 ∈ ℓ3,

P2, P3 ∈ X, P1, P4, P5, P6 ∈ ℓ4, P1, P7, P10, P12 ∈ ℓ5, P1, P8, P9, P11 ∈ ℓ6,

P1, P3 ∈ Y, P2, P4, P7, P9 ∈ ℓ7, P2, P6, P10, P11 ∈ ℓ8, P2, P5, P8, P12 ∈ ℓ9.
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The unexpected curve then has the following equation:

F = (2b3c + c4) · (x4 y)− (6ab2c) · (x3 y2)+ (6a2bc) · (x2 y3)

− (2a3c + c4) · (xy4)− (b4
+ 2bc3) · (x4z)+ (2ab3

− 2ac3) · (x3 yz)

+ (−2a3b + 2bc3) · (xy3z)+ (a4
+ 2ac3) · (y4z)+ (6abc2) · (x3z2)

− (6abc2) · (y3z2)− (6a2bc) · (x2z3)+ (2a3c − 2b3c) · (xyz3)

+ (6ab2c) · (y2z3)+ (2a3b + b4) · (xz4)− (a4
+ 2ab3) · (yz4).

I (Hesse) in degree five is generated by the following binomials:

(4)

m0 = xz(x3
− y3), m1 = yz(x3

− y3), m2 = z2(x3
− y3),

m3 = x2(y3
− z3), m4 = xy(y3

− z3), m5 = xz(y3
− z3),

m6 = xy(x3
− z3), m7 = y2(x3

− z3), m8 = yz(x3
− z3).

The unexpected curve, written down with the aid of the generators (4) then has the following equation:

F = (−b4
− 2bc3) · m0 − (a4

+ 2ac3) · m1 + (6abc2) · m2

+ (6a2bc) · m3 − (2a3c + c4) · m4 − (2a3b + b4) · m5

+ (2b3c + c4) · m6 − (6ab2c) · m7 + (a4 + 2ab3) · m8.

Let
ϕ : P2 99K P8, P 7→ (m0(P) : · · · : m8(P)),

be the rational map defined by the generators in (4).

Proposition 3.5. The image of ϕ is a smooth rational surface S of degree 13; it is the plane blown-up in the
12 points of Z(Hesse) embedded in P8 with the complete linear system of the quintics through Z(Hesse).
Its ideal I (S) is generated by 15 quadrics; in particular, it is arithmetically Cohen–Macaulay (aCM).

Proof. Let σ : X → P2 be the simultaneous blow up of each of 12 points in Hesse with the exceptional
divisor E (which splits into 12 projective lines Ei , one over each of the points blown-up) and as usual
let H = σ ∗OP2(1). Since {p ∈ P2

| mi (p) = 0 for i = 0, . . . , 8} = {P1, . . . , P12}, the linear system
L = 5H − E is base-point-free and it defines a morphism onto its image ϕL : X → P8 which lifts the map

ϕ : P2 99K P8, (x : y : z) 7→ (m0 : m1 : · · · : m8).

Therefore, we have the commutative diagram

X

P2 P8

σ
ϕL

ϕ

Let us call S the image of ϕL (or the closure of the image of ϕ).
It is easy to prove that S is smooth and ϕ is an embedding. Indeed, ϕ is given by the quintics through

the 12 points in Hesse and we know that the ideal of these points is generated by the net of quartics (3);
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therefore, even the quartics through Hesse separate the points and the tangent vectors if we consider two
of them outside Hesse.

If we take a point Pi ∈ Hesse, we have that one direction through it — which gives a point x ∈ Ei —
determines a line; therefore if this line is not one of the 12 lines joining the points of Hesse, it separates x
and any other point of X \ {x}.

If instead x ∈ Ei is a point that represents one of the 12 lines, it can be of two types: one of the 9 lines
of the Hesse arrangement, or one of the axes. Since all is pretty symmetric, we can prove it for just one
of the axes and one of the 9 lines of Hesse.

We start with P1, P2 ∈ Z : we want to show that there is a quintic through P1 and P2 (and P3, . . . , P12)
with tangent Z in P1 and not in P2. Since the cubic x3

− y3 passes through P3, . . . , P12, it is sufficient to
find a conic passing through P1 and P2 with tangent Z in P1 and not in P2: since there are infinitely many
conics through P1 and P2 with tangent Z in P1, there exists one conic (indeed, all the infinite conics but
one) for which Z is not tangent in P2.

We then pass to the case, for example, of P3, P4, P8, P10 ∈ ℓ1; we want to show that there is a
quintic, e.g., through P3 and P4 (and P1, P2, P4, . . . , P12) with tangent ℓ1 in P3 and not in P4. The conic
x2

+ xy + y2 contains the points P3, P5, P6, P7, P9, P11, P12 so it is sufficient to find a cubic through
P1, P2, P3, P4, P8, P10 with tangent ℓ1 in P3 but not in P4. As above, there are infinitely many cubics
passing through P1, P2, P3, P4, P8, P10 with tangent ℓ1 in P3, so there exists one for which ℓ1 is not
tangent to it in P4.

So, we have proven that the linear system separates the points. Let us prove that it separates the tangent
vectors. By symmetry, it is sufficient to show this for, e.g., u ∈ E1; but this is obvious. In fact, x3

− y3

passes through P3, . . . , P12, and therefore there is even a net of conics passing through P1, P2 which have
the tangent line which corresponds to u in P1. Thus the linear system formed by the strict transforms of
the quintics given by the products of x3

− y3 and these conics have different tangents in u, and so this
linear systems separates the tangent vectors in u, and the proof is finished.

The last assertions follow from a standard calculation from the short exact sequence defined by cutting
the surface with a (general) hyperplane H ,

(5) 0 → OS(k)→ OS(k + 1)→ OC(k + 1)→ 0,

where k ∈ Z and C = S ∩ H is the curve section of S, its long exact sequence in cohomology, Riemann–
Roch for C and the fact that S, being rational, is a regular surface. □

Considering the companion surface we take a closer look at the following polynomials, obtaining 9
quartics in the variables (a : b : c):

q0 = −b4
− 2bc3, q1 = −a4

− 2ac3, q2 = 6abc2,

q3 = 6a2bc, q4 = −2a3c − c4, q5 = −2a3b − b4,

q6 = 2b3c + c4, q7 = −6ab2c, q8 = a4
+ 2ab3.

Let
ψ : P2

→ P8, (a : b : c) 7→ (q0 : · · · : q8),

be the map associated to the polynomials q0, . . . , q8, and let us call X ′ the image of ψ .
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Proposition 3.6. The map ψ : P2
→ P8 is an embedding and its image X ′ is a smooth (rational) surface

of degree 16; more precisely, it is a projection of the Veronese surface V2,4 — i.e., P2 embedded in P14 by
the complete linear systems of the quartics — from a subspace of dimension 5 that does not intersect the
secant variety of V2,4. The ideal of X ′ is generated by 9 quadrics, 5 cubics, 15 quartics. It is not linearly
normal and hence it is not aCM.

Proof. The map ψ is regular since the linear system (q0, . . . , q8) is base-point-free. Indeed ψ is an
embedding since it is the composition of the 4-tuple Veronese embedding and a projection; more precisely,
if

v4 : P2
→ P14, (a : b : c) 7→ (a4

: a3b : · · · : c4)

— using the lexicographic order on the monomials — is the 4-tuple Veronese embedding, the projection is

π : P14 99K P8,

(y0 : . . . : y14) 7→ (−y10 − 2y13 : −y0 − 2y6 : 6y8 : 6y4 : −2y2 − y14

: −2y1 − y10 : 2y11 + y14 : −6y7 : y0 + 2y6);

since the vertex V ∼= P5 of the projection, whose equations are

I (V )= (−y10 − 2y13,−y0 − 2y6, 6y8, 6y4,−2y2 − y14,−2y1 − y10, 2y11 + y14,−6y7, y0 + 2y6),

does not intersect the secant variety of the 4-tuple Veronese surface, image of v4, whose ideal is generated
by the 3 × 3-minors of the two catalecticant matrices (see [8, Lemma 3.1]),

CatF (1, 3, 3)=

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9

y1 y3 y4 y6 y7 y8 y10 y11 y12 y13

y2 y4 y5 y7 y8 y9 y11 y12 y13 y14

 ,

CatF (2, 2, 3)=



y0
2

y1
2

y2
2

y3
2

y4
2

y5
2

y1 y3 y4 y6 y7 y8

y2 y4 y5 y7 y8 y9
y3
2

y6
2

y7
2

y10
2

y11
2

y12
2

y4 y7 y8 y11 y12 y13
y5
2

y8
2

y9
2

y12
2

y13
2

y14
2


.

In fact — for example — the first minor formed by the first three columns of CatF (1, 3, 3) always has
rank 3 for the points of the vertex.

It follows that the surface image of ψ , X ′ is a smooth nonlinearly normal surface of degree 16.
With a standard cohomological calculation from the hyperplane exact sequence (5) as we did in the

proof of Proposition 3.5, we deduce that the ideal of X ′ is generated by 9 quadrics, 5 cubics, 15 quartics.
It is not linearly normal, and hence it is not aCM. □

Union of Hesse and dual Hesse. We study now the arrangement union of Hesse and dual Hesse.
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The set Z(Hesse ∪ dHesse) consists of 21 points, which can be assigned the following coordinates:

(6)

P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1],

P4 = [1 : 1 : 1], P5 = [1 : w : w], P6 = [1 : w2
: w2

],

P7 = [1 : w : 1], P8 = [1 : 1 : w], P9 = [1 : w2
: 1],

P10 = [1 : 1 : w2
], P11 = [1 : w : w2

], P12 = [1 : w2
: w],

P13 = [0 : 1 : −1], P14 = [1 : 0 : −1], P15 = [1 : −1 : 0],

P16 = [0 : 1 : −w], P17 = [1 : 0 : −w], P18 = [1 : −w : 0],

P19 = [0 : 1 : −w2
], P20 = [1 : 0 : −w2

], P21 = [1 : −w2
: 0],

where, as above, w := e2π i/3 is (up to a renumbering of the points) a primitive cubic root of unity.
The saturated ideal I (Hesse ∪ dHesse) is generated by

(7) 2x3 yz − y4z − yz4, x4z − 2xy3z + xz4, x4 y + xy4
− 2xyz3.

We note that these three quintics are reducible; each of them is formed by two lines and an irreducible
cubic:

2x3 yz − y4z − yz4
= yz(2x3

− y3
− z3),

x4z − 2xy3z + xz4
= xz(x3

− 2y3
+ z3),

x4 y + xy4
− 2xyz3

= xy(x3
+ y3

− 2z3).

If we call

C1 := Z(2x3
− y3

− z3), C2 := Z(x3
− 2y3

+ z3), C3 := Z(x3
+ y3

− 2z3),

and, as above, X, Y, Z the coordinate axes, we have

P2, P3, P13, P16, P19 ∈ X, P1, P3, P14, P17, P20 ∈ Y, P1, P2, P15, P18, P21 ∈ Z ,

and

P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P16, P19 ∈ C1,

P4, P5, P6, P7, P8, P9, P10, P11, P12, P14, P17, P20 ∈ C2,

P4, P5, P6, P7, P8, P9, P10, P11, P12, P15, P18, P21 ∈ C3;

in other words, C1,C2,C3 are three cubics of the pencil of cubics through the nine points P4, P5, P6, P7,

P8, P9, P10, P11, P12, i.e.,

Ci ∩ C j = C1 ∩ C2 ∩ C3 = {P4, P5, P6, P7, P8, P9, P10, P11, P12} for all i ̸= j;

moreover,

X ∩ C1 = {P13, P16, P19}, Y ∩ C2 = {P14, P17, P20}, Z ∩ C3 = {P15, P18, P21},

Y ∩ Z = {P1}, X ∩ Z = {P2}, X ∩ Y = {P3},
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and finally,

X ∩ C2 = {(0 : 1 :
3
√

2), (0 : 1 :
3
√

2ω), (0 : 1 :
3
√

2ω2)},

X ∩ C3 = {(0 :
3
√

2 : 1), (0 :
3
√

2ω : 1), (0 :
3
√

2ω2
: 1)},

Y ∩ C1 = {(1 : 0 :
3
√

2), (1 : 0 :
3
√

2ω), (1 : 0 :
3
√

2ω2)},

Y ∩ C3 = {(
3
√

2 : 0 : 1), ( 3
√

2ω : 0 : 1), ( 3
√

2ω2
: 0 : 1)},

Z ∩ C1 = {(1 :
3
√

2 : 0), (1 :
3
√

2ω : 0), (1 :
3
√

2ω2
: 0)},

Z ∩ C2 = {(
3
√

2 : 1 : 0), ( 3
√

2ω : 1 : 0), ( 3
√

2ω2
: 1 : 0)}.

The unexpected curve has then the following equation:

(8) F = (7b3c4
− c7)x7 y − 21ab2c4x6 y2

+ 21a2bc4x5 y3
+ (−7a3c4

+ 7b3c4)x4 y4

− 21ab2c4x3 y5
+ 21a2bc4x2 y6

+ (−7a3c4
+ c7)xy7

+ (b7
− 7b4c3)x7z

+ (−7ab6
+ 7ac6)x6 yz + (21a2b5

+ 42a2b2c3)x5 y2z

+ (−35a3b4
− 56a3bc3

− 21b4c3
+ 7bc6)x4 y3z

+ (35a4b3
+ 21a4c3

+ 56ab3c3
− 7ac6)x3 y4z + (−21a5b2

− 42a2b2c3)x2 y5z

+ (7a6b − 7bc6)xy6z + (−a7
+ 7a4c3)y7z + 21ab4c2x6z2

+ (−42a2b3c2
− 21a2c5)x5 yz2

+ (21b5c2
− 21b2c5)x4 y2z2

+ (42a4bc2
− 42ab4c2)x3 y3z2

+ (−21a5c2
+ 21a2c5)x2 y4z2

+ (42a3b2c2
+ 21b2c5)xy5z2

− 21a4bc2 y6z2
− 21a2b4cx5z3

+ (56a3b3c − 7b6c + 35a3c4
+ 21b3c4)x4 yz3

+ (−42a4b2c + 42ab2c4)x3 y2z3

+ (42a2b4c − 42a2bc4)x2 y3z3
+ (7a6c − 56a3b3c − 21a3c4

− 35b3c4)xy4z3

+ 21a4b2cy5z3
+ (7a3b4

− 7b4c3)x4z4
+ (−21a4b3

+ 7ab6
− 35a4c3

− 56ab3c3)x3 yz4

+ (21a5b2
− 21a2b5)x2 y2z4

+ (−7a6b + 21a3b4
+ 56a3bc3

+ 35b4c3)xy3z4

+ (−7a4b3
+ 7a4c3)y4z4

+ 21ab4c2x3z5
+ (21a5c2

+ 42a2b3c2)x2 yz5

+ (−42a3b2c2
− 21b5c2)xy2z5

− 21a4bc2 y3z5
− 21a2b4cx2z6

+ (−7a6c + 7b6c)xyz6
+ 21a4b2cy2z6

+ (7a3b4
− b7)xz7

+ (a7
− 7a4b3)yz7.

I (Hesse ∪ dHesse) in degree eight is generated by the following 24 generators:

m0 = 2x3 y4z − y7z − y4z4, m1 = 2x3 y3z2
− y6z2

− y3z5,

m2 = 2x3 y2z3
− y5z3

− y2z6, m3 = 2x3 yz4
− y4z4

− yz7,

m4 = x7z − 2x4 y3z + x4z4, m5 = x6 yz − 2x3 y4z + x3 yz4,

m6 = x6z2
− 2x3 y3z2 + x3z5, m7 = x5 y2z − 2x2 y5z + x2 y2z4,

m8 = x5 yz2
− 2x2 y4z2

+ x2 yz5, m9 = x5z3
− 2x2 y3z3

+ x2z6,
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m10 = x4 y3z − 2xy6z + xy3z4, m11 = x4 y2z2
− 2xy5z2

+ xy2z5,

m12 = x4 yz3
− 2xy4z3

+ xyz6, m13 = x4z4
− 2xy3z4

+ xz7,

m14 = x7 y + x4 y4
− 2x4 yz3, m15 = x6 y2

+ x3 y5
− 2x3 y2z3,

m16 = x6 yz + x3 y4z − 2x3 yz4, m17 = x5 y3
+ x2 y6

− 2x2 y3z3,

m18 = x5 y2z + x2 y5z − 2x2 y2z4, m19 = x5 yz2
+ x2 y4z2

− 2x2 yz5,

m20 = x4 y4
+ xy7

− 2xy4z3, m21 = x4 y3z + xy6z − 2xy3z4,

m22 = x4 y2z2
+ xy5z2

− 2xy2z5, m23 = x4 yz3
+ xy4z3

− 2xyz6.

The unexpected curve, written down with the aid of above generators has then the following equation:

(9) F = (a7
− 7a4c3)m0 + (21a4bc2)m1 + (−21a4b2c)m2 + (−a7

+ 7a4b3)m3

+ (b7
− 7b4c3)m4 +

( 2
3a7

−
35
3 a4b3

−
7
3ab6

−
35
3 a4c3

−
56
3 ab3c3

+
14
3 ac6)m5

+ (21ab4c2)m6 + (7a5b2
+ 7a2b5

+ 28a2b2c3)m7

+ (7a5c2
− 14a2b3c2

− 14a2c5)m8 + (−21a2b4c)m9

+
(
−

7
3a6b −

35
3 a3b4

+
2
3 b7

−
56
3 a3bc3

−
35
3 b4c3

+
14
3 bc6)m10

+ (−14a3b2c2
+ 7b5c2

− 14b2c5)m11

+
(
−

7
3a6c +

112
3 a3b3c −

7
3 b6c +

70
3 a3c4

+
70
3 b3c4

−
4
3 c7)m12

+ (7a3b4
− b7)m13 + (7b3c4

− c7)m14 + (−21ab2c4)m15

+
(
−

2
3a7

+
35
3 a4b3

−
14
3 ab6

+
35
3 a4c3

+
56
3 ab3c3

+
7
3ac6)m16

+ (21a2bc4)m17 + (−7a5b2
+ 14a2b5

+ 14a2b2c3)m18

+ (−7a5c2
− 28a2b3c2

− 7a2c5)m19 + (−7a3c4
+ c7)m20

+
( 7

3a6b −
70
3 a3b4

+
4
3 b7

−
112

3 a3bc3
−

70
3 b4c3

+
7
3 bc6)m21

+ (14a3b2c2
+ 14b5c2

− 7b2c5)m22

+
( 7

3a6c +
56
3 a3b3c −

14
3 b6c +

35
3 a3c4

+
35
3 b3c4

−
2
3 c7)m23.

Let ϕ : P2 99K P23 be the rational map defined by the generators in (7).

Proposition 3.7. The image of ϕ is a smooth surface S of degree 43. It is the plane blown-up in the
21 points of Z(Hesse ∪ dHesse) embedded in P23 with the complete linear system of the 8-tics through
Z(Hesse ∪ dHesse). Its ideal I (S) is generated by 210 quadrics; in particular it is arithmetically Cohen–
Macaulay.

Proof. Let σ : X → P2 be the simultaneous blow up of each of 21 points in Hesse ∪ dHesse with the
exceptional divisor E (which splits into 21 projective lines, one over each of the points blown up) and as
usual let H = σ ∗OP2(1). Since {p ∈ P2

| mi (p)= 0 for i = 0, . . . , 23} = {P1, . . . , P23}, the linear system
L = 8H −E is base-point-free and it defines a morphism onto its image ϕL : X → P23 which lifts the map

ϕ : P2 99K P23, (x : y : z) 7→ (m0 : m1 : · · · : m23).



COMPANION VARIETIES FOR HESSE, HESSE UNION DUAL HESSE ARRANGEMENTS 11

Therefore, we have the commutative diagram

X

P2 P23

σ
ϕL

ϕ

Let us call S the image of ϕL (or the closure of the image of ϕ).
It is not difficult to prove that S is smooth and ϕ is an embedding.
Indeed, ϕ is given by the 8-tics through the 21 points in Hesse ∪ dHesse and we know that the ideal of

these points is generated by the net of quintics (7); therefore, even the quintics through Hesse ∪ dHesse
separate the points and the tangent vectors if we consider two of them outside Hesse ∪ dHesse.

Again, since the ideal of the points is generated by a net of quintics, we see that, since we are free
to move the 8-tics as a quintic of the net plus any cubic, since the cubics separate the (fat) points
up to multiplicity two, we deduce that the linear system separates points and tangent vectors also for
Hesse ∪ dHesse and the map ϕ is an embedding.

The last assertions follows as before by sequence (5). □

Considering the companion surface we take a closer look at the following polynomials, obtaining 24
polynomials of degree seven in the variables (a : b : c):

q0 = a7
− 7a4c3, q1 = 21a4bc2, q2 = −21a4b2c, q3 = −a7

+ 7a4b3,

q4 = b7
− 7b4c3, q5 = 2a7

− 35a4b3
− 7ab6

− 35a4c3
− 56ab3c3

+ 14ac6, q6 = 21ab4c2,

q7 = 7a5b2
+ 7a2b5

+ 28a2b2c3, q8 = 7a5c2
− 14a2b3c2

− 14a2c5, q9 = −21a2b4c,

q10 = −7a6b − 35a3b4
+ 2b7

− 56a3bc3
− 35b4c3

+ 14bc6,

q11 = −14a3b2c2
+ 7b5c2

− 14b2c5, q12 = −7a6c + 112a3b3c − 7b6c + 70a3c4
+ 70b3c4

− 4c7,

q13 = 7a3b4
− b7, q14 = 7b3c4

− c7, q15 = −21ab2c4,

q16 = −2a7
+ 35a4b3

− 14ab6
+ 35a4c3

+ 56ab3c3
+ 7ac6, q17 = 21a2bc4,

q18 = −7a5b2
+ 14a2b5

+ 14a2b2c3, q19 = −7a5c2
− 28a2b3c2

− 7a2c5,

q20 = −7a3c4
+ c7, q21 = 7a6b − 70a3b4

+ 4b7
− 112a3bc3

− 70b4c3
+ 7bc6,

q22 = 14a3b2c2
+ 14b5c2

− 7b2c5, q23 = 7a6c + 56a3b3c − 14b6c + 35a3c4
+ 35b3c4

− 2c7.

Let
ψ : P2 99K P23, (a : b : c) 7→ (q0 : · · · q23),

be the rational map defined by the 24 generators q0, . . . , q23, and we call X ′ the image of ϕ.

Proposition 3.8. The map ψ : P2
→ P23 is an embedding and its image X ′ is a smooth (rational) surface

of degree 49; more precisely, it is a projection of the Veronese surface V2,7 — i.e., P2 embedded in P35 by
a complete linear system of the 7-tics — from a subspace of dimension 11 that does not intersect the secant
variety of V2,7. The ideal of X ′ is generated by 180 quadrics. It is not linearly normal hence it is not aCM.

Proof. The map
ψ : P2

→ P23, (a : b : c) 7→ (q0 : · · · : q23),
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is regular since the linear system (q0, . . . , q23) is base-point-free. Indeed ψ is an embedding since it is
the composition of the 7-tuple Veronese embedding and a projection; more precisely, if

v7 : P2
→ P35, (a : b : c) 7→ (a7

: a6b : · · · : c7)

— using the lexicographic order on the monomials — is the 7-tuple Veronese embedding, the projection is

π : P35 99K P23,

(y0 : . . . : y35) 7→ (y0 − 7y9 : 21y8 : −21y7 : −y0 + 7y6 : y28 − 7y31

: 2y0 − 35y6 − 7y21 − 35y9 − 56y24 + 14y27 : 21y23

: 7y3 + 7y15 + 28y18 : 7y5 − 14y17 − 14y20 : −21y16

: −7y1 − 35y10 + 2y28 − 56y13 − 35y31 + 14y34

: −14y12 + 7y30 − 14y33 : −7y2 + 112y11 − 7y29 + 70y14 + 70y32 − 4y35

: 7y10 − y28 : 7y32 − y35 : −21y25 : −2y0 + 35y6 − 14y21 + 35y9 + 56y24 + 7y27

: 21y19 : −7y3 + 14y15 + 14y18 : −7y5 − 28y17 − 7y20 : −7y14 + y35

: 7y1 − 70y10 + 4y28 − 112y13 − 70y31 + 7y34 : 14y12 + 14y30 − 7y33

: 7y2 + 56y11 − 14y29 + 35y14 + 35y32 − 2y35);

since the vertex V ∼= P11 of the projection, whose equations are

I (V )= (y0 − 7y9, 21y8,−21y7,−y0 + 7y6, y28 − 7y31,

2y0 − 35y6 − 7y21 − 35y9 − 56y24 + 14y27, 21y23,

7y3 + 7y15 + 28y18, 7y5 − 14y17 − 14y20,−21y16,

− 7y1 − 35y10 + 2y28 − 56y13 − 35y31 + 14y34,

− 14y12 + 7y30 − 14y33,−7y2 + 112y11 − 7y29 + 70y14 + 70y32 − 4y35,

7y10 − y28, 7y32 − y35,−21y25,−2y0 + 35y6 − 14y21 + 35y9 + 56y24 + 7y27,

21y19,−7y3 + 14y15 + 14y18,−7y5 − 28y17 − 7y20,−7y14 + y35,

7y1 − 70y10 + 4y28 − 112y13 − 70y31 + 7y34, 14y12 + 14y30 − 7y33,

7y2 + 56y11 − 14y29 + 35y14 + 35y32 − 2y35)

does not intersect the secant variety of the 7-tuple Veronese surface, image of v7, whose ideal is generated
by the 3×3-minors of the two catalecticant matrices (see [8, Lemma 3.1]); the first one is the 3×28
matrix

CatF (1, 6, 3)=

y0 y1 y2 y3 y4 y5 · · · y21 · · · y27

y1 ŷ2 ŷ5 ŷ9 ŷ14 ŷ20 ŷ27 y28 · · · y34

y2 ŷ3 ŷ7 ŷ10 ŷ15 ŷ21 ŷ28 y29 · · · y35

 ,
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where the variables increase within each row and the hat means that the variable is omitted. So, for
example, the first 3×3 matrix formed by the first 3 columns is

A :=

y0 y1 y2

y1 y3 y4

y2 y4 y5

 ;

we observe that A always has rank 3 for the points of the vertex.
It follows that the surface image of ψ , X ′ is a smooth nonlinearly normal surface of degree 16.
With a standard cohomological calculation from the hyperplane exact sequence (5) as we did in the

proof of Proposition 3.5, we deduce that the ideal of X ′ is generated by 180 quadrics. It is not linearly
normal, and hence it is not aCM. □
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