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Abstract
R-mode hierarchical clustering is amethod for forming hierarchical groups ofmutually
exclusive subsets of variables. ThisR-mode clustermethod identifies interrelationships
between variables which are useful for variable selection and dimension reduction.
Importantly, the method is based on metric elements defined on the sample space of
variables. Consequently, hierarchical clustering of compositional parts should respect
the particular geometry of the simplex. In this work, the connections between concepts
such as distance, cluster representative, compositional biplot, and log-ratio basis are
exploredwithin the framework of themost popular R-mode agglomerative hierarchical
clustering methods. The approach is illustrated in a paleoecological study to identify
groups of species sharing similar behavior.
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1 Introduction

Hierarchical clustering (HC) is a method for forming hierarchical groups of mutually
exclusive subsets (Hennig et al. 2015). In agglomerative HC techniques, initially,
each object is assigned to a single cluster. Afterward, the union of two clusters is
selected which provides an optimal value for an objective function reflecting some
criterion chosen by the investigator. That is, given a data set formed by n objects, the
procedure works by reducing in the first step the number of groups from n to n−1, and
then, without modifying the groups formed, repeating the process until the number
of groups is reduced to 1. On the other hand, the divisive HC techniques, which are
less popular than the agglomerative methods, construct the hierarchy in the opposite
manner. Although an objective function may be any functional relation selected by the
investigator, the objective function adopted is commonly based on a metric concept
defined on the sample space of objects (e.g., a distance).

In general, HCmethods are designed to group objects in a space defined by the vari-
ables, and as such they can be considered Q-modemethods. However, there are several
application examples in which HC is computed in R-mode to identify interrelation-
ships between variables, useful for variable selection and dimension reduction. In these
cases, Pearson’s r correlation coefficient is sometimes adopted as a measure of dis-
tance (i.e., R-analysis) (Legendre andLegendre 2012). However, the application ofHC
in R-mode obviously raises questions regarding the efficiency of algorithms designed
primarily to group objects. The investigation of the interrelationships between the
variables is of particular interest in those studies, including, for example, those in
the paleoecological field, in which the composition of the assemblages is expressed in
terms of relative abundances. The application of R-mode HC can help in studies aimed
at identifying groups of species (parts in a composition) sharing a similar behavior.
Importantly, the application of HC in R-modemust be consistent with the fundamental
properties of the analysis of compositional data (CoDa) (Aitchison 1986), in partic-
ular when the compositional variables (parts) are analyzed (Pawlowsky-Glahn and
Egozcue 2022).

To the best of our knowledge, only van den Boogaart and Tolosana-Delgado (2013,
section 6.2.3), Facevicova et al. (2016), and Filzmoser et al. (2018, section 6.6) present
a short preliminary study of an R-modeHC for CoDa, while it was used in Boyraz et al.
(2022) to define principal microbial groups (PMGs). These previous works, following
Pawlowsky-Glahn et al. (2011), merely describe the R-mode HC usingWard’s method
(Ward 1963). Martín-Fernández et al. (2018) further develop this idea for Ward’s
method by describing its link with the Aitchison distance (Aitchison et al. 2000)
between two parts, whereas Di Donato et al. (2022) present a preliminary exploration
of the relationship between the Ward R-mode HC for CoDa and the compositional
biplot (Aitchison and Greenacre 2002). This data visualization technique consists of a
principal component analysis based on a singular value decomposition of the centered
log-ratio (clr) data set (Aitchison 1986) (i.e., clr-biplots). Obviously, any other HC
method could be used, such as single, complete, and average linkage methods. The
performance of these other methods in terms of Aitchison distance, of the clr-biplot,
and for creating an orthonormal log-ratio (olr) basis using a sequential binary partition
(SBP) of the parts of a composition (Egozcue and Pawlowsky-Glahn 2005) remains
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unexplored. The literature on cluster analysis is very extensive and continually comes
up with new methods or improvements of old ones (Hennig et al. 2015). It is not
our aim to present an exhaustive description of R-mode cluster methods for CoDa.
Our purpose is to explore the connections between concepts such as distance, cluster
representative, clr-biplot, and olr-basis. That is why we focus only on the most popular
agglomerative HC methods.

Section 2 presents some basic CoDa concepts, where the focus is on the elements
for the analysis of the parts of a composition. In Sect. 3, the performance and properties
of some R-mode HC methods are described. The relationship with the SBP and the
clr-biplots is provided. Section4 illustrates this approach in a paleoecological study to
identify groups of species sharing similar behavior. Finally, we present the concluding
remarks in Sect. 5.

2 Basic Elements in a Compositional Analysis

CoDa (Aitchison 1986) are quantitative descriptions of the parts or components of a
whole conveying relative information. In this sense, the relative information collected
in any observation x is the same as in α · x for any real scalar α > 0, the property
known as scale invariance (Aitchison 1986). Historically, the sample space of CoDa
is designed as the D-part unit simplex S D = {x ∈ RD : x j > 0;∑

x j = 1; j =
1, . . . , D}. According to the ratio scale nature of CoDa, any function of a composition
x should be expressed in terms of ratios between variables (Aitchison 1986). Note that
any ratio x j/xk takes values in (0,+∞), whereas a log-ratio ln(x j/xk) takes values in
the full real space. Following Aitchison (1986), the general expression of a log-ratio
is a log-contrast

a1 · ln(x1) + · · · + aD · ln(xD) = ln

⎛

⎝
D∏

j=1

x
a j
j

⎞

⎠ = ln

∏
a j>0 x

a j
j

∏
a j<0 x

|a j |
j

, (1)

where
∑

a j = 0, so as to verify the scale invariance property. One example of the
very useful log-ratios are the centered log-ratio (clr) variables defined in Aitchison
(1986) by clr(x) j = ln

x j

(
∏

xk)
1/D = ln x j − ln x, j = 1, . . . , D, where ln x stands

for the arithmetic mean of the elements in ln x. The log-contrast expression (Eq. 1) of
a clr-variable satisfies that a jk = −1/D for k �= j and a j j = 1 − 1/D.

The formal geometric framework for the analysis of CoDa first appeared inde-
pendently in Pawlowsky-Glahn and Egozcue (2001) and in Billheimer et al. (2001).
This geometry was coined the Aitchison geometry in Pawlowsky-Glahn and Egozcue
(2001), later formally established in Barceló-Vidal and Martín-Fernández (2016).
The critical element of the Aitchison geometry is the inner product defined via the
log-ratio coordinates. Indeed, let x1 and x2 be two compositions, then 〈x1, x2〉a =
〈clr(x1), clr(x2)〉e. Here, the subscripts a and e represent, respectively, Aitchison and
Euclidean metric elements. As usual, a distance and a norm can be derived from the
inner product, resulting in da(x1, x2) = de(clr(x1), clr(x2)) and ||x1||a = ||clr(x1)||e.

123



Mathematical Geosciences

Remarkably, the Aitchison distance (Aitchison et al. 2000) verifies that da(x1, x2) =
||( x11x21

, . . . , x1D
x2D

)||a , providing information about the relative difference between two
compositions.

The Aitchison geometry allows compositions to be expressed as coordinates in an
orthonormal basis, formed by log-ratios and called olr-coordinates (Egozcue et al.
2003; Martín-Fernández 2019). Following Egozcue and Pawlowsky-Glahn (2005),
one can use an SBP to create a particular set of olr-coordinates, originally named
isometric log-ratio (ilr) coordinates. According to Eq. (1), any log-ratio consists of
selecting which parts contribute to the log-ratio and deciding if they will appear in the
numerator or in the denominator. In thefirst step of anSBP,when thefirst olr-coordinate
is created, the complete composition x = (x1, . . . , xD) is split into two groups of parts:
one for the numerator and the other for the denominator. In the following steps, each
group is in turn split into two groups. That is, in step j , when the olr(x) j coordinate is
created, the r j parts (xn1, . . . , xnr j ) in the first group are placed in the numerator, and
the s j parts (xd1 , . . . , xds j ) in the second group will appear in the denominator. As a
result, the olr(x) j coordinate, in this case called j th balance, is

olr(x) j =
√

r j · s j
r j + s j

ln
(xn1 . . . xnr j )

1/r j

(xd1 . . . xds j )
1/s j

, j = 1, . . . , D − 1, (2)

where
√

r j ·s j
r j+s j

is the factor for normalizing the balance to unit length.

In CoDa analysis, given a data set X (n × D) with sample size n and D parts,
the variability can be expressed by the variation matrix (Aitchison 1986). The (r , s)
entry of the variation matrix is var(ln(Xr/Xs)), which is the log-ratio variance of
parts (Xr ,Xs), two columns of a data set X. For example, when var(ln(Xr/Xs)) is
exactly zero, the ratio Xr/Xs is constant, the two parts involved being proportional.
Martín-Fernández et al. (2018) stated that the entries of the variation matrix can also
be expressed in terms of the Aitchison distance between parts. Indeed, the columns
of X can be considered as compositions in an n-part simplex (Pawlowsky-Glahn and
Egozcue 2022). The i th component of the vector clr(Xr ) is ln xir − lnXr , where
lnXr is the average of the logarithms ln xir along the column Xr . It is equivalent to
considering X� as a CoDa set and then taking clr-scores. This leads to

var

(

ln

(
Xr

Xs

))

= 1

n
d2a

(
X�
r ,X�

s

)
= 1

n

∥
∥
∥
∥

(
x1r
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, . . . ,
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xns

)∥
∥
∥
∥

2

a
(3)

where the last term is an Aitchison norm in the n-part simplex, that is, an Aitchison
norm in the space of parts (Pawlowsky-Glahn and Egozcue 2022), providing informa-
tion about the relative difference between two parts. The factor 1/n can be 1/(n − 1),
depending on the definition of variance used. In any case, because HC methods are
invariant under a scaling factor applied to the distancematrix, one can use the variation
matrix as input data in the HC algorithm.

A graphical display of the information provided by the variation matrix can be
obtained using the clr-biplot (Aitchison and Greenacre 2002), where the clr-variables
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are represented by rays. In addition, the clr-biplot can suggest clusters of rays, that is,
groups formed by parts. Although the quality of the display depends on the variance
accounted for by the two selected principal axes, the position of rays in the clr-
biplot usually suggests which parts are approximately proportional and which are not,
because the squared length of a link between two rays approximates var[ln(Xi/X j )],
the latter being proportional to the Aitchison distance between the two involved parts.
Indeed, let clr(X) be the clr datamatrix (clr scores by rows) of the datamatrixX; and let
Y be the column centered matrix of clr(X) (i.e., the log-data matrix double centered).
The covariance clr-biplot is based on the singular value decompositionY = U ·D ·V�,
with factor scores F = U and loadings L = V ·D. Matrices U and V are, respectively,
the left and right eigenvectors, and D is the diagonal matrix with singular values.
According to Eq. (3), the Aitchison distance matrix between parts can be calculated
by (clr(X))� ·clr(X), which is equal toY� ·Y = V ·D2 ·V� = (V ·D) · (V ·D)�, with
V ·D being the vector of coordinates of the rays. Consequently, when one selects two
particular coordinates (usually the first and second) for representing the clr-biplot, then
the distances between the rays on the display are an approximation of the Aitchison
distance between the parts.

The expression in Eq. (3) can be extended to the variance of the j th balance (Martín-
Fernández et al. 2018)

var(olr(X) j ) = var

(√
r j · s j
r j + s j

ln

(
Gn

Gd

))

= r j · s j
r j + s j

· 1
n
d2a(Gn,Gd), (4)

where the geometric meansGn = (Xn1 · · ·Xnr j
)1/r j andGd = (Xd1 · · ·Xds j

)1/s j are,
respectively, the center of a cluster formed by r j and s j parts. Both expressions (Eqs.
3 and 4) provide the required elements for defining an adequate distance between
objects and/or clusters in R-mode HC for CoDa.

3 Compositional R-mode Hierarchical Clustering

Cluster analysis tries to form groups in such a way that parts in the same group are
similar to each other, whereas parts in different groups are as dissimilar as possible.
Among the many possible dissimilarities and distances (d) for data analysis, almost
all of them share one feature: given two objects xa and xb, the value of d(xa, xb) does
not depend on other objects different from xa and xb (Deza and Deza 2009). In an
R-mode HC for CoDa, this feature is associated with the property of subcompositional
coherence (Aitchison 1986; Pawlowsky-Glahn and Egozcue 2022). That is, given two
compositional parts Xr and Xs of a data set X, the value of d(Xr ,Xs) should be the
same regardless if other columns are added to or removed from X. In addition, due
to the scale invariance property, it should hold that d(Xr ,Xs) = d(α · Xr , β · Xs)

for α, β > 0. To the best of our knowledge, only the distance da (Eq. 3) has been
explored as a distance for compositional variables (Martín-Fernández et al. 2018;
Pawlowsky-Glahn and Egozcue 2022). Other potential measures of difference, such
as the CoDa dissimilarity based on the Kullback–Leibler divergence described in
Palarea-Albaladejo et al. (2012), remain unexplored.
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Table 1 R-mode HC methods for CoDa. The geometric means Gk , k = a, b are, respectively, the center
of the cluster

Method da(Ca ,Cb) Cluster representative

Single linkage min{Xa∈Ca ,Xb∈Cb} da(Xa ,Xb) Adaptable part

Complete linkage max{Xa∈Ca ,Xb∈Cb} da(Xa ,Xb) Adaptable part

Average linkage 1
|Ca |·|Cb | · ∑

Xa∈Ca

∑

Xb∈Cb

da(Xa ,Xb) G: geometric mean of parts

Ward’s method |Ca |·|Cb |
|Ca |+|Cb | · d2a(Ga ,Gb) G: geometric mean of parts

The cluster cardinalities are |Ck |, k = a, b

According to the usual procedure for the most popular HC methods (Hennig et al.
2015), the following steps perform an R-mode HC for an n × D CoDa set X:

Step 1: Consider D clusters: C j = {X j }, for j = 1, . . . , D. Compute the D × D
Aitchison distance matrix between all the parts {X1, . . . ,XD}.

Step 2: Merge clusters as Ca∪b = Ca ∪Cb, where da(Ca,Cb) is the smallest value
in the distance matrix.

Step 3: Delete the row and the column ofCa and ofCb in the distance matrix. Insert
a new row and column containing the distances between the new cluster
Ca∪b and the remaining clusters.

Step 4: Repeat steps 2 and 3 until only one maximal cluster remains ({X}).
The crucial step in the procedure is the updating of the distance matrix when a new

cluster is created. That is, when clusters Ca and Cb are merged into cluster Ca∪b,
one must specify the new dissimilarity between the cluster and all other objects (parts
or clusters). The Lance–Williams dissimilarity update formula, which embraces the
most common HC methods, solves the issue of updating the distance matrix (Hennig
et al. 2015, page 109). Using this formula, one can easily apply HC methods such
as, among others, single, complete, and average linkage, and Ward’s (i.e., minimum
variance) method. The difference among the HC methods lies in the definition of
distance between two clusters (Table 1).

In the single linkage method, the distance between two clusters Ca and Cb is the
distance between the nearest parts, that is, the parts one in each cluster that are more
proportional. In this sense, clusters merged at the initial iterations of the algorithm are
clusters with parts providing more redundant information. However, the single link-
age method can exhibit a notable disadvantage in summarizing interrelationships: the
chaining effect (Hennig et al. 2015). This effect is illustrated by means of a paleoeco-
logical study in Sect. 4. On the other hand, the complete linkage method emphasizes
the homogeneity of clusters over their separation because its criterion for merging
two clusters is based on the pairwise maximum distance. In this method, the distance
between two clusters Ca and Cb is the distance between the parts in each cluster that
are most separated, that is, the two columns that are least proportional. Consequently,
single and complete linkage methods share the difficulty in defining a unique repre-
sentative of each cluster because one has to adapt the representative as regards the
other cluster in measuring the distance. This may be a serious handicap if the study
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aims to reduce the spatial dimension of the parts. On the other hand, for the average
linkage and Ward’s method, the representative of the cluster is the geometric center

Gk =
⎛

⎝
∏

X j∈Ck

X j

⎞

⎠

1/|Ck |
, (5)

where |Ck | is the number of parts in the cluster k = a, b (Table 1). Historically,
the average linkage method is defined as a compromise between single and complete
linkage methods (Hennig et al. 2015). In addition, this method is described as compu-
tationally expensive, especially when the number of parts becomes large, because the
distance between two clusters is the average of all the pairwise distances between the
parts in these two clusters. From our experience, no relevant differences are detected
in the execution time of the three algorithms, whereas clusters detected by the average
linkage method are more similar to the groups created by the complete than the single
linkage method, which is mainly attributable to the chaining effect.

Ward’sminimumvariancemethod (Ward 1963) is a special case of theHCbecause it
establishes a direct link between the concepts of variance and distance between clusters
(Hennig et al. 2015). Indeed, in the presence of groups in a data set, the total variance
can be decomposed into the sum of two components: variability between groups and
within-group variation,where all these concepts are computed using the corresponding
error sum of squares. Importantly, the distance between two cluster candidates for
merging in Ward’s method (Table 1) is equal to the increase in the within-group
variation with the fusion of the two clusters. Consequently, Ward’s method pursues
the cluster configuration with the minimumwithin-group variation (i.e., the maximum
between-group variation). Importantly, the distance between two clusters (Table 1) is
proportional to the variance of a balance (Eq. 4), indicating a direct link between
the SBP and the HC configuration of a set of compositional parts. In other words,
it is the link between the dendrogram, a popular graphical display for an HC, and
the CoDa dendrogram, a representation of an SBP (Egozcue and Pawlowsky-Glahn
2005; Pawlowsky-Glahn and Egozcue 2011). By definition, Ward’s method typically
creates a dendrogram with low fusion levels at the bottom and the largest merger
level at the top. Ward’s algorithm starts detecting the smallest entry in the variation
matrix (proportional parts), and the corresponding parts are merged to form a group.
The method iteratively continues merging groups of parts according to the smallest
variance of the corresponding balance. The final stage consists of the fusion of the
last two remaining groups into one, which gives the balance with the largest variance.
Consequently, it is expected that an olr basis created by Ward’s method is formed
by balances as constant as possible, with the first balances created (at the bottom of
the dendrogram) being mostly pairwise log-ratios of proportional parts, and the last
balance created (at the top of the dendrogram) being the balance involving the full
composition which retains the largest percentage of the total variance.

In the literature, other agglomerativeHCmethods are provided, such asMcQuitty’s,
median, and centroid (Hennig et al. 2015). Although they are less popular, they have
their advantages and their difficulties over the rest of the methods. In an R-mode
analysis for CoDa, the particularities of each method concerning compositional parts
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might be interpreted in similar terms as for the methods described above. In addition,
one could consider a divisiveHCmethod or even othermethods from a family different
from the hierarchical one (e.g., K -means, model-based clustering, fuzzy clustering).
In terms of creating an olr basis, one advantage of an R-mode HC is its link with the
SBP of a composition.Whereas, as regards the dimension reduction, HCmethods have
the particularity of deciding the number of clusters once the hierarchical configuration
has been created.

Determining the optimal number of clusters, Kopt , is crucial for cluster validation
(Hennig et al. 2015). Most indices used for this task (e.g., Dunn, Calinski–Harabasz,
average silhouette width) are designed in such a way that their maximum or minimum
value indicates an “optimal” clustering. Clustering is computed for various values of K
(often in an interval between 1 and 2 and amaximumvalue Kmax ), and then the best one
is selected (Karacan et al. 2021). However, there are also other indices that increase (or
decrease) with increasing K , in which case, researchers look for a change of curvature,
known as elbow, as in the scree plot for the eigenvalues in principal component analysis
(Jolliffe 2002). That is, a value K where a strong increase (respectively decrease) is
followed by a weak one. Typically, in cluster analysis, the index represented is the
ratio of the between-group sum of squares to the total sum of squares. In this case, the
first clusters typically add much information (explain a lot of variance). But at some
point, the marginal gain will drop, giving an elbow in the graph.

The above methods proposed for Q-mode clustering are easily adapted for R-mode.
In addition, in our context, one can take advantage of the relationship between the vari-
ance of a balance and the distance between centers of clusters (Eq. 4) for introducing
a novel graphical display which shows the structure of variance accounted for by the
balances. Let olr(X) be the n × (D − 1) matrix of olr coordinates (Eq. 2) calculated
using the olr basis resulting from an SBP according to the results of an R-mode HC.
The variance of columns in matrix olr(X) can be calculated as a distance between the
centers of two groups of parts (Eq. 4) and added to the total variance (Aitchison 1997)

totvar(X) = 1

2D
·

D∑

j=1

D∑

k=1

var

(

ln
X j

Xk

)

=
D−1∑

j=1

var
(
olr(X) j

)
, (6)

where olr(X)1 is the first cluster created at the bottom of the dendrogram (i.e., pair-
wise minimum variance), and olr(X)D−1 corresponds to the last cluster fusion (i.e.,
involving the full composition). In the hypothetical case when the result of the HC is
only one cluster, one can imagine a clr-biplot where all the rays overlap, with a total
variance of approximately zero, resulting in a flat dendrogram. On the other hand, in
the scenario of no clusters (i.e., D single clusters), each balance should have a variance
approximating 1

D−1 · totvar(X), while the rays of the parts are uniformly distributed
in a (D − 1)-multivariate sphere. In the other scenarios of 1 < K < D, with K the
number of clusters, at least one balance should have a variance above 1

D−1 · totvar(X)

and at least another balance below.
Figure 1a shows the clr-biplot for an R-mode HC with K = 2 clusters in a data

set X (107 × 13). The CoDa set is actually a subcomposition of a 22-part composi-
tion described in the following section. Note that the quality of the representation is

123



Mathematical Geosciences

reasonable (65.81% of variance retained) where the first axis retains up to 55.06% of
the total variance. The clr-biplot suggests K = 2 clusters for the 13 compositional
parts due to the loadings in the first axis (i.e., positive loadings versus negative). The
R-mode Ward’s method creates the dendrogram in Fig. 1b, which confirms that two
clusters is a reasonable option. However, options such as K = 3 or K = 4 clusters
may be considered adequate as well. When the hierarchical structure from Ward’s
method (Fig. 1b) is transformed in an SBP, then the corresponding olr basis is created.
Figure2a shows the CoDa dendrogram of balances where the first balance

olr(X)1 =
√
42

13
· ln (X8 · X9 · X10 · X3 · X6 · X7 · X12)

1/7

(X1 · X13 · X2 · X11 · X4 · X5)1/6
,

has the largest variance (var(olr(X)1 = 6.102), as suggested by the largest vertical
line, representing 48.39% of the total variance (totvar(X) = 12.609). This value
suggests a large distance between the centers of the two clusters. Each vertical line
of the branches in the CoDa dendrogram represents the variance of the corresponding
balance. Figure2b shows the value of the variance of balances as a bar plot, where
one can see how the rest of the total variance is decomposed among the 12 balances.
In the extreme scenario of K = 13 clusters, one would expect that the variance of
each balance is approximately 1.05 (= totvar(X)/12, red horizontal line), that is, the
equal variance level. The bar plot suggests an elbow for the second balance, with a
variance slightly larger than this level. The other 10 balances have a variance smaller
than the second one. One can conclude that the structure of the decomposition of
the total variance (Fig. 2b) reinforces the decision of taking K = 2 clusters for
the parts in the composition. The other typical indices explored (Dunn, Calinski–
Harabasz, and average silhouette width) agree, in that two groups are a reasonable
option.

Once the R-mode HC is finished, any Q-mode analysis can be done using the
olr coordinates created from the SBP (Fig. 2a). Importantly, the coordinate olr(X)1
plays a relevant role because it can discriminate between samples. Indeed, samples
associatedwith parts belonging to thefirst cluster of parts (the numerator in the balance)
take positive values Conversely, the first coordinate takes negative values for samples
associated with the parts in the second cluster (the denominator in the balance). On the
other hand, if the analyst aims to reduce the dimension of the space of parts, then one
representative for each cluster of parts should be selected or created. In this case, the
number of parts will be reduced from D = 13 to 2, that is, the dimension 12 becomes
1 (univariate case). By definition, the representative of clusters in Ward’s method is
the center of the group (Eq. 5); that is, for each sample, the average values over the
parts of each cluster.

The example in Fig. 2b supports the idea that analyzing the variance decomposition
in terms of balances can be helpful for deciding the number of clusters in R-mode HC.
In the above example, for Ward’s method, the height of bars decreases as the number
of clusters increases. This is not necessarily so for the other HC methods because
only Ward’s method links the concepts of balance variance and distance between
clusters (Hennig et al. 2015). In any case, the valuable information of the display is
the position of the elbow, if it exists, because it suggests a potential number of clusters
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Fig. 1 R-mode HC for a CoDa set X (107 × 13): a covariance clr-biplot (65.81% variance retained); b
Ward’s method dendrogram. The red horizontal line indicates the cutting level for K = 2 clusters

123



Mathematical Geosciences

Fig. 2 R-mode HC for a CoDa set X (107× 13): a CoDa dendrogram for the olr basis created fromWard’s
method; b bar plot for the variances of the balances in the olr basis created from Ward’s method. The
horizontal red line is the level for the equal variance case (1.05)

in the compositional parts. That is, the analyst should look for the tail in the bar
plot, detecting the balances with a negligible variance because these balances suggest
clusters with near centers that might be merged.
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Table 2 Compositional parts of the benthic foraminiferal data: the core TEA-C6 (107 × 22)

X1 X2 X3 X4 X5 X6

B. spathulata B. dilatata B. marginata C. crassa C. pachyderma H. baltica

X7 X8 X9 X10 X11 X12

M. barleeanum U. mediterranea U. peregrina B. nodosaria B. costata/inflata S. bulloides

X13 X14 X15 X16 X17 X18

S. schlumbergeri H. elegans G. altiformis G. neosoldanii B. albatrossi B. alata

X19 X20 X21 X22

Miliolidae Globobulimina Chilostomella C. bradyi

4 Example: A Paleoecological Study

R-Mode HC is commonly adopted in paleoecological studies to identify groups of
species sharing similar behavior. The benthic foraminiferal data of the example (Fig.
3) are taken from a study carried out on the core TEA-C6 (39◦46.45’ N, 17◦02.96’
E, 907.5-m water depth) recovered in the Ionian Sea (Mediterranean Sea) (Di Donato
et al. 2019). The data set consists of 107 samples with 22 parts (Table 4). The age
model of this core TEA-C6 is based on tephrostratigraphical analysis and AMS-14C
dating. The stratigraphic record of the core covers the last 15,000 years and includes
the so-called Sapropel S1, the latest of a series of organic carbon-enriched layers
which were deposited in the eastern Mediterranean in connection with precession-
driven periodic events characterized by enhanced organic flux at the sea floor and
deep-water anoxia (see Rohling et al. (2015), among many others, for a review). The
distribution of benthic foraminiferal taxa within the core TEA-C6 is summarized in
Fig. 3.White bands indicate intervals devoid of benthic foraminifera, as a consequence
of anoxic conditions established during the Sapropel S1 stagnation phase at the bottom
of the Gulf of Taranto. Using CONISS (Grimm 1987) (basically a constrained Q-mode
Ward’s algorithm), computed on log-ratio coordinates (Di Donato et al. 2009), four
benthic foraminiferal compositional zones (BFCZ) were determined. BFCZ4 includes
late glacial to early Holocene assemblages. BFCZ3 and BFCZ2 surround Sapropel S1,
and BFCZ1 includes post-Sapropel S1 to recent assemblages. Notes on the ecology
of the benthic foraminiferal taxa included in the case study can be found in Di Donato
et al. (2019); Di Donato et al. (2022).

R-modeHCcan be useful for investigating potential groups of species in the coreC6
data set. The covariance clr-biplot (Fig. 4) is not very representative of high quality
because the first two axes retain up to 58.89% of the total variance. The position
of rays suggests that some parts may be considered redundant and other parts may
be clustered. The smallest value in the variation matrix is var(ln X21

X22
) = 0.49; the

second is var(ln X5
X6

) = 0.51 (see Appendix). They can be considered as small values
because the expected log-ratio variance in case of equal pairwise variance is 2.43
for any of pairwise log-ratio (2.43 = totvar(X)/(D · (D − 1)/2) (Egozcue et al.
2018). Consequently, one expects that the first cluster formed by any R-mode HC is
{X21,X22}= {Chilostomella,C . bradyi}. On the other hand, the largest value in the
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Fig. 3 Location, stratigraphical log, and benthic foraminiferal assemblages of the core TEA-C6

variation matrix is var(ln X1
X7

) = 8.20. That is, the parts X1 = {B. spathulata} and
X7 = {M . barleeanum} should be assigned to different clusters for all the methods.

Figure 5 shows the dendrograms for the fourmethods: single, complete, and average
linkage, and Ward’s method. Clearly, there are differences among the clusters of parts
formed, but one can recognize some typical features of the HCmethods. The chaining
effect is present in the clustering structure createdby the single linkagemethod (Fig. 5a)
because almost half of the fusions consists in merging a unique part to a previously
formed cluster. The complete linkage dendrogram (Fig. 5b) suggests more compact
clusters than the single linkage dendrogram because the leaves of the tree merge at
levels substantially lower than the clusters on the root at the top of the dendrogram.
One can consider that the average linkagemethod (Fig. 5c) is an option in themiddle of
single and complete linkagemethods because there aremany fusions between a cluster
and a unique part, as in the single linkage, but the difference between the level of fusion
of clusters at the root and at leaves is more similar to the complete linkage dendrogram.
At first glance, the structures of dendrograms created by complete linkage andWard’s
methods (Fig. 5d) are similar. However, because the structure of the dendrograms
is important, a comparison between two types of clustering should be based on the
number of clusters and the objects forming the groups.

As regards the number of clusters, the horizontal red line in Fig. 5 is the cutting level
for creating a number of clusters suggested by the variance retained in the balances
shown inFig. 6. The horizontal red line in the bar plots is the value totvar(X)/(D−1) =
25.53
21 = 1.22 representing the case of equal variance retained by each variance, that is,

equal distance between all the clustersmerged along the clusteringprocess (i.e., D clus-
ters case). As explained in Sect. 3, there is a link between balances and clusters created.
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Fig. 4 Covariance clr-biplot (58.89% total variance retained) of the core C6 data set (107 × 22)

For example, the balance B21 (first bar in Fig. 6) corresponds to a clustering formed
by two groups. Note that single, complete, and average linkage methods create the
balance B21 in terms of the log-ratio between partX1 (B.spathulata) against the rest
of the taxa. On the other hand, the balance B21 created with theWard’s method is asso-
ciated with the two groups {X1,X2,X3,X5,X6,X11,X14, X17,X18,X20,X21,X22}
and {X4,X7,X8,X9,X10,X12,X13,X15,X16,X19}. According to the elbow of the
bar series, the four HC methods suggest forming four, five, or six groups of parts.
The options four and five groups are also suggested by other popular indices (Dunn,
Calinski–Harabasz, and average silhouette width). In particular, the single linkage
method suggests five clusters for the 22 parts, whereas the other three methods sug-
gest creating four groups.

Table 3 shows twomeasures of agreement between the four HCmethods when four
groups are created in the parts of the core C6 data set. To measure the agreement of the
results of the four HC methods, two popular indices, out of 25 listed in the R package
mclustcomp (You2021),were used: adjustedRand index (ARI) and normalizedmutual
information (NMI). The ARI, based on the confusion matrix, ranges in [−1, 1], where
1 means identical cluster sets, while values in the range [−1, 0] suggest independent
groups. On the other hand, NMI, based on the mutual information metric (MI), is
calculated by dividing MI with the geometric mean of the entropies of the individual
cluster sets. It ranges in [0, 1], with 1 for total agreement and 0 for independent groups.
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Fig. 5 Dendrogram for R-mode HC of parts in the core C6 data set: a single linkage; b complete linkage; c
average linkage; and d Ward’s method (squared distance). The horizontal red line is the cutting level (see
text for more details)

Meilă (2007) presents a more detailed description of the type and properties of indices
for measuring clustering agreement. According to the ARI (upper diagonal in Table 3),
the single linkage method creates groups less coincident with the clusters created by
the other methods, where complete linkage reflects a similar behavior. On the other
hand, the average linkage and Ward’s method are highly coincident (ARI= 0.876).
These two methods assign to a different group only the parts X11 and X20, with the
remaining up to D = 22 parts assigned to the same clusters. This fact is also detected
by the NMI index (lower diagonal in Table 3) with NMI = 0.843. In this case, the
worst behavior is for the complete linkage method, which is very similar to the values
for the single linkage.

R-mode HC is a data-driven procedure where the analyst can select the clustering
technique and the measure of dissimilarity between variables to finally decide the
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Fig. 6 Balance-variance bar plot for R-mode HC of the core C6 data set: a single linkage; b complete
linkage; c average linkage; and dWard. The horizontal red line is the level for the equal variance case (1.22)

number of groups and validate the groups. However, the final decision on the quality
of the groups created should be agreed upon using the expert knowledge of the data
set. Regarding the dendrogram derived by Ward’s method (Fig. 5d), the results seem
consistent with the ecology of the taxa and their distribution within the core. In partic-
ular, the taxa included in the left-hand group have in common that they are relatively
more abundant in the Holocene range of the core and are mostly related to condi-
tions of good oxygenation or not high organic matter fluxes at the bottom (Di Donato
et al. 2019). In contrast, the taxa included in themiddle group share the highest relative
abundance in the late-glacial interval of the core. The cluster on the right includes low-
oxygen-resistant and/or opportunistic species related to higher flux of organic matter
at the bottom, such as Bolivina. These taxa are associated, in the considered core, with
Sapropel S1. The clustering in the dendrogram derived by the single linkage appears
less straightforward. On the right, there are low-oxygen-resistant species. In this den-
drogram B. spathulata is the last added element. In the clr-biplot, the column point of
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Table 3 Measures of agreement between the four HC methods when four groups are created (ARI, upper
diagonal; NMI, lower diagonal)

Method Single linkage Complete linkage Average linkage Ward’s method

Single linkage 1.0 0.441 0.447 0.450

Complete linkage 0.711 1.0 0.496 0.504

Average linkage 0.704 0.671 1.0 0.876

Ward’s method 0.662 0.684 0.843 1.0

this species is located on the positive side of the first axis, with the B. costata-inflata
column point as the closest one (to which, in Ward’s method, this species is linked).
From a certain point of view, the position of B. spathulata in the dendrogram has its
own logic, as this species showswithin this core a distinctive behavior by contourswith
high abundance in the interval immediately preceding and following the Sapropel S1.
However, maybe the group of Sapropel S1-related species with oxygen-resistant taxa
andB. spathulata defined byWard’smethod seems evenmore coherent.What does not
seem satisfactory in the single linkage dendrogram is a quite clear chaining effect, with
a cluster in which taxa are included (fromMiliolidae to Bolivina albatrossi in Fig. 5a)
with different distribution and ecology. In the complete linkage, B. spathulata is the
last added element, as in the case of the single linkage. A group of Sapropel S1 taxa is
also defined. The main difference from Ward’s method lies in the fact that a group of
taxa (Bulimina marginata, Gyroidina altiformis, Miliolidae,Uvigerina mediterranea)
that in the clr-biplot are found in an intermediate position between the group of taxa
typical of the Holocene post-Sapropel S1 and those more abundant in the Late Glacial
are in this case linked with the latter. With regard to average linkage, the relationships
seem in general similar to those obtained with Ward’s method, with two differences:
the first concerns B. spathulata, which, as in the case of single and complete linkage, is
linked as the last element; the second concerns B. costata-inflata, which with Ward’s
method is associated withGlobobulimina spp., while with average linkage, it is linked
to an already formed cluster, which includes taxa more abundant in the Late Glacial.
In summary, single linkage appears to suffer from the chain effect whereby taxa that
are placed on opposite sides of the first clr-biplot axis are grouped together. The other
methods provide slightly different results, which nevertheless seem justifiable. In gen-
eral, in the present case, Ward’s method provides results that are fully consistent with
the distribution and ecology of the benthic foraminiferal taxa.

5 Concluding Remarks

We have stated that R-mode HC can be useful for investigating potential groups of
compositional parts. The connections between Aitchison distance, cluster representa-
tive, clr-biplot, and SBP for creating an olr basis have been analyzed in the context
of the most popular HC methods, such as single, complete, and average linkage, and
Ward’s method. As a result of this study, a new data visualization technique has been
introduced. The balance–variance bar plot, based on the total variance decomposition,
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is useful when deciding the number of clusters of compositional parts, becoming a
tool to be integrated with the set of usual cluster validation techniques. Still pending is
the analysis of other popular non-agglomerative HC methods, such as, among others,
hierarchical divisive methods and K -means clustering. In any case, for all R-mode
clustering methods, when detecting redundant parts, a variable selection can be done,
whereas a dimension reduction of the space of parts can be obtained when selecting a
representative of clusters created.
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Appendix

See Table 4.

Table 4 Variation matrix of the benthic foraminiferal data: the core TEA-C6 (107 × 22)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 0.00 3.16 4.25 6.92 3.58 3.38 8.20 6.32 5.99 4.68 2.05

X2 3.16 0.00 1.54 4.19 1.20 1.04 4.63 2.63 2.96 2.83 2.17

X3 4.25 1.54 0.00 2.24 1.13 0.85 2.63 1.36 1.71 1.79 2.47

X4 6.92 4.19 2.24 0.00 3.35 2.92 0.86 1.45 1.42 1.78 4.08

X5 3.58 1.20 1.13 3.35 0.00 0.51 3.66 1.98 2.46 1.86 1.71

X6 3.38 1.04 0.85 2.92 0.51 0.00 3.26 1.60 2.04 1.65 1.94

X7 8.20 4.63 2.63 0.86 3.66 3.26 0.00 1.33 1.16 1.63 4.80

X8 6.32 2.63 1.36 1.45 1.98 1.60 1.33 0.00 1.46 1.48 3.58

X9 5.99 2.96 1.71 1.42 2.46 2.04 1.16 1.46 0.00 1.61 3.52

X10 4.68 2.83 1.79 1.78 1.86 1.65 1.63 1.48 1.61 0.00 2.36

X11 2.05 2.17 2.47 4.08 1.71 1.94 4.80 3.58 3.52 2.36 0.00

X12 5.67 3.43 2.24 1.27 2.42 2.32 1.29 1.75 1.48 0.98 2.77

X13 4.75 2.72 1.63 1.61 1.87 1.72 1.36 1.44 1.22 0.69 2.40

X14 2.49 1.15 1.43 2.72 0.89 0.77 3.29 1.79 2.32 1.49 1.31
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Table 4 continued

X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22

X15 4.15 1.66 1.60 1.94 1.73 1.30 2.19 1.08 1.47 1.46 2.57

X16 6.90 4.28 2.96 1.54 3.07 2.91 1.08 1.91 1.24 1.30 3.69

X17 2.42 0.62 1.95 4.57 1.16 1.12 5.33 2.80 3.57 2.92 1.86

X18 3.55 3.31 2.23 2.54 2.57 2.39 3.07 3.28 2.49 1.83 1.69

X19 3.93 2.07 1.39 1.78 1.36 1.25 2.09 1.41 1.64 1.19 2.04

X20 2.80 3.02 2.74 4.34 2.79 2.69 5.06 4.39 4.27 3.06 1.73

X21 3.92 3.02 2.55 2.55 2.46 2.38 3.10 3.32 2.45 1.88 1.95

X22 5.08 3.23 2.54 2.55 2.54 2.38 3.01 3.11 2.56 1.86 2.77

X1 5.67 4.75 2.49 4.15 6.90 2.42 3.55 3.93 2.80 3.92 5.08

X2 3.43 2.72 1.15 1.66 4.28 0.62 3.31 2.07 3.02 3.02 3.23

X3 2.24 1.63 1.43 1.60 2.96 1.95 2.23 1.39 2.74 2.55 2.54

X4 1.27 1.61 2.72 1.94 1.54 4.57 2.54 1.78 4.34 2.55 2.55

X5 2.42 1.87 0.89 1.73 3.07 1.16 2.57 1.36 2.79 2.46 2.54

X6 2.32 1.72 0.77 1.30 2.91 1.12 2.39 1.25 2.69 2.38 2.38

X7 1.29 1.36 3.29 2.19 1.08 5.33 3.07 2.09 5.06 3.10 3.01

X8 1.75 1.44 1.79 1.08 1.91 2.80 3.28 1.41 4.39 3.32 3.11

X9 1.48 1.22 2.32 1.47 1.24 3.57 2.49 1.64 4.27 2.45 2.56

X10 0.98 0.69 1.49 1.46 1.30 2.92 1.83 1.19 3.06 1.88 1.86

X11 2.77 2.40 1.31 2.57 3.69 1.86 1.69 2.04 1.73 1.95 2.77

X12 0.00 0.69 2.11 1.85 0.91 3.84 1.64 1.42 3.25 1.64 1.69

X13 0.69 0.00 1.51 1.41 1.25 3.11 1.37 1.23 2.78 1.35 1.42

X14 2.11 1.51 0.00 0.96 2.75 0.71 2.00 1.08 1.95 1.86 1.97

X15 1.85 1.41 0.96 0.00 2.01 1.59 2.79 1.15 3.51 2.63 2.63

X16 0.91 1.25 2.75 2.01 0.00 4.66 2.71 1.57 4.74 2.60 2.62

X17 3.84 3.11 0.71 1.59 4.66 0.00 3.47 2.07 2.84 3.34 3.52

X18 1.64 1.37 2.00 2.79 2.71 3.47 0.00 2.14 1.12 0.62 1.18

X19 1.42 1.23 1.08 1.15 1.57 2.07 2.14 0.00 3.01 2.04 2.21

X20 3.25 2.78 1.95 3.51 4.74 2.84 1.12 3.01 0.00 1.58 2.27

X21 1.64 1.35 1.86 2.63 2.60 3.34 0.62 2.04 1.58 0.00 0.49

X22 1.69 1.42 1.97 2.63 2.62 3.52 1.18 2.21 2.27 0.49 0.00
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