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Abstract— This paper addresses the problem of transporting
a rigid box filled with unknown objects with a dual-arm
robotic system. Enforcing non-sliding contact behavior, which
guarantees the transportation of the box despite the unknown
load’s action, is the main difficulty in this setting. To solve this
problem, we propose a high-level model-predictive controller,
which uses a nonlinear extended state observer to estimate
the external disturbance, and determine the wrench required
to the box for tracking a trajectory. A quadratic program
transforms the calculated wrench into optimal desired contact
forces on the two end-effectors. Finally, a low-level admittance
control framework with an inner velocity loop is established
to indirectly control the actual contact forces. We verify the
effectiveness of the proposed control method with experiments
carried out on a real dual-arm robotic system.

I. INTRODUCTION

Dual-arm robots open up possibilities to perform robotic
manipulation tasks with human-like dexterity [1], [2]. Car-
rying a large rigid box employing both arms is usually
carried out by humans to simultaneously transport multiple
objects, thus improving efficiency when compared to single
object transport (see Fig. 1). Although transporting a box
represents a relatively simple manipulation task for humans,
many requirements need to be satisfied to successfully com-
plete the same task with a robot [3], [4]. Indeed, a dual-
arm robot needs to accurately control the contact forces
between the end-effectors and the box to avoid slippage. This
can be realized by sensing and opportunely compensating
for external forces, such as gravity. In this setting, force
closure is the property that allows implementing a non-
sliding grasp [5]. If the force closure property is realized, the
hands can arbitrarily “squeeze” the rigid box, consequently
increase the frictional components of the contact forces, thus
preventing the object from falling. Besides stably holding it,
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Fig. 1: Transporting a box filled with multiple unknown objects. Top-left:
the way a human transports a box. Bottom-left: a box containing multiple
objects. Right: the dual-arm robot transporting a box.

in some applications the robot may need to transport the
box tracking a desired trajectory. The realization of this task
requires accounting for the box dynamics when deciding
which contact forces to impose. Solving this problem may
open new possibilities for the effective deployment of dual-
arm robots into several fields, such as human-robot collab-
oration scenarios, where the robot can assist the human by
transporting the box while the human adds or remove objects
from it.

In this paper, we propose a method combining the Model
Predictive Control (MPC) approach with a Nonlinear Ex-
tended State Observer (NESO) to enable the realization of
this task. MPC allows to safely transport the box (hereafter,
denoted to as ‘object’) along a desired trajectory when its
dynamics is perfectly known. In the case of unknown and
time-varying loads applied, we propose to use a NESO to on-
line estimate this disturbance. The combined (MPC+NESO)
controller outputs the desired optimal wrench for the object
to be produced by end-effectors’ contact forces. Optimal
contact forces between the object and the end-effectors are
computed solving a Quadratic Problem (QP) accounting for
the non-sliding friction cone constraints. While MPC, NESO,
and QP constitute the high-level control of the devised
architecture, a low-level controller, based on Admittance
Control (AC), finally regulates the contact forces to the
desired value. Compared to only using AC, our high-level
architecture can ensure that the robot adjusts its reference to
track the desired trajectory while respecting practical robotic
and manipulation constraints.

The main contributions of this work is a high-level control
architecture that allows: (i) a dual-arm robot to transport
multiple objects altogether in a box; (ii) optimally dis-
tributing the contact forces among end-effectors with high
computational efficiency; (iii) simultaneously tracking the



desired trajectory and compensating for time-varying exter-
nal disturbances. The overall architecture is shown in Fig. 2.

II. RELATED WORKS

1) Dual-arm object transportation: the considered prob-
lem was faced by considering the dual-arm robot and the ob-
ject as a closed-chain mechanism in [6], [7]. To increase the
dexterity, some researchers combined dual-arm re-grasping
methods with object transportation. Hence, the robot changed
the grasp points finding more suitable positions for object
manipulation [8], [9], [10]. However, all the methods intro-
duced so far consider the object’s motion only and not the
contact forces exchanged with the end-effectors. The robot
needs to embed gripper-like tools at the end-effectors to
effectively constrain the object retaining its slipping motion.
When this is not realizable, object slipping can be prevented
using force closure [11], [12], while the robot needs to
appropriately plan and regulate the contact force between its
end-effectors and the object [13]. Some researchers proposed
a non-sliding manipulation strategy using on dual-arm robot
in [12], but this strategy can not track the desired trajectory
and copy with external disturbances. In the previous works,
force control methods are ultimately exploited to deter-
mine the motion of each end-effector. A standard method
to control both force and motion is impedance/admittance
control [5], which was extensively used on dual-arm robotic
systems [14], [15], [16], [17]. However, these papers only
aim at controlling the contact force and the object’s motion,
but they did not consider the friction constraints to hold the
object stably. Embedding this constraint inside the controller
helps the robot to make the decision on how to adjust its
motion and, consequently, the contact forces [18].

2) MPC and external disturbances estimation: MPC is
widely used in robotics because it provides consistent inputs
under several kinds of constraints, modeling errors, and
disturbances from the environment [19]. In [18], researches
combine AC and MPC to follow the desired path with
different kinds of uncertainties. This method greatly im-
proves the effectiveness and safety for completing the task.
Although MPC techniques can be inherently robust, they
may still fail in presence of large external disturbances.
A framework based on projected inverse dynamics of the
robot to estimate the external force without any sensors
was proposed in [20]. However, the robot needs to be
equipped with torque sensors at each joint, and it cannot
track the desired trajectory accurately because it does not
consider the mass of the object. MPC and observers are
often combined to increase the robustness, as done for legged
robots in [21], [22]. The nonlinear dynamic model is often
linearized and then combined with a nonlinear observer to
estimate the disturbance [22]. The observer needs to gather
the robot’s state in real-time to estimate the disturbance, but
it is a complex task with limited sensors. To overcome these
limitations, the Extended State Observer (ESO) proposed
in [23] uses minimal information from the model. A Linear
Extended State Observer (LESO), dealing with time-varying
interaction forces between the human and the robot, was

Fig. 2: Schematic representation of the devised control framework for dual-
arm object transportation tasks. Symbols and blocks are explained in Sec. III.
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Fig. 3: Representation of the object (black lines) grasped by left and right
end-effectors (green). Contact points lie on the vertices of the contact area
where the friction cones (blue) and the contact forces (magenta) are shown.

proposed in [24]. Combining the LESO with the MPC allows
designing a more robust controller [25], [22]. Although the
LESO is superior to the NESO in parameter tuning and
theoretical analysis, it may be less effective than the NESO
for nonlinear models [26], [27]. For this reason, researchers
choose to combine the MPC and NESO to build more
robust and effective controllers [28], [26]. However, this
solution has never been previously applied to dual-arm robot
manipulation tasks such as the one considered here.

III. CONTROL ARCHITECTURE
A. Object Dynamic Model

The transformation between the the world frame {w}
and the body frame {b} is given by Twb ∈ SE(3) and
it is illustrated in Fig. 3. According to the Newton-Euler
equations, the general rigid object dynamics can be written
in {b} as [29][

M O3×3

O3×3 I

] [
v̇b

ω̇b

]
+

[
ωb ×Mvb

ωb × Iωb

]
=

[
f b

τ b

]
. (1)

The matrix M = mI ∈ R3×3, where m > 0 is the
object mass and I ∈ R3×3 is the identity matrix, represents
the object mass matrix. The matrix I ∈ R3×3 is the
diagonal and positive-definite object inertia matrix. Let Ḡ =[
0 0 mg 0 0 0

]T
be the wrench produced by gravity

acceleration g in {w}, Rwb ∈ SO(3) and pwb ∈ R3 be the
rotation matrix and the position, respectively, between {b}
and {w}. The relation between wg and G can be written as

wg =

[
RT
wb O3

−RT
wbS(pwb) RT

wb

]
Ḡ,

with S(·) ∈ R3×3 the skew-symmetric operator [29] and
O3 ∈ R3×3 the zero matrix.

To derive our controller, it is convenient to rewrite the
object dynamic model (1) as[

v̇b

ω̇b

]
= −M̄A

[
vbt
ωb

]
+ M̄wb, (2)



where

M̄ =

[
M O3

O3 I

]−1

, A =

[
S(ωb)M O3

O3 S(ωb)I

]
. (3)

Denoting the object state vector as x = [xw
T

vb
T

t ]T ∈
R6, with xw vector of the parameterized object position in
{w}, and vbt object velocity in {b}. The force f b ∈ R3

applied at the origin of {b} can be decomposed as f b =
fg + fe + fc, where fg = [0 0 mg] ∈ R3 is the gravity
force, fe ∈ R3 is the unknown external disturbance, fc ∈
R3 is the force produced by the contact forces between the
object and the end-effector, all expressed in {b}. Considering
only translations, the dynamic model (1) can be equivalently
expressed as

ẋ = f
(
x,wb

)
=

[
RT

wbv
b
t

M−1
(
−S(ωb)Mv̇b

t + f
b
) ]

, (4)

which is the state-space form of the object translational
dynamics.

B. External Disturbance Estimation

To improve the robustness of our controller, we use an
observer to estimate for the unknown external force applied
to the object. To this end, a NESO is introduced in this
section. The dynamic model (4) is a coupled multi-input
multi-output system that can be rewritten in this form ẋ1 = f0 (x1)x2

ẋ2 = f1 (x1,x2) + B1ue
y = x1

, (5)

with x1 = xw, x2 = vbt , B1 = M̄ , ue = fe, f0(x1) =
RT
wb, and f1(x1,x2) = −M−1S(ωb)Mx2.
To design the disturbances estimator, it is convenient to

decouple (5). Following [25], we can define x̂2 = f0 (x1)x2

obtaining the new form of the object dynamic model
˙̂x1 = x̂2

˙̂x2 = H(x1,x2) + û
y = x̂1

, (6)

where H(x1,x2) =
(
f

′

0 (x1)x2

)
x2 + f0 (x1) f1 (x1,x2),

û = B̂(x1)fe and B̂(x1) = f−1
0 (x1)M̄ . In the new

form (6), the system can be treated as six single-input single-
output subsystems.

With this nonlinear dynamic model of the object given
by (6), the NESO was used here to estimate the force
disturbances caused by the environment/gravity. Foe each
component of the state in (6), the observer can be designed
as 

ż1 = z2 − β1e

ż2 = z3 + Û − β2γ (e, α1, δ)
ż3 = −β3γ (e, α2, δ)
e = z1 − y

, (7)

with

γ (e, α, δ) =

{ e

|δ|1−α
|e| ≤ δ

|e|αsign (e) |e| > δ
,

and where β1, β2, β3, δ > 0, α1, α2 ∈ [0, 1] are
gains/thresholds. Suitable choice for β1, β2, β3 can greatly
reduce the observation error. Besides, e represents the error
between the measured and the observed position, and z1, z2

represent the observer state tracking x̂1 and x̂2, respectively.
In this setting, x̂1, x̂2 represent the position and the velocity
of the object in the world frame, and z3 represents external
disturbances and the external force which can be calculated
as f̄e = B̂−1z3. More information about the design of such
observer can be obtained in [23], [30], [31].

C. Model Predictive Control

For the envisioned object transportation task, let xref =[
xw

T

ref vb
T

ref

]T
∈ R6, xwref ∈ R3 be the reference position of

{b} in {w}, and vb
T

ref be the reference object velocity in {b},
calculated from a desired trajectory. Discretizing the state-
space equation (4) we obtain

x (k + i) = fk(x(k),u(k)) = x (k) + Tsf(x(k),u(k)),
(8)

with u = fc the control input and Ts > 0 the sampling time,
x (k + i) denotes the state vector at time k + i predicted at
time k. Then, we linearize the discretized model (8) around
the reference pose, obtaining

x (k + i) = Ax (k) + Bu (k) + TsM
−1fe(k), (9)

with

A =
∂fk (x,u)

∂x

∣∣∣∣
xref,k,uref,k

,B =
∂fk (x,u)

∂u

∣∣∣∣
xref,k,uref,k

, (10)

where k ∈ N represents the discrete time variable. In order
to reduce the errors created by the model linearization, we
assume the object not to have significant angular velocities.
The control input is derived from the minimization of the
following cost function

Ck =

N∑
i=1

‖zk,i‖2Qi
+

N−1∑
i=1

‖uk,i‖2Ri
+

N−1∑
i=2

‖∆uk,i‖2Pi
, (11)

where N > 0 is the prediction horizon, zk,i = x (k + i) −
xref (k + i), uk,i is the controller input, ∆uk,i = uk,i −
uk,i−1 is the amplitude of the input change rate and Q, R,
P are diagonal positive-definite weight matrices.

Using the linearized model (9), the MPC formulation
calculates the optimal control input within a finite prediction
horizon minimizing (11) and supplies the real system with
the first sample only. This can be implemented through the
following QP problem

min
uk

Ck (uk) (12)

s.t. x (k + 1) = Ax (k) + Bu (k) + TsM
−1f̄e,0 (13)

u (0) = u0 (14)
x (0) = x0 (15)

− εv ≤ vbx, vby, vbz ≤ εv̇ (16)

− εv̇ ≤ v̇bx, v̇by, v̇bz ≤ εv̇ (17)



where f̄e,0, which is plugged into the object dynamic equa-
tion (13), represents the estimated external disturbance at
the beginning of the control loop, (14) and (15) represent
the initial state and initial input, respectively, while (16)
and (17) represent the constraints for the velocity and the
acceleration, respectively, imposed on the object’s motion
due to the actuation and physical limitations of the robot.
The optimal inputs uk, calculated in each control loop, allow
not only to transport the object by tracking the reference
trajectory but also to compensate for external disturbances.

IV. CONTACT FORCES COMPUTATION AND
CONTROL

A. Contact Force Computation
At each time step, the inputs uk, calculated solving (12),

represent the body wrench that allows following a trajectory
while respecting the robot’s physical constraints. However,
uk needs to be generated through contact forces realized be-
tween the object and the end-effectors. Intuitively, to prevent
the object from falling, we need to set some constraints on
the contact forces that can ensure they always fall inside the
friction cone of the contact points [32]. This assures that
the object does not undergo any relative motion with respect
to the end-effectors. In our setting, an extended portion of
the object’s surface is in contact with the end-effectors. To
simplify the problem, we consider the (n = 8) vertices of
the contact area as contact points (see Fig. 3) and assume
that only linear forces can be transmitted across them. For
each contact the friction cone constraint can be written as

NT
i fc,i ≤ bi, (18)

where Ni ∈ R3×6, bi ∈ R6,

Ni = −[µini−oi, µini+oi, µini−ti, µini+ti, ni, −ni]

bi =
[
0 0 0 0 − fLc,i fUc,i

]T
µi > 0 is the Coulomb friction coefficient , ni,oi, ti ∈ R3

are the unit normal and two orthonormal tangent vectors,
respectively, expressed in {w}, and fLc,i, f

U
c,i are the nonneg-

ative lower and upper bounds on the normal contact force,
respectively. The first four linear inequalities given in (18)
represent the friction constraint, defining a pyramidal cone
limiting the direction of fc,i ∈ R3, while the last two linear
inequities limit the magnitude of fc,i ∈ R3.

The body force fc, generated by the contact forces be-
tween the dual-arm robot and the object, is expressed by
fc = G(r)f , where G(r) is the grasp matrix [29], that in
this work can be partitioned as G(r) =

[
Gr(rr) Gl(rl)

]
,

with k = r, l the right and left end-effector contribution,
respectively, rk,i =

[
rk,i,x rk,i,y rk,i,z

]T ∈ R3 the posi-
tion vector from the i-th contact point of the k end-effector
to the {b}’s origin, and f ∈ R3n be the stacked vector of
contact forces. The optimal quantity f∗, minimizing the body
wrench error while respecting (18), is obtained by solving

min
f

‖fc −Gf‖2 (19)

s.t. NT
i fi ≤ bi, ∀i = 1, . . . , n. (20)

y

z   

{w}

Fr Fl

Fig. 4: Realization of contact forces via admittance control for the dual-arm
robot. Symbols are explained in Sec. IV-B.

It is worth to note that the contact force calculation can
be embedded into the MPC problem solving a single QP
(referred to as EMPC). However, the dimension of the EMPC
problem can be substantial, since the desired contact force
vector f ∈ R3n has a higher dimension than the desired
wrench uk ∈ R3. Then, we use two much smaller QP
problems to compute the required wrench followed by the
optimal contact forces calculation.

B. Contact Force Control

This subsection introduces the admittance control frame-
work, defined in Cartesian coordinates, which is used to
realize and regulate the contact force between each end-
effector and the object. To realize the contact forces f
computed solving (19), we need to transform the components
belonging to each end-effector, i.e., fr and fl ∈ R12, into
the equivalent system of forces, Fd,r and Fd,l ∈ R6, applied
into {rf} and {lf} F/T sensor frames, respectively (see
Fig. 1). This is necessary because there is only one force
sensor at each arm’s end-effector, thus it not possible to
individually control the contact force at each contact point.
The transformation for each arm can be written as

Fd,k = Ak (rk,c)fk, (21)

with k = r, l and Ak ∈ R6×12 is the matrix that maps the
contact forces into the equivalent force in the corresponding
sensor frame. The position vector rk,c ∈ R12 represents the
stacked position vector of contact points on the end-effector
k expressed in the {kf} sensor frame. Fd,k represents the
desired force to be realized by the admittance controller.

With the same arguments, the desired object velocity can
be transformed into velocities of the sensor frames. These
can be calculated as[

ẋTd,l ẋTd,r
]T

= LTvbref, (22)

where LT =
[
Ll (rl)

T
Lr (rr)

T
]T

maps the desired
velocity of the {b} frame into the sensor frames {rf} and
{lf}, and rk ∈ R3 is the position of the {b} frame expressed
in the k force sensor frame.

Using force control with inner velocity loop [33], the
model of the dual arm robot grasping the object, qualitatively
depicted in Fig. 4, can be written as F̃k = M ¨̃xk + B ˙̃xk +
Kx̃k, which represents a mechanical admittance, with F̃k =
Fk − Fd,k the error of the k-th end-effector between the
desired contact force, Fd,k, and the measured one, Fk;
¨̃xk = ẍk − ẍdes,k, ˙̃xk = ẋk − ẋd,k, x̃ = x − xdes,k the



errors between the current and desired acceleration, velocity,
and position for the sensor frame, respectively. The desired
force Fd,k can be calculated in (21), the desired velocity
xdes,k in (22), and the desired acceleration ẍdes,k is set to
zero. The matrices M , B, and K are the Cartesian inertia,
damping, and stiffness of each end-effector, respectively. Let
∆t > 0 be the time step for the admittance control loop. At
the time t− 1, the acceleration ẍt−1

k can be written as

ẍt−1
k = M−1

(
F̃kt −B ˙̃x

t−1

k −Kx̃t−1
k

)
+ ẍt−1

des,k. (23)

The velocity at the time t can be then calculated as

ẋt = ẋt−1 +

∫ ∆t

0

ẍt−1
k dt. (24)

Accordingly, the robot joints velocity at the time t can be
obtained as

q̇tk = J#
k,t (q) ẋtk, (25)

where Jk (q) represents the k = l, r robot Jacobian matrix
mapping the joints velocity to the velocity of the end-effector,
and J#

k,t (q) is its pseudo-inverse at a given time t. The joints
velocity at the time t−1 will constitute the input to the next
control step t. Using these desired joints velocity, we can
control the contact force between the object and the end-
effector.

V. EXPERIMENTS

A. Experimental Setup

The experiments are carried out using the dual-arm (Ki-
nova Gen3) platform from Tencent Robotics X Lab, shown
in Fig. 1. An RGB camera (Orbbec Pro) is used to provide
the controller with the object’s position information. Each
arm is equipped with a 6-DoF F/T sensor and a gripper
at the end-effector. The sensor is used for the admittance
controller, while the lateral gripper surface is used to realize
the rectangular contact area between the object and the robot.
The admittance control loop is implemented on a standard
computer, and it runs with ∆t = 10−3 s sampling time.
The MPC controller is implemented on a different computer
in MATLAB, and it runs with Ts = 0.1 s sampling time,
with horizon N = 10. The ROS framework handles the
communication between the two computers. The object size
is 210 × 250 × 110 mm, its initial weight is m = 0.28 kg
and the Coulomb friction coefficient between the object and
end-effector (experimentally retrieved) is µ = 0.18. Table I
contains the value of each parameter. The parameters used
for the NESO were inspired from the work in [23].

B. Experiments and Results

A comparison between the use of AC only (Sec. IV-
B), MPC+AC (Sec. III-C), and MPC+NESO+AC (Sec. III-
B) has been performed and can be appreciated from the
attached video. When only the low-level AC is used, the
reference end-effector velocities are derived from the desired
object trajectory using (22), while the desired force is set
to a constant value, i.e., Fd,l = [0, µmg/2, mg/2]T and
Fd,r = [0, −µmg/2, mg/2]T for the left and the right

(a) AC (b) MPC+AC (c) MPC+NESO+AC

Fig. 5: Frames from the experiment A. The comparison among control
modes can be appreciated from the attached video.

sensor, respectively. It is worth to note that the MPC,
introduced in Sec. III-C, requires an accurate knowledge of
the model parameters (including the mass and the size of
the object). When these are uncertain, good performance can
not be guaranteed. In this work we use NESO to estimate
and compensate for the external disturbances, improving the
overall outcomes.

Two experiments are proposed to verify the validity of
our approach and show the advantages introduced by the
use of MPC+NESO+AC: experiment A, in which the robot
can estimate and compensate for an unknown external force
applied by a human operator pressing or pushing the object;
experiment B, in which the robot can transport the object
tracking a reference position while unknown weights are
inserted/removed from the box.

In the experiment A, the robot transports the ob-
ject along the y-axis of {w} from the initial position
pi = [−1.3, 0.3, −0.5]T m to the final one pe =
[−1.3, 0.8, −0.45]T m, following a simple constant velocity
profile given by pd(t) = pi+[0.0, 0.4, 0.1]Tt m. The object
is initially pushed along its z-axis and then along its x-axis.
Salient frames of the experiment are shown in Fig.5. The
estimated object’s disturbance and the data from the sensors
for each arm in the MPC+NESO+AC modality are shown
in Fig. 6. As it can be noticed, the controller can effectively
compensate for the external forces estimated by the NESO
and, consequently, adjust the contact forces to prevent the
object from falling. More specifically, when a human pushes
the object in the z-direction, the contact force’s magnitude
in the z-direction gets bigger to compensate for the external
disturbances. Meanwhile, the value of contact force along
the y-direction gets bigger as well, to squeeze the object
and preventing it from falling. Similarly, when a human
pushes the object along the x-direction, the contact force’s
value along the same direction will become larger. At time

TABLE I: Parameters for the MPC+NESO and AC

Parameter Definition

Q diag[4, 4, 4.5, 2, 2, 2, 0.04, 0.04, 0.04, 0.06, 0.06]
R diag[0.002, 0.002, 0.002, 0.002, 0.002, 0.002]
P diag[0.0002, 0.0002, 0.0002, 0.0002, 2, 0.0002]
M diag[1, 1, 1, 1, 1, 1]
B diag[200, 200, 200, 200, 200, 200]
K diag[0, 0, 0, 0, 0, 0]
[β1, β2β3] [10, 50, 100]
[α1, α2] [0.5, 0.25]
δ 0.1



(a) Estimated object’s disturbance

(b) Left arm’s sensor

(c) Right arm’s sensor
Fig. 6: Results of the experiment A, in which the human pushes the object
along the x and z axes. The shaded parts represent the time slots in which
the human applies an external force to the object. (a) The estimated external
force in the x, y, z directions. (b)-(c) The evolution for the force sensors
in the x, y, and z direction of each sensor’s frame.

25−27 s, the x-force approaches to 0. In contrast, the contact
force along the y-direction nearly does not change. When AC
only is used, the robot cannot hold the object, when using
MPC+AC the object falls as the human applies a force on
the z-direction (see the attached video for comparison among
the control modes).

In the experiment B, the initial and final object po-
sitions are selected as pi = [−0.12, 0.45, −0.40]T m,
pe = [−0.1, 0.2, −0.1]T m, respectively. The veloc-
ity profile along the desired trajectory is pd = pi +
[0.01t, −0.2t, 0.15t]

T. Salient frames of experiment B are
shown in Fig.7. During this experiment, objects with differ-
ent weights, shown in Fig. 8 and in the attached video, are
added one by one into the box. Numbers in Fig. 8 represent
the order in which the objects are added. Following the
same order, the weights are 50 g, 100 g, 200 g, 100 g,
200 g, and 100 g, respectively. The evolution of the estimated
disturbance, caused by the added weights, and the data of
force sensors in each sensor frame are shown in Fig. 8(a) and
Fig. 8(b-c), respectively. From the figures, it is possible to
note that the first weight is not heavy enough: the estimated
disturbance remains nearly equal to zero. Correspondingly,
the change for the contact force along the z-direction remains
nearly close to zero, while the robot adjusts the contact force
along the y-direction to track the reference trajectory. After
that, when more weights are added to the box, the estimated
disturbance value abruptly changes while being gradually
compensated by the NESO+MPC+AC framework. At this
moment, the force along the z-direction gradually changes,
while the robot not only needs to adjust the contact force

(a) AC (b) MPC+AC (c) MPC+NESO+AC

Fig. 7: Photos from the experiment B. The comparison among control
modes can be appreciated from the attached video.

along the y-direction to track the reference trajectory, but it
also needs to impose that the contact forces fall inside the
friction cone.

These tasks show that the NESO+MPC+AC is more robust
than the MPC+AC and AC only control modes. The robot
can automatically hold the object more tightly by estimating
the external disturbance, and generating appropriate internal
forces. Compared to only using AC, combining it to the
proposed high-level controller can ensure that robot can ad-
just the input to track the desired trajectory while respecting
practical robotic constraints. As shown in Fig. 5 and Fig. 7,
using AC only, the robot may fail to transport the object
because the friction constraints can easily be violated. Using
MPC+AC, the object falls when the human adds the third
weight to it. This situation also occurs when the human
applies an external force to the object. The comparison can
be appreciated from the attached video.

Finally, we compare our method to EMPC along the same
tasks in terms of the average calculation time required in each
control loop. In the experiment A, the average computation
time of our method is approximately 0.0764 s, against the
0.857 s for the EMPC. In the second experiment, our method
takes 0.0771 s against the 0.901 s for the EMPC, showing
the advantage of our approach.

VI. CONCLUSION

In this paper we proposed a high-level MPC-based con-
troller endowed with a NESO for transporting a box using a
dual-arm robot in presence of unknown external disturbance.
A QP-based controller calculates the optimal contact forces
at the end-effectors, which are ultimately realized by means
of an AC with inner velocity loop scheme. The proposed
architecture allows calculating velocity control inputs, which
are consistent with the frictional constraints of the grasp, to
track the desired trajectory while simultaneously adapting
to external disturbances applied to the system. Experimental
validation is carried out considering unknown interaction
with a human and time-varying box loading. The performed
experiments showed a consistent performance improvement
and bolster the devised approach.

The proposed architecture is missing the estimation of
external moments. This will be addressed in future works
on this topic.
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