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Abstract. This work presents a computational methodology able to
automatically classify the echoes of two krill species recorded in the Ross
sea employing scientific echo-sounder at three different frequencies (38,
120 and 200 kHz). The goal of classifying the gregarious species repre-
sents a time-consuming task and is accomplished by using differences
and/or thresholds estimated on the energy features of the insonified tar-
gets. Conversely, our methodology takes into account energy, morpho-
logical and depth features of echo data, acquired at different frequencies.
Internal validation indices of clustering were used to verify the ability of
the clustering in recognizing the correct number of species. The proposed
approach leads to the characterization of the two krill species (Euphausia
superba and Euphausia crystallorophias), providing reliable indications
about the species spatial distribution and relative abundance.

Keywords: Krill identification · Ross Sea · Acoustic data · Machine
learning for pelagic species classification

1 Introduction

In the last decades, fishery science widely used acoustic-based technique to
obtain information about the spatial distribution and abundance of economi-
cally and ecologically important pelagic organisms characterized by aggregative
behaviour. Such organisms usually live in groups, often referred to as school
or shoals, and thus are easily detected by using acoustic methods. The use of
scientific echo-sounder allowed to investigate large sea sectors in a relatively
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small amount of time, leading to a synoptic and spatially detailed view of the
status of aquatic resources. Usually, acoustic data are recorded along specific
routes following a parallel-transects survey design. Biological sampling is per-
formed to identify the species inhabiting the water column thus partitioning the
recorded echoes among the observed species. Even if the acquisition of acoustic
data is a non-invasive procedure, the biological sampling is not, and the sam-
pling effort strongly depends on several factors such as the number of species
characterizing the considered ecosystem, the spatial overlap among species, and
the possibility to discriminate among different species based on specific acoustic
characteristics and/or the shape and structure of observed aggregations. In some
complex operative scenarios or particularly vulnerable ecosystems, the possibility
to discriminate among species utilizing semi-automatic classification procedures,
thus avoiding or reducing the biological sampling effort, represents an important
aspect. Recently, a number of scientific papers focused the attention on this topic
[1–4]. Anyway, in mixed-species ecosystems, due to a number factors affecting
the characteristics of observed echoes, it is difficult to develop a fully-automatic
procedure matching echoes and species [5], and it is necessary to contextualize
and validate the procedure according to a deep knowledge of the biology and
behaviour of the target species. In this work, we tested the use of an unsuper-
vised clustering algorithm (k-means), to partition the echoes recorded during
a multi-purpose survey carried out in the Ross Sea (Southern Ocean) during
2016/2017 austral summer under the umbrella of the Italian National Antarctic
Research Program. Acoustic data collected during the survey and relative to the
upper water column stratum showed mainly the presence of two krill species,
namely Euphausia superba (Dana, 1850) and Euphausia crystallorophias (Holt
& Tattersall, 1906). In this context, it was evaluated if the performed classifica-
tion confirmed some general features (related to the spatial distribution, relative
biomass and energetic differences) reported in the literature, providing a way
to obtain information about population status even in the case the biological
sampling was missing or non-representative.

2 Materials and Methods

2.1 Acoustic Data: Acquisition and Processing

Acoustic data were collected in the period 05/01/2017–11/02/2017 during the
XXXII Antarctic expedition on board of the R/V Italica under the Italian
National Antarctic Research Program and in the framework of P-ROSE project
(Plankton biodiversity and functioning of the Ross Sea ecosystems in a changing
southern ocean). In particular, acoustic data were collected through EK60 sci-
entific echo-sounder at three different frequencies (38 kHz, 120 kHz and 200 kHz)
and calibrated following standard techniques [6]. Acoustic sampling followed an
opportunistic strategy (Fig. 1), recording data among the sampling stations. A
total of 2200 nmi were recorded. Acoustic row data were then processed through
Echoview c© software [7] to extract all the echoes related to aggregations of pelagic
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organisms. In the first step, the depth range for the analysis was defined. In par-
ticular, the region between 0 and 8.5 m depth was excluded, avoiding artefacts
due to beam formation distance and noise due to cavitation and waves. Similarly,
the echogram region related to depths higher than 350 m was removed due to
the strong attenuation of signals at 120 kHz and 200 kHz. In a second step, back-
ground noise was removed by applying the algorithm proposed by De Robertis
and Higginbottom [8]; all the echogram regions affected by another noise type
(i.e. instrumental, waves, ice etc.) were identified and removed manually. Finally,
working on the 120 kHz frequency, all the aggregations (schools) were identified
using school detection module in Echoview c©. The school detection was applied
on the 120 kHz as it was the reference frequency for krill species [9].

Fig. 1. Study area and acoustic tracks.

Once the school were identified, for each aggregation several parameters
related to the energetic, geometric and positioning characteristics were extracted
(Table 1).

In addition to the parameters computed by means of Echoview c© software,
four more parameters were computed, namely: the frequency response at 120 and
200 kHz (respectively computed as FR120 38 = Nasc120/Nasc38 and FR200 38 =
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Table 1. Energetic and geometric parameters extracted for each aggregation identi-
fied by means of school detection module. The ∗ symbol indicate that the variable
was extracted for each of the frequencies. The variables that were log-transformed
(see Sect. 2.2) are indicated by using the # symbol (in the case of Sv min, the log
transformation was applied only on the 120 kHz)

Parameter Units Description

Lat Average latitude

Lon Average longitude

Height mean# m Average school height

Depth mean m Average school depth

Length# m Length of the identified school

Thickness# m Thickness of the identified school

Perimeter# m Perimeter of the identified school

Area# m2 Area of the identified school

Beam volume sum# m3 Sum of the beam volumes

Sv mean∗ dB re 1m−1 Average recorded Sv value

NASC∗# m2/nmi2 Nautical Area Scattering Coefficient

Sv max∗ dB re 1m−1 Maximum recorded Sv value

Sv min∗ dB re 1m−1 Minimum recorded Sv value

Standard deviation∗# Standard deviation of Sv values

Skewness∗# dB re 1m−1 Skewness of Sv values

Horizontal roughness∗# dB re 1m2/m3 Horizontal dispersion of acoustic energy within the school

Vertical roughness∗# dB re 1m2/m3 Vertical dispersion of acoustic energy within the school

FR 120 38# Frequency ratio

FR 200 38# Frequency ratio

ΔMV BS dB re 1m−1 Difference of average Sv 120 kHz minus 38 kHz of the school

AP.ratio# Ratio between perimeter and area

Nasc200/Nasc38 [2]), the difference of MVBS at 120 and 38 kHz (ΔMV BS =
MV BS120−MV BS38) [10], and the ratio between the school area and perimeter
as an index of shape compactness (AP.ratio = Perimeter2/Area). The resulting
data matrix was characterized by 4482 rows and 35 columns.

2.2 Exploratory Analysis and Data Preparation

A preliminary data analysis was carried out to evaluate the presence of outliers
and multicollinearity, as they can negatively impact on the clustering perfor-
mance. The presence of outliers could lead to a bad clustering, while strongly
correlated variables could over-weight a specific aspect in building the clusters.
To reduce the effect of multicollinearity and to highlight the presence of multi-
variate outlier Principal Component Analysis (PCA) was carried out. In applying
PCA it is important to scale the variable if they are expressed in different units,
to avoid that a specific set of variables gain much importance only due to a
scale problem. Furthermore, the presence of highly skewed distribution and/or
non-linear relationships among variables could introduce distortion in the axes
rotation thus leading to incorrect ordination. Before applying PCA all the vari-
ables characterized by highly skewed probability distribution were natural log-
transformed (Table 2, variables marked by using the # symbol). The performance
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of transformation was checked both using a statistical test (Shapiro-Wilks) and
by inspecting the qq-plot. Small deviations from normality were considered not
impacting PCA results and were ignored. Subsequently, all the variables were
scaled and centred. Based on the PCA results, only the principal components
(PC) accounting for more than 80% of the total variance was retained and used
for clustering.

2.3 Clustering

Let X = {x1, .., xn} a dataset, d a distance measure between element of X,
and C1, ..Ck the k clusters found by a generic clustering algorithm. K-means
clustering algorithm is one of the most used among the unsupervised cluster-
ing methods. The clustering procedure identify the clusters by minimizing the
following function:

J =
k∑

i=1

∑

x∈Ci

d2(x, ci) (1)

where ci is the mean (centroid) of elements belonging to cluster Ci.
In this context, standardization is an important preprocessing step to avoid

scale problems. Besides, the number of clusters must be defined a priori. In the
present study, the correct k value is 2, as only two species were found in the
echogram. Anyway, to test if the number of groups was an intrinsic property
of the data matrix, or if sub-group could be found in terms of specific acoustic
and morphological features, the number of clusters was validated employing val-
idation indices. In particular, due to the lack of the true schools classification,
internal indices were used. Internal validation indices are based on the concept of
“good” cluster structure [11,12]. In particular, in the present study, four valida-
tion indices were used, to verify if the number of clusters was correctly identified.
All of them are based on the compactness and separation measures, i.e. the aver-
age distance between elements inside the same clusters and the average distance
of elements belonging to different clusters. In the following, the used indices are
formally defined.

The Silhouette index [13] combines the compactness and separation according
to the following formula:

S(k) =
1
k

k∑

i=1

1
ni

∑

x∈Ci

b(x) − a(x)
max{b(x), a(x)} (2)

Assuming Ci as the cluster of ni elements where x belongs, a(x) is the average
distance between x and all other elements in Ci while b(x) is the average distance
between x and all the elements belonging to all the clusters Cj with j �= i.

The Calinski-Harabasz index [14] evaluate the number of cluster according
to the following:
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CH(k) =

∑k
i=1 ni

∑
x∈Ci

d2(ci,g)
(k−1)

∑k
i=1

∑
x∈Ci

d2(x,ci)
(n−k)

(3)

In the case of the Dunn index [15] the clustering is evaluated based on the ratio
between the separation and compactness:

D(k) =
min

i�=j.i,j≤k
d(ci, cj)

max
i≤k

max
x,y∈Ci,x �=y

d(x, y)
(4)

Finally, the Hartigan index [16] takes into consideration the ratio between the
compactness of two clustering solutions relative to k − 1 and k, in the following
way:

H(k) =

(∑k−1
i=1

∑
x∈Ci

d2(x, ci)
∑k

i=1

∑
x∈Ci

d2(x, ci)
− 1

)
(n − k − 1) (5)

For all the above-mentioned indices, the optimal number of clusters is the one
maximizing the index value.

3 Results

The skewness index computed for each considered variables showed the pres-
ence of highly positive skewed variables. In order to reduce the degree of skew-
ness, all the variables characterized by a skewness index higher than 2 were
log-transformed. PCA highlighted the presence of strong patterns (Table 2); the
first 5 PC’s accounted for about 83% of the total variance and were selected
to be subjected to k-means clustering. In particular, the first and second PCs
accounted for more than 50% of the total variance and the first PC was strongly
related to energetic-related variables (Table 2), while the second one to geo-
metric ones (Perimeter, Area, Length and AP.ratio). The remaining PCs were
correlated to a lower number of variables all related to energetic aspects except
the 5th PC that was found significantly correlated to the Height mean only. In
terms of outliers, plotting the observation in the PC spaces does not evidence
the presence of erratic data points. Internal validation indices (Table 2) were
computed on the first 5 PCs (accounting for most of the variance), by testing a
vector of cluster numbers from 2 to 10 using the k-means algorithm with d cor-
responding to Euclidean distance. All considered validation indices highlighted
k = 2 as the best solution (Table 3).

K-means partitioning was then applied considering the first 5 PCs and k = 2.
Partitioning results identified 2367 observations as belonging to the cluster 1 and
2217 belonging to cluster 2. Plotting observations (categorized by cluster id) in
the PCs space, highlighted that the clustering was mainly driven by the 1th PC
(Fig. 2).
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In particular, looking at variables correlation values of the 1th PC, the first
cluster was characterized by lower energetic values and a more homogeneous
internal structure than the second one. Finally, to evidence possible differences
in the spatial distribution, the two clusters were plotted in the geographical
space (Fig. 3).

Table 2. PC variables correlation. Only variables characterized by a correlation value
higher than 0.6 (absolute value) are reported.

PC1 PC2 PC3 PC4 PC5
cor cos2 cor cos2 cor cos2 cor cos2 cor cos2

Sv mean 38 0.82 0.68
Sv mean 120 0.74 0.55
Sv mean 200 0.71 0.5
Sv max 38 0.88 0.78
Sv max 120 0.81 0.65
Sv max 200 0.78 0.61
NASC 38 0.88 0.77
Sv max 120 0.79 0.62
Sv max 200 0.77 0.6
Horizontal roughness 38 0.84 0.7
Horizontal roughness 120 0.71 0.5
Horizontal roughness 200 0.67 0.45
Vertical roughness 38 0.81 0.65
Vertical roughness 120 0.72 0.51
Vertical roughness 200 0.73 0.53
Standard deviation 38 0.86 0.75
Standard deviation 120 0.77 0.6
Standard deviation 200 0.75 0.57
Perimeter 0.83 0.69
Length 0.77 0.59
Area 0.73 0.53
AP.ratio 0.72 0.52
RF 200 38 0.82 0.68
Sv min 200 0.67 0.45
ΔMV BS 0.82 0.66
RF 120 38 0.82 0.66
Height mean -0.72 0.52

Fig. 2. PCA biplot for the first three components.
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Table 3. Validation values of internal indices as the parameter k varies for the
“k-means” clustering algorithm and Euclidean distance.

Index k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

S 0.2644 0.1809 0.1857 0.1919 0.1764 0.1679 0.1622 0.1685 0.1677

CH 1910.46 1391.28 1192.81 1095.63 1024.38 957.06 894.72 849.85 812.33

D 1.4078 1.0655 1.1846 1.1246 1.1636 1.0462 0.8965 0.8449 0.8605

H 1910.46 611.68 491.29 447.37 374.14 289.89 228.59 223.85 203.83

Fig. 3. Spatial distribution of the two identified cluster (Euphausia crystallorophias
cluster 1, left panel; Euphausia superba, cluster 2, right panel). Circle size are propor-
tional to the natural logarithm of NASC120 values.

4 Discussion

Euphausia superba and Euphausia crystallorophias are two key species in the
Ross Sea trophic web. Due to their importance, several studies focused on their
spatial distribution and abundance through acoustic methods [17–19]. Validation
clustering indices successfully identified the correct number of clusters, provid-
ing the first indication of k-means performance. Also, according to literature,
Euphausia superba is most abundant than Euphausia crystallorophias; Azzali
et al. (2006) [17] evidenced a value of 8.6 for the ratio between the biomass of
the former and one of the latter species. By considering the NASC120 as an
abundance index, the above-mentioned ratio according to the obtained classifi-
cation is 7.9 thus comparable to the one reported in the literature. Looking at
spatial distribution, according to literature [18], obtained classification also evi-
denced the dominance of Euphausia superba in the northern sector of the study
area (Fig. 3). Finally, it must be considered that in terms of acoustic properties
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the two species evidenced a clear separation when comparing, using a scatter-
plot, the Sv38 vs Sv120 [19]. This separation was also confirmed by the k-means
classification results (Fig. 4).

Fig. 4. Scatter plot of Sv mean 38 vs Sv mean 120 values, categorized according to
clustering results (cluster 1 is black).

Due to the agreement between the information reported in the literature and
the ones obtained from the classification results, the application of the k-means
algorithm could be considered as a stable, fast and reliable solution to extract the
main features of the two population from acoustic data, allowing the extraction
of summary indices about the population status despite the lack of biological
sampling.

5 Conclusions

Unsupervised classification of aggregations detected during acoustic surveys rep-
resents a useful tool in the post-processing of large acoustic dataset. In the
present work, k-means clustering was able to distinguish between the two con-
sidered krill species, recognizing the correct number of clusters and providing
indications about the species spatial distribution and relative abundance coher-
ent to the ones reported in the literature. We plan to use the same methodology
by employing other clustering algorithms, such as the hierarchical ones, and
other cluster validation indices, to improve the consensus about the clustering
solution.
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