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ABSTRACT Microbial communities experience continuous environmental changes,
with temperature fluctuations being the most impacting. This is particularly impor-
tant considering the ongoing global warming but also in the “simpler” context of
seasonal variability of sea-surface temperature. Understanding how microorganisms
react at the cellular level can improve our understanding of their possible adapta-
tions to a changing environment. In this work, we investigated the mechanisms
through which metabolic homeostasis is maintained in a cold-adapted marine bacte-
rium during growth at temperatures that differ widely (15 and 0°C). We have quanti-
fied its intracellular and extracellular central metabolomes together with changes
occurring at the transcriptomic level in the same growth conditions. This information
was then used to contextualize a genome-scale metabolic reconstruction, and to pro-
vide a systemic understanding of cellular adaptation to growth at 2 different tempera-
tures. Our findings indicate a strong metabolic robustness at the level of the main
central metabolites, counteracted by a relatively deep transcriptomic reprogramming
that includes changes in gene expression of hundreds of metabolic genes. We inter-
pret this as a transcriptomic buffering of cellular metabolism, able to produce overlap-
ping metabolic phenotypes, despite the wide temperature gap. Moreover, we show
that metabolic adaptation seems to be mostly played at the level of few key inter-
mediates (e.g., phosphoenolpyruvate) and in the cross talk between the main central
metabolic pathways. Overall, our findings reveal a complex interplay at gene expres-
sion level that contributes to the robustness/resilience of core metabolism, also pro-
moting the leveraging of state-of-the-art multi-disciplinary approaches to fully compre-
hend molecular adaptations to environmental fluctuations.

IMPORTANCE This manuscript addresses a central and broad interest topic in envi-
ronmental microbiology, i.e. the effect of growth temperature on microbial cell physiol-
ogy. We investigated if and how metabolic homeostasis is maintained in a cold-adapted
bacterium during growth at temperatures that differ widely and that match measured
changes on the field. Our integrative approach revealed an extraordinary robustness of
the central metabolome to growth temperature. However, this was counteracted by
deep changes at the transcriptional level, and especially in the metabolic part of the tran-
scriptome. This conflictual scenario was interpreted as a transcriptomic buffering of cellu-
lar metabolism, and was investigated using genome-scale metabolic modeling. Overall,
our findings reveal a complex interplay at gene expression level that contributes to the
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robustness/resilience of core metabolism, also promoting the use of state-of-the-art
multi-disciplinary approaches to fully comprehend molecular adaptations to environ-
mental fluctuations.

KEYWORDS cold-adaptation, genome-scale modeling, metabolomics, transcriptomics

Microorganisms are able to colonize virtually every environmental niche on Earth
(1). They have adapted for millions of years prospering under conditions such

extreme as water boiling or freezing points, high radiation, acidic or alkaline pH values,
heavy metal pollution, and high salinity (2). Growth temperature, in particular, is one of
the environmental parameters that mostly impact the physiology of microorganisms
and that is thought to have played a key role in their adaptation, selection, and diversifica-
tion (3). Given the geological history of our planet, it is reasonable to think that adaptation
to changing temperatures has independently occurred many times in evolution; conse-
quently, there exists a vast array of molecular strategies for this purpose, disseminated in
the microbial kingdom (4–6). Their characterization is key in this phase of Earth’s life, as
global change is imposing rapid/drastic modifications in basic environmental parameters
(including temperature) that, in turn, will solicitate the activation of such tempera-
ture-adaptation related pathways in microbial communities. Understanding which
genes get activated or which compounds get secreted in the environment following
an increase of water temperature will help us model and predict the scenarios of mi-
crobial communities in a changing environment.

Without necessarily invoking global change, the need to rewire cellular networks in
response to temperature shifts is likely a common feature in natural microbial com-
munities. The temperature in the Southern Ocean, for example, is anywhere from -2 to
10°C, since Antarctic water temperature fluctuation responds to the seasonal advance
and retreat of sea ice (7). Therefore, marine microorganisms are exposed to seasonal
oscillations in temperature. Upper-ocean microbes can experience a higher variability
in sea-surface temperature and their working temperatures exceed the in situ Eulerian
temperature range by up to 10°C (8). Recent findings demonstrate how even upper-
ocean microbes experience along-trajectory temperature variability up to 10°C greater
than seasonal fluctuations as a result of large-scale climate variability, indicating a re-
markable thermal tolerance by the drifting microbial populations in fluctuating marine
environments (8, 9). From a cellular viewpoint, previous studies of cold- and heat-
adapted microbes have revealed a variety of molecular adaptations that allow their ac-
tivity and survival under extreme conditions. These initially involve the change in the
expression of specific gene sets but, ultimately, the regulatory changes imposed by
temperature increase/decrease are mostly implemented at the metabolic level, since
this represents, in the words of Prof. Oliver Fiehn, “the ultimate response of biological
systems to genetic or environmental changes” (10). These variegate adaptation strat-
egies observed in temperature-stressed microorganisms indicate that: (i) each microor-
ganism may follow a peculiar route to maintain cellular homeostasis when facing tem-
perature fluctuations (11–13), and (ii) there exists intense cross talk between regulatory
and metabolic networks in the response thereof (14).

Here, we specifically investigate the molecular mechanisms through which meta-
bolic homeostasis is maintained in a marine bacterium that (in its natural settings) is
known to experience such broad seasonal temperature fluctuations. Indeed, rather
than studying the consequences of a cold shock event (a circumstance that rarely
occurs in nature), we here focus on the comparison of the main cellular networks in
cells growing at 2 different temperatures. This was performed through the integration
of metabolomic and transcriptomic data unitedly with genome-scale metabolic model-
ing of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125).
This bacterium (15) has been isolated from an Antarctic coastal seawater sample col-
lected in the vicinity of the French Antarctic station Dumont d’Urville, Terre Adélie (66°
40’ S; 140° 01’ E) and has received much attention in the last decade due to the interest

Transcriptomic Buffering of Metabolism mSystems

Month YYYY Volume XX Issue XX 10.1128/msystems.01124-22 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

1 
M

ar
ch

 2
02

3 
by

 1
92

.1
33

.2
8.

4.

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01124-22


in characterizing its cold-adaptation and nutritional adaptation strategies, as well as its
biotechnological potential (16–19).

We show that different growth temperatures induce broad transcriptional changes
that involve genes of many key metabolic pathways. This transcriptional rewiring, how-
ever, is scarcely reflected at the level of the core metabolism, as most key central
metabolites show overlapping trends at the 2 tested temperatures. The obtained
-omics data were used to compute the flux distributions sustaining growth at low and
high temperature, and this provided a mechanistic understanding of the possible ad-
aptation strategies to temperature fluctuations.

RESULTS

We cultivated PhTAC125 cells in a bioreactor and sampled the 0 and 15°C growth
curves at 5 different time points (Fig. 1A and B) that overall resembled the same physi-
ological conditions for the 2 experiments. For the 0°C growth, we sampled the follow-
ing time points: 70, 141, 179, 190, and 240 h. The 15°C curve was sampled at 6, 14, 20,
25, and 39 h. The average growth rate of the 2 cultures varied, being 0.11 (standard
deviation (s.d.) 0.011) h21 and 0.016 (s.d. 6.4e205) h21 at 15° and 0°C, respectively. The
same calculation was repeated and limited to the exponential phases of the two cul-
tures, yielding 0.27 (s.d. 0.006) h21 and 0.027 (s.d. 0.0009) h21 at 15° and 0°C, respec-
tively. The samples obtained were used for intracellular and extracellular metabolites
quantification through nuclear magnetic resonance (NMR) (see Materials and
Methods). For 2 of these time points (Fig. 1A and B, labeled as “1”), we also per-
formed quantified gene expression levels using RNA-Seq.

PhTAC125 metabolome is qualitatively and quantitatively robust to tempera-
ture shift. Overall, we assigned and analyzed the concentration of 34 intracellular
metabolites in the 2 growth curves. These metabolites represented key intermediates
of central metabolic pathways, such as the TCA cycle, amino acids biosynthesis, glycoly-
sis, Pentose Phosphate Pathway (PPP), and nucleic acids biosynthesis. Our NMR metabo-
lomic approach was not able to discriminate between the oxidized and reduced forms
of NAD and NADP, so we generally refer to NADX and NADPX in the rest of the manu-
script. First, we monitored the overall trends of their intracellular concentrations with
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FIG 1 (A) Growth curve of PhTAC125 at 0°C. Numbers indicate the sampling points for metabolomic
and transcriptomic experiments. (B) Growth curve of PhTAC125 at 15°C. Numbers indicate the sampling
points for the metabolomic experiments. The transcriptome of PhTAC125 growing cells was sampled at
time point 1. (C) Glutamate and gluconate uptake at 0°C. (D) Glutamate and gluconate uptake at 15°C.
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respect to the beginning of the growth experiment (Fig. 2A) by computing the Pearson
product moment for each metabolite across the five time points and the relative statisti-
cal support (Spearman correlation, P value , 0.05 (Fig. 2B)). Strikingly, for about 90% of
the analyzed metabolites, we found a positive correlation between the variation of their
concentrations during the 2 separate growth experiments (at 0 and 15°C). These positive
values ranged from 0.21 in the case of aspartate to 0.96 in the case of malate. Ethanol
and thymidine displayed a Pearson product moment correlation (PPM) quite close to
zero (-0.16 and -0.1, respectively), thus showing no correlation in the two experiments.
Finally, the concentrations of PEP and ribose were negatively correlated in the 2 growth
experiments, with PPM of -0.9 and -0.57, respectively. The negative correlation of PEP
was supported statistically (Spearman correlation, P value = 0.03692).

To qualitatively assess the change in concentration of each metabolite against each
other, we computed the all-against-all correlation among the metabolites identified in
our study. The results of this analysis are reported in Fig. 2D. We observed 2 main
blocks of metabolites: 1 embedding amino acids (with the exception of glutamate and
glutamine), and 1 mostly including intermediates of the main central metabolic path-
ways (TCA, PPP, nucleic acids biosynthesis). Each of these clusters was characterized by
a strong (and statistically supported) correlation among the representatives of the
same cluster, and an equally relevant anti-correlation with the members of the other
cluster. Overall, the intracellular concentration of amino acids was shown to increase
over time, whereas the level of, for example, TCA and PPP intermediates was shown to

FIG 2 (A) Normalized intracellular metabolites concentration across the 5 time points. (B) Correlation of each intracellular metabolite at 0 and 15°C
(asterisks indicate Spearman correlation P value , 0.05). (C) Comparison of the concentration of each intracellular metabolite at 0 and 15°C (asterisks
indicate statistically significant correlations, i.e., P value , 0.05). (D) All-against-all correlations between intracellular metabolites at 0 and 15°C.
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decrease throughout the growth experiment. To assess whether the growth tempera-
tures had a role in determining the observed trends in metabolite concentrations, we
computed an all-against-all correlation for each metabolite at 0° and 15°C separately,
and then evaluated whether these 2 correlation matrices differed significantly. The
t-tests performed supported no significant differences between the means of these
2 comparisons (P values = 0.74 and 0.89, respectively) suggesting that, despite the
large difference in growth temperatures, the overall dynamics of intracellular core
metabolites were maintained, pointing to an apparent structural metabolic robust-
ness to growth temperature. This robustness was also conserved quantitatively, as
the average concentration of each metabolite was maintained similar across the 2
different growth experiments (Fig. 2C). Indeed, except for 6 metabolites out of 34
(acetate, glutamine, glucose, PEP, NADX, and NADPX, t test, P value , 0.05, but
P value . 0.05 after correction for multiple testing with the Bonferroni method), no
other average metabolite concentration showed a significant difference at 0 and
15°C (Fig. 2C and Fig. S1).

A similar scenario was observed for the pool of (17) quantified extracellular metabo-
lites (Fig. 3A). Consistently with growth conditions, glutamate and gluconate concen-
trations decreased over time until their exhaustion from the growth medium (Fig. 3A),
a trend that (i) indicated the almost simultaneous consumption of these 2 nutrients
and (ii) was observed at both 0 and 15°C. Out of the 17 extracellular metabolites that
were quantified in our experiments, 16 showed a positive correlation between their
trends at 0 and 15°C (Fig. 3B). In particular, 10 of them displayed a PPM above 0.5. The
only metabolite whose trend differed in the 2 experiments was 2-oxoglutarate (PPM =
20.4). This situation was mirrored at the quantitative level (Fig. 3C). Indeed, none of
the extracellular metabolites showed a statistically significant difference between 0°

FIG 3 (A) Normalized extracellular metabolites concentration across the 5 time points. (B) Correlation of each intracellular metabolite at 0 and 15°C
(asterisks indicate Spearman correlation P value , 0.05) (C) Comparison of the concentration (in a.u.) of each extracellular metabolite at 0 and 15°C
(asterisks indicate statistically significant correlations, i.e., P value , 0.05). (D) All-against-all correlations between extracellular metabolites at 0 and 15°C.
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and 15°C growth experiments. Finally, metabolomic data allowed us to evaluate the
uptake kinetics of glutamate and gluconate in the tested conditions (Fig. 1C and D),
revealing that the 2 carbon sources were taken up almost simultaneously in the 2
experiments, and were depleted/exhausted around T4.

The 0 and 15°C transcriptomes of PhTAC125.We next characterized the transcrip-
tomes of PhTAC125 at 0 and 15°C. We sampled both curves during exponential growth
(Fig. 1A and B, sample points “1”), and sequenced the transcriptome using RNA-Seq
technology (see Materials and Methods section). The main features of transcriptomic
data are shown in Table S1 and Fig. S2 and S3.

Differentially expressed genes (DEGs) were identified using a log2 fold change of 1
(or -1) and an adjusted P value of 0.05 as thresholds. Overall, we identified 607 differen-
tially expressed genes in the comparison between growth at 15° and 0° C, with an
almost identical amount of up- and downregulated genes at 15°C (304 and 303 genes,
respectively). The outliers of up- and downregulated genes are shown in Fig. 4A and
described in Table 1. Remarkably, out of 607 DEGs, 359 were metabolic protein-coding
genes (roughly 59%).

Here we first describe specific features of outlier DEGs, and then focus our attention
on broader functional categories that embedded the highest fraction of differentially
expressed genes. Among the top 5 downregulated genes, 2 lacked a clear functional
annotation (PSHA_RS12380 and PSHA_RS08940), and further experiments are required
to understand their role in the adaptation to growth at warmer temperatures. Two of
them (PSHA_RS07950 and PSHA_RS06965) were annotated as TonB-dependent recep-
tors, suggesting their involvement in the uptake and transport of large substrates, pos-
sibly siderophores complexes and/or vitamins. The remaining gene (PSHA_RS11830) is
annotated as NAD-dependent succinate-semialdehyde dehydrogenase, responsible for
the conversion of succinate-semialdehyde to succinate. The downregulation of this
gene is in line with the lower intracellular concentration of succinate at 15°C, as dis-
cussed later in the text. Strikingly, among the over-expressed genes during growth at
15°C, we found a prevalence of cold shock related proteins (4 out of 5) and a RNase R
encoding gene (PSHA_RS14645). Although no functional studies have been done on
cold shock responses and cold shock proteins (CSPs) from psychrophilic bacteria,

FIG 4 (A) Volcano plot of up- and downregulated genes. (B) COG categories of up- and downregulated genes (asterisks indicate significantly enriched
functional categories). (C) Percentage of differentially expressed genes over the total gene of a subset of PhTAC125 central metabolic pathways.
Differentially expressed genes are represented in green (downregulated) or red (upregulated).
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similarities with the CSPs that are produced in mesophiles have been observed. In par-
ticular, the over-expressed CSPs in PhTAC125 share an amino acid sequence identity
ranging between 63.8% and 65.6% with the mesophilic cspE of E. coli. Furthermore,
these proteins contain highly conserved RNA-binding motifs, RNP1 (K-G-F-G-F-I) and
RNP2 (V-F-V-H-F) (20, 21), indicated by a black box in Fig. S4.

PSHA_RS14630, PSHA_RS14635, PSHA_RS14640 and PSHA_RS16715 contain 1 highly
conserved nucleic acid-binding domain, called cold shock domain (CSD, http://pfam.xfam
.org/family/PF00313), which is annotated as RNA chaperone/anti-terminator. Moreover,
the NCBI identifies both genes PSHA_RS14635 and PSHA_RS14640 as encoding for the
same protein (WP_011329604.1), while the others encode for proteins with a different
identifier but virtually same sequence. Cold shock proteins would normally counteract the
deleterious effects of temperature drop, enabling the cells to grow at low temperatures
(22). Jiang et al. proposed the role of cspA as an RNA chaperone capable of melting the
RNA secondary structure (23), thereby enhancing translation of mRNAs at low tempera-
tures. However, counterintuitively with their given name, not all members of the CSP fam-
ily are cold-inducible, and their expression is activated upon different stresses (24). For this
reason, CSPs might be required for bacterial adaptation to environmental changes. The
fifth upregulated protein, RNase R, belongs to the RNR family. In Escherichia coli, the RNase
R consists of a central nuclease domain, 2 cold shock (CSD) domains near the N-terminal
region of the protein, an S1 domain and a highly basic C-terminal region (25). Cairrão et al.
showed that the rnr gene is co-transcribed with flanking genes as an operon induced
under cold shock in E. coli (locus tag b4179) (26). There is an important analogy here since,
although PhTAC125’s operon map isn't available, its top 4-upregulated genes are mapped
consecutively on the genome, with coding sense on the same strand (1), spaced by an av-
erage distance of 216 nucleotides. The homology to a variety of domains involved in stress
response, together with our observation of a strong upregulation during growth at 15°C,
may indicate that PhTAC125 strives to mediate the elimination of detrimental secondary
structures and a temperature rise promotes the expression of enzymes that are required
for the correct processing of rRNA precursors.

Extending the analysis to a broader functional level, we identified significant differ-
ences in 12 COG categories. Specifically, intracellular trafficking, secretion and vesicular
transport, signal transduction mechanisms, cell motility, cell wall/membrane/envelope
biogenesis, replication, recombination and repair and cell cycle control, cell division, and
chromosome partitioning functional categories were found to be over-represented among
upregulated genes during growth at 15°C. This matches the results from recent works on
the characterization of the evolutionary pathways responsible for thermal adaptation, and
the overall notion that one of the main effects of temperature increases on cell physiology
consists in the disruption of membrane integrity caused by increased fluidity (27, 28).
Overexpression of cell wall and membrane biogenesis-related genes might help overcome
this feature associated with growth at higher temperatures.

Conversely, genes involved in post-translational modification, protein turnover,

TABLE 1 The list of the top-five down- and upregulated genes and their functions

Locus tag log2FC Padj value Annotation
PSHA_RS12380 26.58 2.43e-100 Hypothetical protein
PSHA_RS07950 25.99 1.52e-65 TonB-dependent receptor
PSHA_RS06965 25.53 6.72e-07 TonB-dependent receptor
PSHA_RS11830 24.44 2.64e-27 NAD-dependent succinate-semialdehyde

dehydrogenase
PSHA_RS08940 -4.33 1.85e-53 PA2169 family four-helix-bundle
PSHA_RS14635 7.93 1.99e-63 Cold-shock protein
PSHA_RS14640 6.73 4.02e-13 Cold-shock protein
PSHA_RS14630 5.94 2.03e-38 Cold-shock protein
PSHA_RS14645 5.48 9.73e-31 Ribonuclease R
PSHA_RS16715 3.94 1.25e-21 Cold-shock protein
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chaperones, translation, ribosomal structure and biogenesis, lipids, nucleic acids and
amino acids transport and metabolism, as well as energy production functional catego-
ries, were over-represented among downregulated genes during growth at 15°C (Fig. 4B).
We believe that this analysis depicts the system-level adaptation of bacterial life to diverse
growth temperatures, and is in line both with the physiological features observed in this
work and with previously obtained data on cold/warm adaptation. Indeed, the significant
over-expression of genes broadly related to cell replication (COG categories L, M, and D)
is in line with the higher growth rate observed at 15°C in respect to 0°C, over the entire
growth period (Fig. 1 and B), and in the specific time interval where RNA was sampled.
Further, the over-expression of cell motility at warmer temperatures is in perfect agree-
ment with previous assays on PhTAC125 motility that had shown a reduced swimming
capability of this strain at 0°C (18).

Surprisingly, the upregulation of cell growth related processes is counteracted by a
general downregulation of cellular metabolism. Key processes of PhTAC125 core me-
tabolism such as amino acid, lipid, and nucleotide metabolism together with energy
production/conversion, were found to be downregulated (Fig. 4C). As mentioned pre-
viously, among 607 DEGs, 359 (59.14%) were metabolic genes. Zooming in at the level
of the single pathways (Fig. 4C) revealed that the downregulation affected most of the
key central pathways of PhTAC125 metabolic network (including, for example, glycoly-
sis, TCA cycle, PPP, and amino acids biosynthesis genes). In these pathways, the num-
ber of downregulated genes strongly outpaced that of upregulated genes (Fig. 4C).
Thus, despite consistent intracellular and extracellular metabolic profiles between the
2 tested growth temperatures, the underlying expression of metabolic genes showed
an opposite trend, with a remarkable number of DEGs in the 2 growth conditions. For
example, the intracellular pools of key TCA intermediates (fumarate and malate)
(Fig. 2C) were shown to be similar between 0 and 15°C, despite more than 50% of the
TCA genes being differentially expressed in the 2 conditions (Fig. 4C). Similarly, the in-
tracellular concentration of amino acids was shown to be comparable between the 2
conditions (Fig. 2C), whereas the level of expression of their corresponding biosyn-
thetic genes was shown to be significantly different (Fig. 4C).

Accordingly, we hypothesize that the transcriptional network of PhTAC125 provides
a buffering mechanism through which metabolic homeostasis is maintained, at least at
the level of the central metabolism. In the next section we will combine metabolomic
and transcriptomic data with a genome-scale metabolic reconstruction of PhTAC125 to
unravel the intimate mechanisms through which this balance is achieved.

Genome-scale modeling of growth temperature adaptation. A genome-scale
metabolic reconstruction exists for the strain PhTAC125 (16). We, thus, exploited this
resource to get a mechanistic interpretation of metabolic homeostasis. First, we
checked whether the model was able to represent the experimentally determined phe-
notypes. We thus constrained the PhTAC125 genome-scale reconstruction with uptake
rates of glutamate and gluconate measured at 0 and 15° degrees, and ran an FBA simu-
lation to predict the cellular growth rates. Average uptake rates of glutamate and glu-
conate were respectively computed between T1 and T3 for both growth curves (that is
after 14 and 141 h for 15 and 0°C, see Materials and Methods), and resulted in 0.10 and
0.08 mmol/gCDW*h21 at 0°C and 0.47 and 0.62 mmol/gCDW*h21 at 15°C.

As shown in Fig. 5A, at 0°C the results of this simulation (0.021h21) were in line with
the measured growth rates (0.027h21). Conversely, at 15°C a discrepancy was observed
between the experimental growth rate and the one predicted in silico, 0.27 versus 0.13
h21, respectively. Although there could be many possible explanations for this, we
hypothesize that constraining the model only based on the uptake rates of the pro-
vided nutrients may not be enough to correctly represent the metabolic phenotype of
the cells exposed to different temperatures. For this reason, and to provide a more re-
alistic picture of how metabolic homeostasis is maintained at the level of the central
metabolism, we combined metabolomic and transcriptomic data with the genome-
scale modeling of PhTAC125 metabolism. We decided to focus on T1 (beginning of the
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exponential growth phase) as this time point should better resemble the cellular physi-
ological state in which FBA assumptions hold the most (i.e., metabolic steady state).
Then, we computed the log2 fold change (log2FC) of central intracellular metabolites in
the 2 conditions (Fig. 5C). Most (76%) of the metabolites showed a j log2FC j lower
than 1, confirming an overall robustness of the central metabolism to growth tempera-
ture. Only 8 metabolites displayed a j log2FC j lower/greater than 1 in the contrast
between 15° and 0°C metabolomic data, and for only 3 of them we obtained a statisti-
cal support (P value , 0.05) (Fig. 5C). More specifically, NADX and gluconate were the
2 metabolites showing a log2FC . 1 (thus being more abundant at 15°) whereas PEP,
succinate, UDP-GlcNAc, thymidine, acetate and X1- methyl-nicotinamide displayed a
log2FC , -1 (thus being more abundant at 0°).

We then constrained the model using all available experimental data obtained in
this work using REMI (29) (see Materials and Methods). Briefly, this approach allows
translating gene expression and metabolite abundance data resulting from a “pertur-
bation” experiment into differential flux distributions among the 2 resulting conditions.
In our case, we used data (metabolomes and transcriptomes sampled at the same time
point) from 15° and 0°C growths to analyze the systemic metabolic alteration(s) occur-
ring in this pair of conditions. FC and TPM values (Fig. 5B and C) were used to constrain
the model with metabolic and expression data, respectively. Further, the model was
also constrained by setting the boundaries of uptake reactions to represent the actual
medium used for the experiment (Schatz medium with glutamate and gluconate as
the sole carbon sources, see Materials and Methods). The outcome of data integration
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into the metabolic reconstruction is summarized by REMI through the computation of
the theoretical maximum consistency score (TMCS) and the maximum consistency
score (MCS). The first indicates the number of available omics data (for metabolites
and reactions), whereas the latter represents the number of those constraints that are
consistent with fluxes, and could be integrated into REMI models. As a result, the MCS
is always equal to or smaller than the TMCS. In other words, MCS is the largest fraction
of available data (metabolomics and transcriptomics) that could be incorporated into
an FBA model from a given set of constraints (the abundance of metabolites and tran-
scripts), while ensuring that the model still achieves the required metabolic functional-
ities and remains feasible. TMCS indicates the number of genes and metabolites with
available relative abundance values that can potentially (either because above the
specified threshold or their actual inclusion in the metabolic reconstruction) be inte-
grated into the model. The proportion between TMCS and MCS obtained in this work
is comparable to that from other studies where REMI was used for the same purposes
(29) (Fig. 5D). Out of data integration and FBA simulations, we obtained 2 distinct flux
distributions, i.e., the flux distribution resembling growth at 0°C and the 1 theoretically
accounting for the growth at 15°C. The differences between the 2 will represent the
most likely metabolic alterations in response to growth temperature and, conse-
quently, will highlight those pathways/reactions that contribute the most to maintain-
ing the observed metabolic homeostasis. First, we checked whether our simulations
were accounting for the actual differences between 0° and 15°C intracellular metabo-
lomes. We, thus, computed a matching coefficient (Simple Matching Coefficient (SMC))
between the predicted and measured log2FC of each of the 34 internal metabolites,
accounting for how many times the model correctly predicted the increase (or decrease)
of its internal concentration. Overall, we found an SMC of 71% between simulated and
measured metabolic data, revealing that the model is capable of accounting for most of
the central metabolome rewiring in respect to growth temperature. Then, we focused
on those metabolites that showed a marked change between growth at 15 and 0°C (i.e.,
for which j log2FC j . 1) (Fig. 5C). Figure 5F shows that, except for 3 metabolites (UDP-
GlcNAc, Thymidine, and 1- methylnicotinamide) for which the model does not predict
any difference between the 2 growth conditions, for the remaining 5 metabolites the
model correctly predicts a higher (NADX and gluconate) or lower (acetate, PEP and succi-
nate) internal production at 15°. Overall, we found a significant, positive correlation of
0.72 between the measured and the predicted FC of internal concentrations of the 8
metabolites for which j log2FC j. 1 (Fig. 5F) (Spearman correlation, P value = 0.04).

Next, we examined to what extent the central, interconnected pathways showed
significantly altered flux distributions. While no clear signal could be identified for gly-
colysis and TCA cycle (mirroring what we observed with DEGs analysis), both PPP and
fatty acids metabolism showed significant differences in their fluxes between 0° and
15° growth simulations. As for fatty acids metabolism, fluxes representative of growth
at 0°C were significantly higher (Kolmogorov-Smirnov test, P value = 8.96210) than
those resembling metabolism at 15°C (Fig. 5F). The opposite was observed for PPP
simulated fluxes which displayed, on average, significantly lower values at 0° vs 15°C
(Kolmogorov-Smirnov test, P value = 0.0030). A sustained activity of PPP at 15° is in line
with the increased internal concentration of gluconate and ribose (2 key PPP inter-
mediates) at this temperature (Fig. 5C). Similarly, an increase in fatty acids biosynthesis
(and fatty acids metabolism in general) is in line with previous simulations and experi-
ments concerning the involvement of this process in the adaptation to growth at (rela-
tively) low temperatures (16).

We then focused on the analysis of simulated metabolic fluxes around the metabo-
lite that showed the highest degree of variation, PEP. We asked which metabolic rewir-
ing could lead to an increased production of this metabolite at 0°C. The analysis of
fluxes revealed an increased activity at 0°C with respect to 15°C of both the reaction
converting L-malate to 2-oxaloacetate ([S]-malate:NAD1 oxidoreductase) and the reac-
tion converting 2-oxaloacetate to PEP (phosphate:oxaloacetate carboxy-lyase). Also,
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ATP:pyruvate, H2O phosphotransferase reaction displayed an increase in flux at 0°.
Overall, this would allow the partial redirection of key TCA cycle intermediates to the
production of PEP. At the same time, we also recorded an increased flux at 0°C in the
reaction redirecting acetyl-CoA to fatty acids biosynthesis. Conversely, reactions leading
to the production of citrate from OAA and Acetyl-CoA resulted to be less active at 0°C.

Overall, our experimentally constrained simulations seem to suggest a working
model for the metabolic adaptation to growth at different temperatures. Considering
growth at 0°C, an increased level of intracellular PEP observed experimentally might be
functional to its conversion to acetyl-CoA and its consequent tunneling into fatty acids
metabolism (Fig. 5G), and might be the outcome of fluxes redirection from the TCA
cycle to PEP production, rather than from glycolysis or PPP. Consistent with this idea is
the overall increase of key TCA intermediates (Fig. 5A) measured during growth at 0°C
with respect to growth at 15°C that suggests an overall increased activity of this central
pathway in the 0°C growth condition.

DISCUSSION

In this work, we have studied how a cold-adapted bacterium rewires its central me-
tabolism when growing at 2 distinct temperatures that overall resemble a seasonal
shift. This was done by characterizing a pool of 34 intracellular and 17 extracellular cen-
tral metabolites during 5 different time points of its growth curves (i.e., at 0°C and
15°C) and by evaluating gene expression during the initial stages of its exponential
phases. To our surprise, the top 5 upregulated genes at 15°C contain a cold shock do-
main, which is usually recruited to counteract the deleterious effects of temperature
drop. A possible explanation for the apparent paradox where CspA is activated, not
only following cold stress, but also under non-stress and other stress conditions which
entail a downregulation of bulk gene expression and protein synthesis is presented in
(30). CSPs have been found in almost all types of bacteria and are mainly induced after
a rapid temperature downshift to regulate the adaptation to cold stress but are also
present under normal conditions to regulate other biological functions (31). For exam-
ple, in E. coli, only 4 (cspA, cspB, cspG, and cspI) of the 9 CSP genes are cold-induced
(32). Two of them, cspE and cspC, are constitutively expressed at physiological temper-
atures, and act as ‘housekeeping RNA chaperones’ to modulate the global gene
expression (33, 34). Furthermore, these CSPs are also involved in the transcription anti-
termination mechanism, which is based upon preventing the formation of secondary
structures on the nascent mRNA (35–37). In PhTAC125, four cold shock-like proteins
cspE are upregulated during growth at 15°C. This indicates that these CSP proteins
may not play a role in cold-adaptation in PhTAC125 but, analogously to E. coli, they may
act as chaperones by destabilizing secondary structures in target RNA at high tempera-
ture so that the single-stranded state of target RNA is maintained. This may then enable
efficient transcription and translation.

From a broader perspective, the comparison between the 0° and 15°C transcrip-
tomes produced more than 600 differentially expressed genes, assigned to a dozen of
different functional categories. On the other hand, the intracellular concentration of
nearly 90% of the analyzed metabolites correlates positively in the 2 conditions. We
interpret this as the capability of PhTAC125 regulatory network to buffer the tempera-
ture shift to produce strikingly similar metabolic phenotypes, despite the temperature
gap. This is also reflected in the conservation of the overall metabolic network struc-
ture (i.e., the presence of correlated clusters of metabolites) (Fig. 2C and Fig. 3C).
Remarkably, this conservation involved metabolites from many different pathways, such
as amino acids metabolism, TCA cycle, PPP, and glycolysis, suggesting that such robust-
ness is propagated at the level of the entire metabolism and is not restricted to specific
pathways. Studies on the metabolic response to growth at different temperatures in
other microorganisms have generally shown larger variability among intracellular pools
of metabolites (38), and/or the tendency to activate genetic mechanisms that shut down
metabolism under longer-term high temperature stress (39). This is not the case for
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PhTAC125 that, through a global transcriptional buffering, maintains very consistent
trends of its intracellular and extracellular metabolomes. This mirrors, for example, the
response of E. coli to genetic and environmental perturbations and its capability to main-
tain metabolite levels stable, reflecting the rerouting of fluxes in the metabolic network
(40). A few metabolites stood out in this conservation of metabolite pools, including PEP
and ribose (showing opposite trends at 0 and 15°C), and ethanol and thymidine (show-
ing no correlation between the 2 experiments). Also, NADX and NADPX levels differed in
the 2 conditions, as shown in Fig. 2A.

To unravel this complex interplay and produce a mechanistic interpretation of this
adaptation, -omics data (together with data on carbon sources uptake rates) were
used to constrain a genome-scale metabolic reconstruction and derive the most-likely
metabolic phenotypes at these 2 temperatures. This approach provided evidence that
most of the metabolic adaptation is probably played at the level of the phosphoenol-
pyruvate (PEP)–pyruvate–oxaloacetate node and specifically involves the increase of
TCA fluxes and their redirection to PEP production. Consistent with this idea, is the
overall reduction of key TCA intermediates at 15°C (Fig. 5A) and the observation that,
upon growth on non-glycolytic compounds (e.g., glutamate and gluconate) the cycle
intermediates malate or oxaloacetate must be converted to pyruvate and PEP for the
synthesis of glycolytic intermediates. In our case, however, the availability of an increased
pool of PEP would rather allow its conversion to acetyl-CoA, and its consequent tunneling
into fatty acids metabolism (Fig. 5G). Also the overexpression of genes involved in valine,
leucine, and isoleucine degradation (Fig. 4C) at 0°C can be associated with the higher ac-
tivity of fatty acids metabolism, as the degradation of these 2 amino acids leads to the
production of acetyl-CoA (41). Consistently with this observation, our model predicts an
increased activity of fatty acids metabolism at 0° (Fig. 5G). The importance of fatty acids
metabolism in growth at low temperatures is largely known. For example, the fluidity of
the rigidified membrane (42) imposed by low temperatures can be restored through the
modulation of the (i) saturated and unsaturated fatty acids, (ii) fatty acid chain length,
and (iii) the proportion of cis to trans fatty acids thus, ultimately, through the modulation
of fatty acids metabolism (as observed in this work). This also validates and extends previ-
ous findings on general cold-adaptation strategies (16, 43, 44), pinpointing the role of
specific metabolic reactions in this process.

We also found an increased PPP activity at 15° with respect to 0°C (Fig. 5G). Increased
PPP activity signifies increased NADPH production, and is linked with many biosynthetic
processes. Interestingly, high activity of the PPP pathway has been described as an adap-
tative mechanism (in soil bacteria) to temperature stress (45), in particular by linking the
requirement of sugar units for biofilm formation to the overall activity in this metabolic
pathway. We know for a fact from the work of (18) that PhTAC125 displays strong
propensity to form more biofilm at 15°C versus 0°C when grown in the same minimal
medium used in this work. Also, we found a remarkable fraction of overexpressed
biofilm-related genes (Fig. 4C), reinforcing the idea of a temperature-mediated switch
to this kind of lifestyle. Thus, we infer that a similar mechanism is at play in this ma-
rine bacterium where the redirection of fluxes in PPP at 15°C would be the metabolic
basis for the formation of cellular aggregates at higher temperatures. Moreover, the
increased PPP activity can respond to other cell requirements linked to the DNA replica-
tion recombination and repair, since the ribose produced by PPP is necessary for these
cellular activities that result more active at 15°C (Table S2), as suggested by transcriptomic
analysis (Fig. 5B).

Very recently, Macarena Toll-Riera et al. published (28) a work in which PhTAC125
was evolved at increasingly higher temperatures to study the evolutionary potential of
upper thermal tolerance, and characterize the genomic basis of temperature adapta-
tion. Interestingly, the authors found almost no metabolic genes among those that
apparently provided an increased fitness at higher temperatures. Indeed, clones that
were selected for their improved growth at higher temperatures (up to 30°C) had
mainly mutations in proteases-encoding genes or in genes involved in chromosome
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copy number reduction, energy production and conversion and cell wall biosynthesis.
Thus, apparently, the metabolism of PhTAC125 was not the primary target of muta-
tions that led to an increased fitness in the tested conditions. This, in turn, may indicate
the presence of an already optimized and plastic metabolism that allows growth in a
broad range of temperatures, in line with the metabolic robustness that we have char-
acterized in this work.

Conclusions. The aim of our experiments was to evaluate the effect of growth tem-
peratures on cellular homeostasis, particularly at the metabolic level. We have shown
that a cold-adapted marine bacterium expresses 2 very similar metabolic phenotypes in
response to 2 widely different temperatures, by adjusting the expression of key enzymes
and fine-tuning the intracellular concentration of key intermediates. This illuminated on
the possible molecular mechanisms that marine microbes may use to adapt to broad
(seasonal) temperature changes. In particular, we showed that specific changes at the
level of regulatory circuits can buffer such variations, and maintain the underlying meta-
bolic network robust to temperature fluctuations. In the future, it will be interesting to
investigate whether similar mechanisms are at play in natural microbial assemblages.

MATERIALS ANDMETHODS
Strains and growth conditions. PhTAC125 (46) cells were grown in a 1.5 L GG medium (47) in a

Stirred Tank Reactor 3 L fermenter (Applikon) connected to an eZ2 Bio Controller (Applikon) at 2 differ-
ent temperatures (0°C and 15°C). This medium contains glutamate and gluconate as the only carbon
sources. The bioreactor was equipped with the standard pH-, pO2-, level- and temperature sensors for
the bioprocess monitoring. For the growths of the PhTAC125 bacterium, the pre-culture was centrifuged
(6000 � g, 20 min, 4°C); the cells were washed twice with fresh medium, and then used to inoculate the
bioreactor with a starting OD600 of 0.2, in aerobic conditions (50% and 30% dissolved oxygen at 15°C
and 0°C, respectively), in stirring (500 rpm at 15°C and 250 rpm at 0°C). The bacterial culture was carried
out at 15°C for 40 h or at 0°C for 240 h. Each culture condition was repeated three times. Cell growth
was monitored, measuring the OD600 about every 2 h in the experiments at 15°C, and every 8 h at 0°C.
Three different measurements were performed at each time point for each biological replicate. For intra-
and extracellular metabolites analysis, the samples were taken in triplicate at 5 different time points dur-
ing the growth in GG medium at 2 different temperatures (70 h, 141 h, 179 h, 190 h, and 240 h at 0°C,
and 6.5 h, 14 h, 20 h, 25 h, and 39 h at 15°C). For the analysis of extracellular metabolites, aliquots (1 mL)
of cell cultures were harvested during the growth and centrifuged for 15 min at 13,000g at 4°C; the su-
pernatant was recovered, filtered (Filtropur 0.2 mm, SARSTED AG & Co. KG) and stored at 280°C. The
analysis of intracellular metabolites was performed on 60 OD600 pellets recovered during the growth by
centrifuging for 20 min at 6,000 rpm at 4°C.

Transcriptomics. For the RNA-Seq experiment, 1 OD600 pellets were recovered during the exponen-
tial growth phase (;1/1.5 OD/mL) at 15°C and 0°C by centrifugation (10 min, 13,000g, 4°C). Cell pellets
were washed in RNase-free PBS three times and stored at 280°C. Total RNA was isolated from the cells
using the Direct-zol RNA Kit (Zymo Research) following the manufacturer’s instructions. Contaminating
genomic DNA was then removed through treatment with RNase-free DNase I (Roche).

RNA sequencing. RNA concentration was measured using Quant-IT RNA assay kit-high sensitivity
and a Qubit Fluorometer (Life Technologies), and its quality and integrity assessed with the Agilent 4200
Tapestation System (Agilent Technologies). Indexed libraries were prepared starting from 400 ng of total
RNA according to Universal Prokaryotic RNA-Seq Library Prep kit (Tecan). Final libraries were sequenced
at a concentration of 1.7 pM/lane on the NextSeq 500 platform (Illumina Inc) in paired mode 2 � 75bp.
For each experimental condition, 3 biological replicates were prepared.

RNA-Seq data analysis. The 12 samples were assessed for base call quality and adapter content
using fastp (48), allowing down to a mean quality threshold of 20 (i.e., probability of incorrect base call
of 1 in 100) and minimum read length of 40 nucleotides. A median of 98.9% of the reads passed quality
check, indicating that sequencing was carried out pristinely, and our data were biologically reliable.
Salmon (49) index was built on PhTAC125’s transcriptome free of tRNA and rRNA sequences, providing
the entire genomic sequence as background decoy to account for possible underlying DNA contamina-
tion. CDS and genomic FASTA were retrieved on the NCBI, using assembly accession GCF_000026085.1.
Moreover, CDS and genomic files were concatenated with data from pMEGA plasmid (NZ_MN400773.1)
and pMtBL plasmid (NZ_AJ224742.1). The transcriptome quantification step was performed using the –
validateMappings flag, to ensure a sensitive selective alignment of the sequencing reads. The resulting
mapping rates ranged between 56.8% and 66.21% (average of 62.47%), whereas roughly half of the
reads represented ribosomal DNA sequences (discarded for downstream analyses). The integration of
transcript-level abundance estimates from Salmon with the data analysis pipeline was performed using
R package tximport (R Core Team, 2022, https://www.R-project.org/, R version 4.0.3). The testing of
changes in the overall transcriptional output was handled through the statistical engine in R package
DESeq2, with an expected proportion of false positives set at 5%. The volcano scatterplot showing statis-
tical significance versus magnitude of change for 607 differentially expressed genes was produced using
the library EnhancedVolcano from the R Bioconductor 3.14 suite.
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Metabolomics. 1H NMR-based metabolomic analyses were performed on cell lysates and growth
media to monitor the intracellular metabolites, and the uptake and release of the extracellular metabo-
lites, respectively, by measuring their concentration levels in samples collected at different time points
during the cell growth.

Medium samples were prepared in 5.00 mm NMR tubes by mixing 60 mL of a potassium phosphate
buffer (1.5 M K2HPO4, 100% (vol/vol) 2H2O, 10 mM sodium trimethylsilyl [2,2,3,322H4]propionate (TMSP),
pH 7.4), and 540 mL of each growth medium.

Cell lysate samples were prepared in 5.00 mm NMR tubes by mixing 60 mL of 2H2O and 540 mL of
samples. All the NMR spectra were recorded using a Bruker 600 MHz spectrometer (Bruker BioSpin) oper-
ating at 600.13 MHz proton Larmor frequency, and equipped with a 5 mm PATXI 1H-13C-15N and 2H-
decoupling probe including a z axis gradient coil, an automatic tuning-matching (ATM) and an auto-
matic and refrigerate sample changer (SampleJet). A BTO 2000 thermocouple served for temperature
stabilization at the level of approximately 0.1 K at the sample. Before measurement, samples were kept
for 5 min inside the NMR probe head, for temperature equilibration at 300 K.

1H NMR spectra were acquired with water peak suppression and a standard NOESY pulse sequence
using 128 scans, 65536 data points, a spectral width of 12019 Hz, an acquisition time of 2.7 s, a relaxation
delay of 4 s, and a mixing time of 0.1 s.

The raw data were multiplied by a 0.3 Hz exponential line broadening before applying Fourier trans-
formation. Transformed spectra were automatically corrected for phase and baseline distortions. All the
spectra were then calibrated to the reference signal of TMSP at d 0.00 ppm using TopSpin 3.5 (Bruker
BioSpin srl).

The metabolites, whose peaks in the spectra were well resolved, were assigned, and their levels ana-
lyzed using a dedicated R script developed in-house. In total, 34 and 17 metabolites were identified and
quantified in the cell lysate and in the growth medium spectra, respectively. The assignment was per-
formed using an internal 1H NMR spectral library of pure organic compounds (BBIOREFCODE, Bruker
BioSpin), stored reference NMR spectra of metabolites, and spiking experiments. Matching between new
NMR data and databases was performed using the Assure NMR software (Bruker BioSpin). The relative
concentrations of the various metabolites were calculated by integrating the corresponding signals in
defined spectral ranges, using in-house developed R 3.0.2 scripts. Similarly, downstream data analysis
was performed using R. Raw data, post-Raw data, and post-processing codes are made available at
https://github.com/combogenomics/MetRob015.

Uptake rates of gluconate and glutamate at the 2 different temperatures were computed as the ratio
between the average growth rate between T1 and T3 (m) and the biomass yield (l). The former was
computed as:

m ¼ logODT3 2 logODT1

T32T1

The latter was computed according to the following relationship:

l ¼ Biomass ðgLÞ
Consumed C source ðmolÞ

Biomass was obtained from OD values as described in (50), using 0.74 as a scaling factor for the
growth at 15° and 0.66 for the growth at 0°C.

Genome-scale metabolic modeling. The genome-scale metabolic reconstruction used in this work
is the one recently used in (51). All the simulations were run in MATLAB 2019a, using the COBRA toolbox
(52) version 2.7.4. Metabolomic and transcriptomic data were integrated using REMI method (29), pro-
viding TPM gene expression and relative concentration values for metabolites at time point T1. Both for
metabolites and gene expression, we selected the top 3% as upregulated and the bottom 3% as
downregulated (REMI default is 5%). Consistently with the original REMI publication, we used the 2-fold
change as the cutoff threshold to identify the significant gene expression and metabolite changes. All the
other parameters were left as default. The predicted internal concentration of each metabolite was com-
puted using the computeFluxSplits function implemented in the COBRA toolbox. This function computes
the relative contributions of fluxes to the net production and consumption of a specific set of metabolites
included in the model. Statistical tests on flux distributions were calculated using R.

To estimate the difference in the activity of the main central metabolic pathways at 0° and 15°C, we
computed the predicted flux of each reaction in these pathways (TCA cycle, glycolysis, PPP, and fatty
acids metabolism) at the 2 different temperatures, and averaged this number of reactions by the total
number of reactions included in that pathway. From this latter analysis, we excluded those reactions
that (i) had a flux equal to zero (were inactive) in both conditions and (ii) had a different sign (i.e.,
changed direction) at the 2 temperatures.

Data availability. The authors confirm that the data supporting the findings of this study are avail-
able within the article and/or its supplemental materials. Collection of sequence data produced in this
study is available under the BioProject PRJNA886636.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.2 MB.

Transcriptomic Buffering of Metabolism mSystems

Month YYYY Volume XX Issue XX 10.1128/msystems.01124-22 14

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

1 
M

ar
ch

 2
02

3 
by

 1
92

.1
33

.2
8.

4.

https://github.com/combogenomics/MetRob015
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA886636
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01124-22


FIG S2, PDF file, 0.1 MB.
FIG S3, PDF file, 0.04 MB.
FIG S4, PDF file, 0.1 MB.
TABLE S1, PDF file, 0.01 MB.
TABLE S2, PDF file, 0.02 MB.

ACKNOWLEDGMENTS
We thank Dr. Assunta Sellitto for technical assistance for RNA-Seq libraries preparation.
P.T. and V.G. acknowledge the support and the use of resources of Instruct-ERIC, a

Landmark ESFRI project, and, specifically, the CERM/CIRMMP Italy Centre.
This study was supported by Regione Campania, Progetto GENOMAeSALUTE (POR

CAMPANIA FESR 2014/2020, azione 1.5; CUP: B41C17000080007), by PNRA (Programma
Nazionale di Ricerche in Antartide) grant PNRA18_00075 and PNRA18_00335, and by a
PRIN-MUR (RESEARCH PROJECTS OF RELEVANT NATIONAL INTEREST– 2020 Call) Project:
20208LLXEJ.

REFERENCES
1. Rothschild LJ, Mancinelli RL. 2001. Life in extreme environments. Nature

409:1092–1101. https://doi.org/10.1038/35059215.
2. Shu W-S, Huang L-N. 2022. Microbial diversity in extreme environments. Nat

RevMicrobiol 20:219–235. https://doi.org/10.1038/s41579-021-00648-y.
3. Hegedas S, Csonka J. 2010. Astrobiology: physical origin, biological evo-

lution, and spatial distribution, p 27–57. Nova Science Publishers, New
York, NY.

4. Bennett AF, Lenski RE. 1997. Phenotypic and evolutionary adaptation of a
model bacterial system to stressful thermal environments, p 135–154. In
Bijlsma R, Loeschcke V (ed), Environmental Stress, Adaptation and Evolu-
tion. Birkhäuser Basel, Basel, Switzerland.

5. Saarinen K, Laakso J, Lindström L, Ketola T. 2018. Adaptation to fluctua-
tions in temperature by nine species of bacteria. Ecol Evol 8:2901–2910.
https://doi.org/10.1002/ece3.3823.

6. Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine NM. 2020. Microbial
evolutionary strategies in a dynamic ocean. Proc Natl Acad Sci U S A 117:
5943–5948. https://doi.org/10.1073/pnas.1919332117.

7. Auger M, Morrow R, Kestenare E, Sallée J-B, Cowley R. 2021. Southern
Ocean in-situ temperature trends over 25 years emerge from interannual var-
iability. Nat Commun 12:514. https://doi.org/10.1038/s41467-020-20781-1.

8. Doblin MA, van Sebille E. 2016. Drift in ocean currents impacts intergen-
erational microbial exposure to temperature. Proc Natl Acad Sci U S A
113:5700–5705. https://doi.org/10.1073/pnas.1521093113.

9. Kim H, Ducklow HW. 2016. A decadal (2002–2014) analysis for dynamics
of heterotrophic bacteria in an Antarctic coastal ecosystem: variability
and physical and biogeochemical forcings. Front Mar Sci 3. https://doi
.org/10.3389/fmars.2016.00214.

10. Fiehn O. 2002. Metabolomics–the link between genotypes and pheno-
types. Plant Mol Biol 48:155–171. https://doi.org/10.1023/A:1013713905833.

11. Lu H, Ulanov AV, Nobu M, Liu W-T. 2016. Global metabolomic responses
of Nitrosomonas europaea 19718 to cold stress and altered ammonia
feeding patterns. Appl Microbiol Biotechnol 100:1843–1852. https://doi
.org/10.1007/s00253-015-7095-y.

12. Czajka JJ, Abernathy MH, Benites VT, Baidoo EEK, Deming JW, Tang YJ.
2018. Model metabolic strategy for heterotrophic bacteria in the cold
ocean based on Colwellia psychrerythraea 34H. Proc Natl Acad Sci U S A
115:12507–12512. https://doi.org/10.1073/pnas.1807804115.

13. Kurdrid P, Phuengcharoen P, Senachak J, Saree S, Hongsthong A. 2020.
Revealing the key point of the temperature stress response of Arthrospira
platensis C1 at the interconnection of C- and N- metabolism by proteome
analyses and PPI networking. BMC Mol and Cell Biol 21:43. https://doi
.org/10.1186/s12860-020-00285-y.

14. Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser
D, Selbig J, Willmitzer L. 2010. Metabolomic and transcriptomic stress response
of Escherichia coli. Mol Syst Biol 6:364. https://doi.org/10.1038/msb.2010.18.

15. Birolo L, Tutino ML, Fontanella B, Gerday C, Mainolfi K, Pascarella S,
Sannia G, Vinci F, Marino G. 2000. Aspartate aminotransferase from the
Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Eur J Bio-
chem 267:2790–2802. https://doi.org/10.1046/j.1432-1327.2000.01299.x.

16. Fondi M, Maida I, Perrin E, Mellera A, Mocali S, Parrilli E, Tutino ML, Liò P,
Fani R. 2015. Genome-scale metabolic reconstruction and constraint-
based modelling of the Antarctic bacterium Pseudoalteromonas halo-
planktis TAC125: Modelling of P. haloplanktis TAC125 metabolism. Envi-
ron Microbiol 17:751–766. https://doi.org/10.1111/1462-2920.12513.

17. Mocali S, Chiellini C, Fabiani A, Decuzzi S, de Pascale D, Parrilli E, Tutino
ML, Perrin E, Bosi E, Fondi M, Lo Giudice A, Fani R. 2017. Ecology of cold
environments: new insights of bacterial metabolic adaptation through an
integrated genomic-phenomic approach. Sci Rep 7:839. https://doi.org/
10.1038/s41598-017-00876-4.

18. Ricciardelli A, Casillo A, Vergara A, Balasco N, Corsaro MM, Tutino ML,
Parrilli E. 2019. Environmental conditions shape the biofilm of the Antarc-
tic bacterium Pseudoalteromonas haloplanktis TAC125. Microbiol Res 218:
66–75. https://doi.org/10.1016/j.micres.2018.09.010.

19. Parrilli E, Tedesco P, Fondi M, Tutino ML, Lo Giudice A, de Pascale D, Fani R.
2021. The art of adapting to extreme environments: the model system Pseu-
doalteromonas. Phys Life Rev 36:137–161. https://doi.org/10.1016/j.plrev.2019
.04.003.

20. Landsman D. 1992. RNP-1, an RNA-binding motif is conserved in the DNA-
binding cold shock domain. Nucleic Acids Res 20:2861–2864. https://doi
.org/10.1093/nar/20.11.2861.

21. Yamanaka K, Fang L, Inouye M. 1998. The CspA family in Escherichia coli :
multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255.
https://doi.org/10.1046/j.1365-2958.1998.00683.x.

22. Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindström M, Korkeala
H. 2016. Cold shock proteins: a minireview with special emphasis on Csp-
family of enteropathogenic Yersinia. Front Microbiol 7:1151. https://doi.org/
10.3389/fmicb.2016.01151.

23. Jiang W, Hou Y, Inouye M. 1997. CspA, the major cold-shock protein of
Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202. https://
doi.org/10.1074/jbc.272.1.196.

24. Caballero CJ, Menendez-Gil P, Catalan-Moreno A, Vergara-Irigaray M,
García B, Segura V, Irurzun N, Villanueva M, Ruiz de Los Mozos I, Solano C,
Lasa I, Toledo-Arana A. 2018. The regulon of the RNA chaperone CspA
and its auto-regulation in Staphylococcus aureus. Nucleic Acids Res 46:
1345–1361. https://doi.org/10.1093/nar/gkx1284.

25. Phadtare S, Severinov K. 2010. RNA remodeling and gene regulation by
cold shock proteins. RNA Biol 7:788–795. https://doi.org/10.4161/rna.7.6
.13482.

26. Cairrão F, Cruz A, Mori H, Arraiano CM. 2003. Cold shock induction of
RNase R and its role in the maturation of the quality control mediator
SsrA/tmRNA. Mol Microbiol 50:1349–1360. https://doi.org/10.1046/j.1365
-2958.2003.03766.x.

27. Angilletta MJ, Jr. 2009. Thermal adaptation. Oxford University Press, England.
28. Toll-Riera M, Olombrada M, Castro-Giner F, Wagner A. 2022. A limit on the

evolutionary rescue of an Antarctic bacterium from rising temperatures.
Sci Adv 8:eabk3511. https://doi.org/10.1126/sciadv.abk3511.

29. Pandey V, Hadadi N, Hatzimanikatis V. 2019. Enhanced flux prediction by
integrating relative expression and relative metabolite abundance into

Transcriptomic Buffering of Metabolism mSystems

Month YYYY Volume XX Issue XX 10.1128/msystems.01124-22 15

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

1 
M

ar
ch

 2
02

3 
by

 1
92

.1
33

.2
8.

4.

https://doi.org/10.1038/35059215
https://doi.org/10.1038/s41579-021-00648-y
https://doi.org/10.1002/ece3.3823
https://doi.org/10.1073/pnas.1919332117
https://doi.org/10.1038/s41467-020-20781-1
https://doi.org/10.1073/pnas.1521093113
https://doi.org/10.3389/fmars.2016.00214
https://doi.org/10.3389/fmars.2016.00214
https://doi.org/10.1023/A:1013713905833
https://doi.org/10.1007/s00253-015-7095-y
https://doi.org/10.1007/s00253-015-7095-y
https://doi.org/10.1073/pnas.1807804115
https://doi.org/10.1186/s12860-020-00285-y
https://doi.org/10.1186/s12860-020-00285-y
https://doi.org/10.1038/msb.2010.18
https://doi.org/10.1046/j.1432-1327.2000.01299.x
https://doi.org/10.1111/1462-2920.12513
https://doi.org/10.1038/s41598-017-00876-4
https://doi.org/10.1038/s41598-017-00876-4
https://doi.org/10.1016/j.micres.2018.09.010
https://doi.org/10.1016/j.plrev.2019.04.003
https://doi.org/10.1016/j.plrev.2019.04.003
https://doi.org/10.1093/nar/20.11.2861
https://doi.org/10.1093/nar/20.11.2861
https://doi.org/10.1046/j.1365-2958.1998.00683.x
https://doi.org/10.3389/fmicb.2016.01151
https://doi.org/10.3389/fmicb.2016.01151
https://doi.org/10.1074/jbc.272.1.196
https://doi.org/10.1074/jbc.272.1.196
https://doi.org/10.1093/nar/gkx1284
https://doi.org/10.4161/rna.7.6.13482
https://doi.org/10.4161/rna.7.6.13482
https://doi.org/10.1046/j.1365-2958.2003.03766.x
https://doi.org/10.1046/j.1365-2958.2003.03766.x
https://doi.org/10.1126/sciadv.abk3511
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01124-22


thermodynamically consistent metabolic models. PLoS Comput Biol 15:
e1007036. https://doi.org/10.1371/journal.pcbi.1007036.

30. Brandi A, Pon CL. 2012. Expression of Escherichia coli cspA during early expo-
nential growth at 37°C. Gene 492:382–388. https://doi.org/10.1016/j.gene.2011
.10.047.

31. Horn G, Hofweber R, Kremer W, Kalbitzer HR. 2007. Structure and function
of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470. https://
doi.org/10.1007/s00018-007-6388-4.

32. Xia B, Ke H, Inouye M. 2001. Acquirement of cold sensitivity by quadruple
deletion of the cspA family and its suppression by PNPase S1 domain in
Escherichia coli: S1 domain complements cold-shock protein deficiency. Mol
Microbiol 40:179–188. https://doi.org/10.1046/j.1365-2958.2001.02372.x.

33. Phadtare S, Inouye M. 2001. Role of CspC and CspE in regulation of expres-
sion of RpoS and UspA, the stress response proteins in Escherichia coli. J Bac-
teriol 183:1205–1214. https://doi.org/10.1128/JB.183.4.1205-1214.2001.

34. Phadtare S, Tadigotla V, Shin W-H, Sengupta A, Severinov K. 2006. Analy-
sis of Escherichia coli global gene expression profiles in response to over-
expression and deletion of CspC and CspE. J Bacteriol 188:2521–2527.
https://doi.org/10.1128/JB.188.7.2521-2527.2006.

35. Bae W, Xia B, Inouye M, Severinov K. 2000. Escherichia coli CspA-family
RNA chaperones are transcription antiterminators. Proc Natl Acad Sci
U S A 97:7784–7789. https://doi.org/10.1073/pnas.97.14.7784.

36. Phadtare S, Inouye M, Severinov K. 2002. The nucleic acid melting activity
of Escherichia coli CspE is critical for transcription antitermination and cold
acclimation of cells. J Biol Chem 277:7239–7245. https://doi.org/10.1074/jbc
.M111496200.

37. Phadtare S, Severinov K. 2005. Nucleic acid melting by Escherichia coli CspE.
Nucleic Acids Res 33:5583–5590. https://doi.org/10.1093/nar/gki859.

38. Guan Y, Yin D, Du X, Ye X. 2018. Metabolomics approach used for under-
standing temperature-related pectinase activity in Bacillus licheniformis
DY2. FEMSMicrobiology Lett 365. https://doi.org/10.1093/femsle/fny255.

39. Kim S, Kim Y, Suh DH, Lee CH, Yoo SM, Lee SY, Yoon SH. 2020. Heat-re-
sponsive and time-resolved transcriptome and metabolome analyses of
Escherichia coli uncover thermo-tolerant mechanisms. Sci Rep 10:17715.
https://doi.org/10.1038/s41598-020-74606-8.

40. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T,
Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada
S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K,
Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H,
Tomita M. 2007. Multiple high-throughput analyses monitor the response
of E. coli to perturbations. Science 316:593–597. https://doi.org/10.1126/
science.1132067.

41. Massey LK, Sokatch JR, Conrad RS. 1976. Branched-chain amino acid catab-
olism in bacteria. Bacteriol Rev 40:42–54. https://doi.org/10.1128/br.40.1.42
-54.1976.

42. Los DA, Murata N. 2004. Membrane fluidity and its roles in the perception
of environmental signals. Biochim Biophys Acta 1666:142–157. https://
doi.org/10.1016/j.bbamem.2004.08.002.

43. Graumann PL, Marahiel MA. 1999. Cold shock response in Bacillus subtilis.
J Mol Microbiol Biotechnol 1:203–209.

44. Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli
R. 2010. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis,
assessed using quantitative proteomics. Environ Microbiol 12:2658–2676.
https://doi.org/10.1111/j.1462-2920.2010.02235.x.

45. Bore EK, Apostel C, Halicki S, Kuzyakov Y, Dippold MA. 2017. Microbial
metabolism in soil at subzero temperatures: adaptationmechanisms revealed
by position-specific 13C labeling. Front Microbiol 8:946. https://doi.org/10
.3389/fmicb.2017.00946.

46. Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F,
Cruveiller S, D'Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino
G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D,
von Heijne G, Danchin A. 2005. Coping with cold: the genome of the versa-
tile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125.
Genome Res 15:1325–1335. https://doi.org/10.1101/gr.4126905.

47. Sannino F, Giuliani M, Salvatore U, Apuzzo GA, de Pascale D, Fani R, Fondi
M, Marino G, Tutino ML, Parrilli E. 2017. A novel synthetic medium and
expression system for subzero growth and recombinant protein produc-
tion in Pseudoalteromonas haloplanktis TAC125. Appl Microbiol Biotech-
nol 101:725–734. https://doi.org/10.1007/s00253-016-7942-5.

48. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ pre-
processor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/
bty560.

49. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon pro-
vides fast and bias-aware quantification of transcript expression. Nat
Methods 14:417–419. https://doi.org/10.1038/nmeth.4197.

50. Giuliani M, Parrilli E, Ferrer P, Baumann K, Marino G, Tutino ML. 2011. Pro-
cess optimization for recombinant protein production in the psychro-
philic bacterium Pseudoalteromonas haloplanktis. Process Biochemistry
46:953–959. https://doi.org/10.1016/j.procbio.2011.01.011.

51. Fondi M, Gonzi S, Dziurzynski M, Turano P, Ghini V, Calvanese M, Colarusso A,
Lauro C, Parrilli E, Tutino ML. 2021. Modelling hCDKL5 heterologous expres-
sion in bacteria. Metabolites 11:491. https://doi.org/10.3390/metabo11080491.

52. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A,
Haraldsdóttir HS, Wachowiak J, Keating SM, Vlasov V, Magnusdóttir S, Ng
CY, Preciat G, Žagare A, Chan SHJ, Aurich MK, Clancy CM, Modamio J,
Sauls JT, Noronha A, Bordbar A, Cousins B, El Assal DC, Valcarcel LV,
Apaolaza I, Ghaderi S, Ahookhosh M, Ben Guebila M, Kostromins A,
Sompairac N, Le HM, Ma D, Sun Y, Wang L, Yurkovich JT, Oliveira MAP,
Vuong PT, El Assal LP, Kuperstein I, Zinovyev A, Hinton HS, Bryant WA,
Aragón Artacho FJ, Planes FJ, Stalidzans E, Maass A, Vempala S, Hucka M,
Saunders MA, Maranas CD, et al. 2019. Creation and analysis of biochemi-
cal constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc
14:639–702. https://doi.org/10.1038/s41596-018-0098-2.

Transcriptomic Buffering of Metabolism mSystems

Month YYYY Volume XX Issue XX 10.1128/msystems.01124-22 16

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

1 
M

ar
ch

 2
02

3 
by

 1
92

.1
33

.2
8.

4.

https://doi.org/10.1371/journal.pcbi.1007036
https://doi.org/10.1016/j.gene.2011.10.047
https://doi.org/10.1016/j.gene.2011.10.047
https://doi.org/10.1007/s00018-007-6388-4
https://doi.org/10.1007/s00018-007-6388-4
https://doi.org/10.1046/j.1365-2958.2001.02372.x
https://doi.org/10.1128/JB.183.4.1205-1214.2001
https://doi.org/10.1128/JB.188.7.2521-2527.2006
https://doi.org/10.1073/pnas.97.14.7784
https://doi.org/10.1074/jbc.M111496200
https://doi.org/10.1074/jbc.M111496200
https://doi.org/10.1093/nar/gki859
https://doi.org/10.1093/femsle/fny255
https://doi.org/10.1038/s41598-020-74606-8
https://doi.org/10.1126/science.1132067
https://doi.org/10.1126/science.1132067
https://doi.org/10.1128/br.40.1.42-54.1976
https://doi.org/10.1128/br.40.1.42-54.1976
https://doi.org/10.1016/j.bbamem.2004.08.002
https://doi.org/10.1016/j.bbamem.2004.08.002
https://doi.org/10.1111/j.1462-2920.2010.02235.x
https://doi.org/10.3389/fmicb.2017.00946
https://doi.org/10.3389/fmicb.2017.00946
https://doi.org/10.1101/gr.4126905
https://doi.org/10.1007/s00253-016-7942-5
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1016/j.procbio.2011.01.011
https://doi.org/10.3390/metabo11080491
https://doi.org/10.1038/s41596-018-0098-2
https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01124-22

	RESULTS
	PhTAC125 metabolome is qualitatively and quantitatively robust to temperature shift.
	The 0 and 15°C transcriptomes of PhTAC125.
	Genome-scale modeling of growth temperature adaptation.

	DISCUSSION
	Conclusions.

	MATERIALS AND METHODS
	Strains and growth conditions.
	Transcriptomics.
	RNA sequencing.
	RNA-Seq data analysis.
	Metabolomics.
	Genome-scale metabolic modeling.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

