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Abstract

The Casimir force provides a striking example of the effects of quantum
fluctuations in a mesoscopic system. Because it arises from the objects’ elec-
tromagnetic response, the necessary calculations in quantum field theory are
most naturally expressed in terms of electromagnetic scattering from each
object. In this review, we illustrate a variety of such techniques, with a focus
on those that can be expressed in terms of surface effects, including both ide-
alized boundary conditions and their physical realization in terms ofmaterial
properties.
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Nothing can come of nothing.
—King Lear (1.1.92)

It’s cool, huh? Zero-point energy. I save the best inventions for myself.
—Syndrome, The Incredibles

1. INTRODUCTION: THE QUANTUM VACUUM

Since it was first calculated in 1948 (1), the Casimir force between uncharged conducting plates
has provided a compelling application of quantum field theory. Proportional to both � and c, it
provides a concrete illustration of the effects of relativistic quantum fluctuations in a mesoscopic
system. Since then, it has evolved from thought experiment to precision measurement (2–20), and
may in the future guide and influence the design and operation of microelectromechanical devices
(6, 21).

A standard calculation in undergraduate electromagnetism shows that one can compute the to-
tal energy of an electrostatic charge distribution as an integral over space of either the electrostatic
interaction energy of all the charges or the energy density in the electric field,

U = 1
2

∫
φρ dx = − ε0

2

∫
φ∇2φ dx = ε0

2

∫
∇φ · ∇φ dx = ε0

2

∫
E2 dx, 1.

where E is the electric field, φ is the electrostatic potential, and ρ is the charge density; the con-
tributions from the surface at infinity are assumed to vanish. Because this derivation requires an
integration by parts, it does not imply that the integrands are equal, and only the latter approach
yields an energy density consistent with the locality constraints of relativity. From a theoretical
point of view, this argument yields the remarkable result that the energy of a parallel plate ca-
pacitor is stored not on the plates themselves but rather in the electric field between the plates.
However, because any experiments not involving gravitation are sensitive only to the total energy
of a system rather than its spatial distribution within that system, in practice both approaches yield
equivalent results. Furthermore, by writing the electrostatic potential in terms of Green’s function
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G(x, x′), one can express the energy as an interaction between charges:

U = 1
2

∫
φρ dx = 1

8πε0

∫ ∫
ρ(x)G(x, x′ )ρ(x′ ) dxdx′ . 2.

An exactly analogous situation applies to quantum fluctuations in quantum electrodynamics
(QED). As a QED phenomenon, the Casimir energy can be represented in terms of either fluctu-
ating charges and currents or fluctuating fields [and in scattering approaches it is often convenient
computationally to pass between the two representations (22)], but it is no more or less a demon-
stration of the existence of so-called vacuum fluctuations than any other QED process (23). But
once one considers gravitational phenomena, these choices become inequivalent, and one must
consider the field interpretation to maintain consistency with the equivalence principle (24).

These gravitational effects play a particularly striking role in cosmological dark energy. In any
QED calculation, whether it be a mesoscopic Casimir system, an atomic Lamb shift, or a high-
energy physics scattering amplitude, one encounters a formally infinite energy corresponding to
the zero-point oscillation �ω/2 of all the modes of each quantum field. This infinity can be regu-
larized, so that it is rendered finite by assuming that the quantum field theory is modified at very
short distances by new physics that acts as a cutoff on these integrals.However, because that cutoff
must be at much shorter distances that those probed by current experiments, the resulting integral
would yield an extremely large value, corresponding to an energy density per unit volume of the
vacuum. In any measurement of Casimir forces, this large energy cancels and has no observable
consequences.

Because the dynamics of the expanding Universe are sensitive to absolute sources of energy
rather than simply energy differences, this vacuum energy has major effects in cosmology. These
effects are distinctive because a fixed vacuum energy per unit volume has negative pressure: As
the Universe expands, the total energy goes up, in contrast to the usual situation in thermody-
namics, where an increase in volume corresponds to a decrease in energy. So vacuum energy leads
to a relation dU = −pdV with negative pressure p, corresponding to a stress–energy tensor that
is proportional to the space-time metric. Because this negative pressure appears in three entries
of the stress–energy tensor while the positive energy appears only once, the resulting effect on
the expansion rate is the opposite of ordinary matter—dark energy accelerates the expansion of
the Universe, in contrast to the ordinary forces of gravitational attraction that slow it down. The
existence of our observed Universe, however, shows that the actual vacuum energy must be much
smaller than one would estimate from the sum over zero-point energies; otherwise, this acceler-
ated expansion would have prevented the formation of stars and galaxies. At first, it was assumed
that some unknown mechanism instead canceled their contribution to the gravitational stress–
energy tensor. However, “just because it’s infinity doesn’t mean it’s zero”: Precision cosmology
experiments (25, 26) have offered convincing evidence that there is a nonzero vacuum energy
density, just one that is 120 orders of magnitude smaller than what one would expect from an
estimate based on the integral over zero-point modes with a short-distance cutoff.

Because Fermi fields obey canonical anticommutation rather than commutation relations, each
mode of a Fermi field has zero-point energy −�ω/2 rather than �ω/2. As a result, one might hope
that this vacuum energy cancels between Bose and Fermi fields. This proposal is made concrete in
theories with supersymmetry, in which every fermionic field has a bosonic partner and vice versa,
guaranteeing that the vacuum energy vanishes. However, because supersymmetry is not observed
in nature—there is no massless fermionic partner to the photon, for example—supersymmetry
must be spontaneously broken, which reintroduces a nonzero vacuum energy density at the
associated energy scale. While the resulting vacuum energy density is much smaller than that of
the short-distance cutoff, it is still far, far larger than the observed value; because no experimental
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evidence for supersymmetry has been observed, the supersymmetry-breaking scale must be well
above the scales that have been probed in high-energy physics.

We emphasize that this mystery does not represent a physical or logical inconsistency in the
observed energy of the vacuum, however. Like a mass or coupling constant, the vacuum energy
is a renormalized parameter in quantum field theory, meaning that it can be fixed to whatever
value is dictated by experimental input via the corresponding counterterm in the theory. The
bare parameter alone is not physically measurable. In the case of a mass or coupling, however,
one can fix the renormalized parameter on the basis of one experiment and then use that value
in many other experiments, giving the choice predictive power. For the energy of the vacuum, in
effect we have one experiment for one free parameter. As a result, one is motivated to find more
sophisticated models in which this parameter can be connected to other properties of the theory
that can be fixed independently, using as guidance approaches such as the anthropic principle (27),
or nonlinear feedback mechanisms such as quintessence (28) or effective media (29), but how to
do so precisely remains an open question.

2. PROXIMITY FORCE APPROXIMATION AND DERIVATIVE
EXPANSION

As is typical in classical and quantum field theory, exact analytic calculations are tractable only in
problems with a high degree of symmetry. It is therefore invaluable, especially in comparison with
experiments, to have convenient approximations available.

Originally developed by Derjaguin (30) in the context of surface adhesion and colloids, the
proximity force approximation (PFA) relates forces between gently curved objects at close separa-
tions,∼d, to the corresponding interactions between flat surfaces over an area set by the local radii
of curvature,∼R. In this approach, one approximates the Casimir energy between two surfaces as
the local interaction between flat parallel plates:

EPFA =
∫

�

dxU(z), 3.

where z is the local distance between the surfaces and U(z) is the energy per unit area for parallel
plates made of the same materials, which is given below in Equation 9 for the case of ideal bound-
aries. Here the integral is over the surface �, which can be taken as one of the two interacting
surfaces or as a reference surface placed between them. Because this approximation ignores the
effects of nonparallelism of the interacting surfaces, it can depend on the choice of �, meaning
that a different choice may lead to a better or worse approximation.

PFA is widely used to estimate Casimir (1) and van der Waals (31) forces, starting with the
Lifshitz formula (32) for the interaction between parallel plates, and it is asymptotically exact
as d/R → 0. However, the range of validity of this approximation, and the nature of subsequent
correction terms to PFA, was previously unknown. A conceptual breakthrough in 2011 (33)
showed that earlier perturbative corrections to parallel plate forces (34, 35) can be organized into
a gradient expansion in the local separation between surfaces for the force between gently curved
bodies, implementing this program for scalar fields. Recognizing the usefulness of this approach,
Reference 36 generalized the gradient expansion of Reference 33 to practical computations of the
electromagnetic (EM) Casimir force and tested the validity of the PFA corrections against exact
results for the force between a perfectly conducting sphere and plate. The extension to real mate-
rials described by a (frequency-dependent) dielectric response ε(ω) is not trivial and was developed
in Reference 37. In particular, this study obtained an explicit expression for the PFA correction to
the force gradient using the dielectric function of gold, at room temperature. The corrections to
the Casimir free energy were found to scale logarithmically with distance, with an unexpectedly

96 Bimonte et al.

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
02

2.
72

:9
3-

11
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
87

.1
3.

16
2.

59
 o

n 
09

/2
6/

22
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



large temperature dependence. Further research (38) considered the effects of roughness or
surface modulations. The gradient expansion has now been confirmed against a number of exact
results for spheres and cylinders (39), as well as in experiments with corrugated surfaces (40).

2.1. The Gradient Expansion from Resummation of Perturbation Theory

Consider two bodies with gently curved surfaces described by (single-valued) height profiles
z = H1(x) and z = H2(x), with respect to a reference plane �, where x � (x, y) are Cartesian
coordinates on � and the z axis is normal to �. The intervening quantum field can be a scalar
or EM field. For the scalar case, we can impose either Dirichlet or Neumann boundary condi-
tions. The EM case, for ideal (mirror) boundaries, is obtained simply as the sum of Dirichlet and
Neumann cases, corresponding to the two transverse polarizations. Extension to the case of real
materials, described by a complex dielectric permittivity, is possible. The only restriction on the
boundary conditions is that they should describe homogeneous and isotropic materials, so that
the Casimir energy is invariant under simultaneous translations and rotations of the two profiles
in the plane �.

The gradient expansion postulates that the Casimir energy, when generalized to two surfaces
and to arbitrary fields subject to arbitrary boundary conditions, is a functional E[H1, H2] of the
heights H1 and H2, which has a derivative expansion

E[H1,H2] =
∫

�

dxU (H ) [1 + β1(H )∇H1 · ∇H1

+ β2(H )∇H2 · ∇H2 + β×(H )∇H1 · ∇H2

+ β−(H ) ẑ · (∇H1×∇H2) + . . .], 4.

where H(x) � H2(x) − H1(x) is the height difference and the dots denote higher derivative terms.
Here, U(H) is the energy per unit area between parallel plates at separation H; translation and
rotation symmetries in x permit only four distinct gradient coefficients at lowest order, β1(H),
β2(H),β×(H), and β−(H). The form of such a local expansion is motivated by the existence of well-
established derivative expansions of scattering amplitudes (41) from which the Casimir energy
can be derived (22). Arbitrariness in the choice of � constrains the coefficients β in the above
expansion. Invariance of E under a parallel displacement of � requires that all the βs depend only
on the height difference H and not on the individual heights H1 and H2. These coefficients are
further constrained by the invariance of E with respect to tilting the reference plate �. Under a
tilt of � by an infinitesimal angle ε in the (x, z) plane, the height profiles Hi undergo a change by
	Hi = −ε[x + Hi(�Hi/�x)], and the requirement that E not change implies

2[β1(H ) + β2(H )] + 2β×(H ) + H
d logU
dH

− 1 = 0,

β−(H ) = 0, 5.

so that the nonvanishing cross term β× is determined by β1, β2, and U.
Equation 5 indicates that, to second order in the gradient expansion, the two-surface problem

reduces to that of a single curved surface facing a plane. Therefore, U, β1, and β2 can be deter-
mined by setting H1 or H2 to zero. Let us set H1 to zero and define β2(H) � β(H). We can then
determine the exact functional dependence of β(H) onH by comparing the gradient expansion in
Equation 4 to a perturbative expansion of the Casimir energy around flat plates, to second order
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in the deformation. For this purpose, we take � to be a planar surface and decompose the height
of the curved surface asH(x) = d+ h(x), where d is chosen to be the distance of closest separation.
For small deformations |h(x)|/d � 1, we can expand E[0, d + h] as

E[0, d + h] = AU (d ) + μ(d )h̃(0) +
∫

dk
(2π )2

G(k; d )|h̃(k)|2, 6.

where A is the area, k is the in-plane wave vector, and h̃(k) is the Fourier transform of h(x). The
kernel G(k; d) has been evaluated by several authors: in Reference 34 for a scalar field fulfilling
Dirichlet orNeumann boundary conditions on both plates, as well for the EMfield satisfying ideal
metal boundary conditions on both plates, and in Reference 35 for the EM field with dielectric
boundary conditions. For a deformation with small slope, the Fourier transform h̃(k) is peaked
around zero. Because the kernel can be expanded at least through order k2 about k = 0 (41), we
define

G(k; d ) = γ (d ) + δ(d ) k2 + . . . . 7.

For small h, the coefficients in the derivative expansion can be matched with the perturbative
result. By expanding Equation 4 in powers of h(x) and comparing the result with the perturbative
expansion to second order in both h̃(k) and k2, we obtain

U ′(d ) = μ(d ), U ′′(d ) = 2γ (d ), β (d ) = δ(d )
U (d )

, 8.

where the prime symbol denotes a derivative.

2.2. Ideal Boundaries

For ideal boundary conditions (Dirichlet or Neumann for a scalar field, or perfect mirrors for the
EM field) the energy per unit area between parallel plates with separation d is given by

U (d ) = −α
π2

�c
1, 440d3

. 9.

The overall coefficient is α = 1 for scalar field fluctuations where both surfaces have either Dirich-
let or Neumann boundary conditions,α = 2 (corresponding to the two polarizations) for EM fluc-
tuations with perfect conductor boundary conditions, and α = −7/8 for a scalar field with mixed
Neumann/Dirichlet boundaries.

By using Equation 8 and the appropriate perturbation series, one can compute the coefficient
β for the following five cases: a scalar field obeying Dirichlet or Neumann boundary conditions
on both surfaces; Dirichlet boundary conditions on the curved surface and Neumann boundary
conditions on the flat, or vice versa; and the EM field with ideal metal boundary conditions. Be-
cause in all these cases the problem involves no other length apart from the separation d, β is a
pure number. βD was first computed in Reference 33, which found βD = 2/3. Reference 36 then
found βN = 2/3 (1 − 30/π2), βDN = 2/3, βND = 2/3 − 80/7π2 (where the subscripts DN and
ND denote the curved-surface and flat-surface boundary conditions, respectively), and βEM = 2/3
(1 − 15/π2). Upon solving Equation 5, one finds β× = 2 − β1 − β2, where both β1 and β2 are
chosen to be equal to either βD and βN or βEM, for the case of identical boundary conditions on
the two surfaces, or rather β1 = βDN and β2 = βND for the case of a scalar field obeying mixed
ND boundary conditions.

Using the above values for β and β×, one can evaluate the leading correction to PFA by explic-
itly evaluating Equation 4 for the desired profiles. For example, for two spheres of radii R1 and R2,
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both with the same boundary conditions for simplicity, we obtain

E = EPFA

[
1 − d

R1 + R2
+ (2β − 1)

(
d
R1

+ d
R2

)]
, 10.

where EPFA = −(απ3
�cR1R2)/[1, 440d2(R1 + R2)]. The corresponding formula for the sphere–

plane case can be obtained by taking one of the two radii to infinity. These results are in good
agreement with analytic calculations in the sphere–plane system (39, 42).

2.3. Material Boundaries

The approach described above, which converts a perturbative expansion in small deformations
to a gradient expansion, can be performed for any cases where a perturbative expansion is pos-
sible. These include the case of two infinitely thick plates separated by d, each modeled as a ho-
mogeneous and isotropic dielectric material, with frequency-dependent permittivities ε1(ω) and
ε2(ω). Much like the crossover between retarded and nonretarded van der Waals interactions,
the Casimir force also becomes dependent on material properties through ε(ω) at short distances
(typically in the range of 10–100 nm). If the dielectric response is dominated by a resonance at a
single characteristic frequency ω, in the so-called near-field regime of separations d ≤ c/ω, then
the Casimir energy density in Equation 9 changes from U(d) ∝ �c/d3 toU (d ) ∝ �ω/d2.

BecauseU(d) still diverges as d→ 0 even in the near-field regime, PFA and the gradient expan-
sion should still be applicable. This calculation was implemented in Reference 37, which applied
this method to two infinitely thick plates composed of homogeneous and isotropic dielectric ma-
terials, with general permittivities ε1(ω) and ε2(ω). The resulting corrections to PFA are no longer
pure numbers but rather depend on temperature and separation (through material-dependent pa-
rameters). While we do not reproduce the details here, we note that they have in fact been used
for comparison to sphere–plate experiments (40, 43, 44).

In principle, we may anticipate a gradient expansion for any situation when a shape-dependent
quantity diverges sufficiently rapidly as a function of separation. One example, described in
Reference 38, involves radiative heat transfer (RHT) between objects at different temperatures.
The heat transfer between parallel plates at large distances is dominated by propagating photons
and is independent of separation d. However, as noted by Polder & Van Hove (45), RHT at short
separation increases strongly upon decreasing separation because of tunneling of evanescent EM
waves across the vacuum gap. The precise form of this enhancement depends on the material
properties: If the response of the material can be characterized by a single dominant frequency
ω, then in the near-field regime of d ≤ c/ω, RHT diverges as S(d ) ∝ �ω2/d2 (46). RHT due to
evanescent waves has also attracted a lot of interest because of its connection with scanning tun-
neling microscopy and scanning thermal microscopy under ultrahigh-vacuum conditions (47, 48).
The enhancement of heat transfer in the near-field regime (generally denoting separations that
are small in comparison to the thermal wavelength, which is roughly 8 µm at room temperature)
has only recently been verified experimentally (49, 50).

Much like PFA, the leading term for RHTbetween closely spaced curved objects has been com-
puted by use of a corresponding proximity transfer approximation (PTA) (51–53). Reference 46
extended a gradient expansion approach to compute the first correction to PTA, which can be
expressed as a spectral decomposition, with a correction factor β(ω) at each frequency.

2.4. Further Applications

While the above examples focus on two surfaces, the gradient expansion can also be applied to es-
timate the interaction between a polarizable particle and a gently curved surface. For a particle of
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polarizability α, the Casimir–Polder force (54) due to a flat surface scales with the separation d as
α × �c/d4 in the far field and as α × �ω/d3 in the near field. Perturbative results for the interaction
of the particle with a slightly modulated surface can again be converted to a gradient expansion
for the force close to a curved surface. Reference 55 showed that the leading correction on ap-
proaching a surface with profile H(x) depends on its curvature, proportional to d�2H, while the
next order scales as (d�2H)2. If the polarizable particle is a molecule, Reference 56 demonstrates
that, in principle, the shift of its rotational levels due to Casimir–Polder interactions can be used
as a probe of the surface profile.

3. THE SCATTERING APPROACH AND ITS APPLICATIONS

The calculations we have studied in the previous section are based on local approximations. Scat-
tering methods provide a complementary approach, based on the global EM response of each
object in a Fourier scattering basis. As a result, this approach provides exact expressions that are
applicable to both concrete calculations and broader theoretical analyses.

The fundamental idea of the scattering approach is to decompose the combined quantum fluc-
tuations of a pair of objects in terms of the fluctuations of each object individually, combined with
a propagator that carries these fluctuations from one object to another. The result is the so-called
TGTG form combining the scattering T matrix (57, 58) for each object with the free Green’s
function propagator (59). The material and geometric properties of each object are represented
through its individual T matrix, independently of the other objects, while the propagator cap-
tures information about the objects’ relative position and orientation but is independent of the
properties of the objects themselves. Because the scattering matrices for different objects are of-
ten most naturally written in different bases—for example, spherical and Cartesian coordinates
for a sphere–plane system—the relevant change of basis may also be needed in combining these
expressions. Finally, the sum over all possible fluctuations is introduced as a log determinant or,
equivalently, a trace log, which in practice is expressed as an integral over frequencies and a sum
over scattering channels, with the former typically Wick rotated to the imaginary frequency axis.

Scattering theory methods were first applied to the parallel plate geometry by reformulating
Lifshitz theory in terms of reflection coefficients (60). These efforts led to a derivation of the
Lifshitz formula using reflection coefficients for lossless infinite plates (61) and its extensions to
lossy case (62) and nonspecular (63) reflection. Around the same time, the multiple-scattering
approach to the Casimir energy for perfect metal objects was developed, making it possible to
compute the Casimir energy at asymptotically large separations (64, 65) at both zero and nonzero
temperatures. In this approach, information about the conductors is encoded in a local surface
scattering kernel.

Another scattering-based approach has been to express the Casimir energy as an integral over
the density of states of the fluctuating field, using the Krein formula (66–68) to relate the density
of states ρ(k) to the S matrix for scattering from the ensemble of objects:

ρ(k) = 1
2π i

Tr
d
dk

logS (k). 11.

This S matrix is difficult to compute in general, but the use of many-body scattering of scalar fields
made it possible to connect the S matrix of a collection of spheres (69) or disks (70) to the objects’
individual S matrices, which are easy to find. Subsequent research combined this result with the
Krein formula to investigate the scalar and fermionic Casimir effect for disks and spheres (71–73).
Casimir energies of solitons in renormalizable quantum field theories have been computed using
scattering theory techniques that combine analytic and numerical methods (74).
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References 75 and 76 introduced path integral methods to the study of Casimir effects and used
them to investigate the EM Casimir effect for two parallel perfect metal plates. Similar methods
were used to study the scalar thermal Casimir effect for Dirichlet,Neumann, and mixed boundary
conditions in References 77 and 78. This approach was adapted to the quantum case and devel-
oped further in References 79 and 80. It was subsequently applied to the quantum EM Casimir
interaction between plates with roughness (34) and between deformed plates (81). Finally, the path
integral approach was connected to scattering theory in Reference 82.

Because this approach relies on the fundamental formalism of quantum field theory, it has
a wide range of applications to problems involving quantum (and, as discussed below, thermal)
fluctuations. To our knowledge, it was first developed in precise detail for Casimir calculations in
Reference 83. A typical result in this approach takes the form (59, 84, 85)

E = �c
2π

∫ ∞

0
dκ log det(1 −G21T1G12T2), 12.

where Ti are the scattering Tmatrices (57, 58) for each object andG12 andG21 are the free Green’s
functions, which propagate fluctuations in the scattering basis of one object to the scattering basis
of the other. Here we have considered only two objects, but this approach has a natural extension
to larger numbers of objects (22, 86–88).

By making use of the identity

log det(1 − A) = Tr log(1 − A) = −Tr
∞∑
j=0

Aj

j
13.

for A = G21T1G12T2, we can build an intuitive picture of the physics that this formula captures.
The T matrix T1 describes a quantum fluctuation on object 1. The Green’s function G12 then
propagates this fluctuation from object 1 to object 2, the T matrix T2 describes the fluctuation
that results from its interaction with object 2, and finally the Green’s function G21 propagates this
result back to object 1. The sum captures all possible numbers of round-trip reflections, while the
trace sums over all possible fluctuation modes with a particular frequency and the integral sums
over all frequencies, here having been Wick rotated to imaginary wave number iκ = k = ω/c.

To demonstrate the practical application of the formula in Equation 12, we consider the simple
case of two isotropic particles (such as atoms or nanoparticles), which are small in comparison to
their separation d. We assume that the particles have only electric dipole polarizabilities α1 and
α2, respectively, which are independent of frequency. (The latter is justified in the retarded limit,
where d is much larger than the speed of light divided by a characteristic frequency below which
αj become static.) Then the Green’s functions and the Tmatrices in Equation 12 can be expressed
in terms of spherical dipole waves, yielding (3 × 3)-dimensional matrices. The T matrices are
diagonal, given by

Tj;mm′ = 2
3
α jκ

3δmm′ 14.

for j = 1 or 2 and m = −1, 0, or 1. With the dipole expansion of the Green’s functions G12 and
G21, one obtains, after taking the determinant in Equation 12, the energy

E = − �c
πd

α1

d3
α2

d3

∫ ∞

0
du(3 + 6u+ 5u2 + 2u3 + u4)e−2u, 15.

where we have set u = κd and expanded the logarithm around one because αj � d3. Integration
easily yields

E = − 23
4π

�c
α1α2

d7
, 16.

which is the so-called Casimir–Polder potential.
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As an exact expression, Equation 12 can be used to prove general results applicable to arbitrary
geometries. For example, Reference 59 applies a Feynman–Hellmann argument to show that the
force between any configuration of EM conductors with mirror symmetry is always attractive, a
result that informs our discussion below of Casimir stresses on an individual object. It can also be
used to demonstrate a form of Earnshaw’s theorem, ruling out the existence of a stable equilibrium
generated by Casimir forces (89).

For experimental research, spherical, cylindrical, and planar geometries are by far the most
common and useful. As first detailed in Reference 83, one can use a multipole basis to express
scattering from each object in its own partial-wave basis, and then use expansions of the free
Green’s function to translate scattering from one object’s basis to another (22, 85, 87, 90). This
approach has been adapted to a wide range of calculations for plane (63), cylinder, cylinder–plane,
and cylinder–sphere geometries (22, 84, 91, 92); sphere geometries for both scalar (72, 73, 87)
and EM (22, 85) fluctuations; and, most importantly for experiments, sphere–plane geometries in
electromagnetism (86, 93, 94).

3.1. Geometries with Edges and Tips

Scattering methods are much more tractable for objects with geometries for which the T matrix
is diagonal. One can extend the range of such situations by considering more unusual coordinate
systems. For scalar fluctuations, these include elliptic cylinder (95), parabolic cylinder (96), and
spheroidal geometries (97), for which limiting cases are a finite-width strip, a half-plane, and a
disk, respectively. One can also consider scattering in a different variable in order to study a wedge
or cone using ordinary cylindrical and spherical coordinates, respectively (98). In these cases, one
uses contour integration to replace the scattering theory sum over partial waves with a continuous
integral. One can also consider complementary geometries by using systems with planar gaps (99)
and by applying the generalization of Babinet’s principle (100), and for scalar theories one can
apply worldline methods (101).

For perfect conductors, all of these cases can be extended to electromagnetism except for
spheroidal scattering, as any translation-invariant geometry can be decomposed into polariza-
tions obeying Dirichlet and Neumann boundary conditions, and scattering from a cone can also
be diagonalized through analytic continuation of the standard techniques of Mie scattering. The
limiting case of the perfectly conducting disk can nonetheless be solved exactly as an analytic cal-
culation in oblate spheroidal coordinates (102, 103), for which the scattering matrix is no longer
diagonal.

The wedge, parabolic cylinder, and elliptic cylinder results can be combined to yield a con-
sistent model of the effects of edges (104–106). The result can be expressed as an approximate
form of the Casimir energy per unit length of a perfectly conducting strip parallel to a perfectly
conducting plane:

E
�cL

= − π2

720
2d
H3

+ 2β
H2

+ γ

2dH
+ . . . . 17.

Here H is the separation between the strip and the plane, 2d is the width of the strip, and
β = 0.00092 and γ = −0.0040 are numerical parameters capturing the effect of a single edge
and the interaction between two edges, respectively; the result for β is consistent with limiting
cases of the wedge and parabolic cylinder. One can also obtain the energy per unit length of a
perfectly conducting half-plane perpendicular to a perfectly conducting plane as (96)

E
�cL

=
∫ ∞

0

qdq
4π

log det[1νν′ − (−1)νk−ν−ν′−1(2qH )] = −C⊥
H2

, 18.
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where H is the separation distance, k�(u) is the Bateman k-function (107), the determinant is over
ν, ν ′ = 0, 1, 2, 3. . . , and C� = 0.0067415 is obtained by numerical integration.

3.2. Casimir Stresses

An interesting extension of Casimir force calculations is to the case of Casimir stresses on a single
object. This problem is harder to define than the case of forces between rigid bodies, because de-
formation of a single object requires a variation of the physical configuration of an object, rather
than simply a variation of the position of fixed objects. As a result, the formally infinite contri-
butions localized on the object no longer cancel, and we must apply renormalization techniques.
These in turn require a model of the object’s material properties.

Debates about Casimir stresses originate from an early model of the electron as a charged shell
for which attractive Casimir forces balance Coulomb repulsion (108). Here the dynamics of the
shell are assumed as a definition of the fundamental interactions.One finds that specifying an ideal
conductor boundary condition leads to a positive energy, and hence expansion of the shell (109–
111), invalidating the model’s original premise. Of course, modern QED provides a well-verified
description of the electron within the broader framework of renormalized quantum field theory.

This result has often been misinterpreted, however, to imply that a conducting shell will ex-
perience a repulsive stress. This case is very different, because the dynamics of an actual piece of
conducting material are determined by the underlying physics of the matter that makes it up and
so cannot be assumed to implement an ideal boundary condition at all frequencies. [The Casimir
energy of an idealized boundary can be of interest for the mathematical Weyl problem of the rela-
tionship between eigenvalue spectra and geometry (112, 113).] A repulsive stress is also in conflict
with the well-established attractive Casimir force between conductors; in particular, the force be-
tween two hemispheres, as in any configuration of conductors with mirror symmetry, is always at-
tractive (59). Similarly, while a boundary condition calculation yields a repulsive stress on a rectan-
gular solid, the force on a piston is attractive, as has been shown in two dimensions (114) and three
dimensions (115), where the latter was derived using a geometrical optics approximation (116).

The resolution of this puzzle lies in contributions from within the material, which no longer
cancel when the body is not rigid. Modeling the material as a position-dependent dielectric (117)
shows that the contribution from within the material is attractive as well as larger in magnitude
than the repulsive external contribution. In the limit where the dielectric becomes infinitely strong,
the sphere becomes a conductor (118), but this limit does not commute with the limits involved in
renormalization: The theory must be cut off at a high enough frequency that the material is trans-
parent. Qualitatively similar results have been obtained by considering specific materials rather
than a generic dielectric, such as a carbon nanostructure (119) or a so-called fish-eye medium
(120). These findings are also in agreement with research by Deutsch and Candelas (121, 122),
who showed that divergences in Casimir stresses arise from surface counterterms (123) that can-
not be removed by renormalization, as well as with more detailed calculations in models with a
fluctuating scalar field (124–126).

A key aspect of this research is that divergences associated with an ideal boundary arise in
two different ways: the “sharp” limit of infinitesimal thickness and the “strong” limit of strong
potential. For stresses on a real material, these limits are intertwined. For example, as a spherical
shell expands and increases its surface area, it becomes thinner, leading to a weaker EM response.
A precise description of this situation requires detailed information about the material’s EM
properties, but one can gain a qualitative understanding by approximating this behavior via
renormalization counterterms. In this process, one introduces a short-distance cutoff, which in a
material represents a length scale set by the lattice spacing. The formally divergent contributions
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Figure 1

Difference in renormalized energy between shells of radii R2 and R1, as a function of R2 in units where
R1 = 2, for generic values of the Drude plasma wavelength and conductivity. The attractive effect of the
additional contribution from fluctuations within the material reverses the repulsive traditional contribution
from fluctuations outside the material. Figure adapted from Reference 117 (CC BY 4.0).

that arise for a conducting material at short wavelength are then combined with cutoff-dependent
counterterms, which are fixed so that the combined result matches experimental inputs. For a
stress calculation, one must then fix the dependence of these inputs on the geometry. A reasonable
estimate is to assume that the overall strength of the potential, integrated over volume, remains
constant, roughly corresponding to holding the total number of charge carriers constant. In scalar
models (124–126) one can also adjust the strength of the potential used to model the object’s
scattering response, while for EM models it is more appropriate to use a Drude model dielectric
with fixed plasma wavelength and conductivity and instead vary the thickness of the material so
that its volume remains constant.

While this result does not precisely model a particular material like the examples listed above,
it allows for a generic description of the discrepancy between the apparent repulsive stress on
a spherical conducting shell with the generally attractive Casimir force for dielectric materials,
including their perfectly conducting limit. What one finds (117) is that the Casimir self-energy
decomposes into a sum of two terms: the traditional contribution due to the shell’s external EM
response and an additional contribution localized within the thickness of the shell, which consists
of a renormalized integral over r. The former reproduces the Boyer result in the conducting limit,
but the latter is of comparable magnitude with opposite sign and renders the full result attractive
(Figure 1).

4. UNIFIED BULK AND SURFACE FORMULATION

While the scattering theory method offers an elegant way of expressing Casimir interaction en-
ergies that can be used both to obtain analytic results and to carry out precise calculations in
semianalytic form, it also suffers from significant limitations. For objects without a high degree
of symmetry, the T matrix is off-diagonal and therefore more difficult to calculate. At the same
time, as the separation between the objects decreases, higher frequencies and partial waves become
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Figure 2

Configuration of dielectric bodies. (a) General shapes and positions that can be studied either by integrating
the Maxwell stress tensor over a closed surface enclosing the body, directly yielding the Casimir force, or by
integrating over all electromagnetic gauge field fluctuations in a path integral, yielding the Casimir free
energy. (b) Nonpenetrating configurations that can be studied within the scattering approach. Figure adapted
from Reference 130 (CC BY 4.0).

important as the calculation becomes dominated by contributions from waves near the point of
closest approach (127), so the numerical cutoffs in both the trace over modes and the integral over
wave number must be extended to larger and larger values, putting more stress on the numerical
algorithms. Taking this case to an extreme, one can imagine a situation where objects interpene-
trate within the relevant scattering basis—for example, if scattering from object 1 is computed in
a spherical basis and object 2 does not sit entirely outside a sphere enclosing object 1 (Figure 2a),
then the expansion fails entirely. From an experimental point of view, however, these kinds of
short-distance configurations can be the most appealing, as they represent situations where the
force is strongest.

Surface methods (128) can provide an alternative approach that overcomes these limitations.
The surface approach was introduced in the literature as a method for a purely numerical com-
putation of Casimir interactions (129). Two different methods to implement the computation of
Casimir forces from fluctuating currents exist: One can either integrate the Maxwell stress tensor
over a closed surface enclosing the body, directly yielding the Casimir force, or integrate over all
EM gauge field fluctuations in a path integral, yielding the Casimir free energy. We review both
approaches here.

In comparison to scattering theory–based approaches, the surface formulation has the advan-
tage of not requiring the use of eigenfunctions of the vector wave equation, which are specific to
the shapes of the bodies. As a result, this approach is applicable to general geometries and shapes,
including interpenetrating structures. The power of the surface approach has been demonstrated
by numerical implementations in Reference 129, where it was used to compute the Casimir force
in complicated geometries.

Recent research has demonstrated the equivalence of a surface current approach and bulk
scattering methods (130). This result can be considered the Casimir analog of the Huygens
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equivalence principle (131), which shows that the EM effects of an arbitrary current distribution
contained within a closed surface can be exactly reproduced by an equivalent current distribution
located on the surface. The main recent advances are (a) a new, compact, and elegant derivation
of the Casimir force from the Maxwell stress tensor within both a T operator approach and
a surface operator approach; (b) a new surface formula for the Casimir free energy expressed
in terms of a surface operator; and (c) a new path integral–based derivation of a Lagrangian
and Hamiltonian formulation for the Casimir free energy. Below, we review the main concepts
and results of the stress tensor and path integral formulations of the surface current–based
approach.

Figure 2a shows the geometries and shapes to which the approaches can be applied. For
comparison, Figure 2b displays the nonpenetrating bodies to which scattering theory–based ap-
proaches are limited. In general, we assume a configuration composed of N bodies with dielectric
functions εr(ω) and magnetic permeabilities μr(ω), where r = 1, . . . , N. The bodies occupy the
volumes Vr with surfaces �r and outward-pointing surface-normal vectors n̂r . The space with
volume V0 in between the bodies is filled by matter with dielectric function ε0(ω) and magnetic
permeability μ0(ω).

4.1. Stress Tensor Approach

The common starting point of both the bulk and surface approaches to computing Casimir forces
between two ormore bodies is the physical picture that the vacuum surrounding the bodies is filled
with quantum and thermal fluctuations of the EM field. If the bodies are in thermal equilibrium
with the environment at temperature T, then the correlators of the EM field can be derived from
linear response theory (132):

〈Êi(x, t )Ê j (x′, t ′ )〉sym = �

∫ ∞

−∞

dω
2π

coth
(

�ω

2kBT

)
Im[G (EE )

i j (x, x′,ω)] e−iω(t−t
′ ),

〈Ĥi(x, t )Ĥj (x′, t ′ )〉sym = �

∫ ∞

−∞

dω
2π

coth
(

�ω

2kBT

)
Im[G (HH )

i j (x, x′,ω)] e−iω(t−t
′ ),

〈Êi(x, t )Ĥj (x′, t ′ )〉sym = �

∫ ∞

−∞

dω
2π

coth
(

�ω

2kBT

){
−i Re[G (EH )

i j (x, x′,ω)]
}
e−iω(t−t

′ ), 19.

where the subscript sym on the average symbols denotes the symmetrized products of field op-
erators, and G (αβ )

i j (r, r′,ω) (with α, β = E, H) are the Fourier transforms of the classical Green’s
functions for the system of bodies.The latter Green’s functions are obtained by solving themacro-
scopic Maxwell equations, subjected to the appropriate boundary conditions on the surfaces of the
bodies.We emphasize that Equation 19 includes both zero-point (i.e., quantum) and thermal fluc-
tuation of the EM field. The validity of Equation 19 is subject to the condition that the length
scales of the relevant fluctuations should be large compared with atomic distances, such that the
EM material properties of the bodies can be described by their macroscopic response functions.
For simplicity, we assume that the bodies are made out of homogeneous and isotropic magneto-
dielectric materials, characterized by the respective frequency-dependent electric and magnetic
permittivities ε(ω) and μ(ω).

The mechanical effects of the fluctuating EM field on the bodies are determined by the expec-
tation value 〈Tij〉 of the Maxwell stress tensor,

〈Ti j (x)〉 = 1
4π

{
〈Ei(x)Ej (x)〉 + 〈Hi(x)Hj (x)〉 − 1

2
δi j [〈Ek(x)Ek(x)〉 + 〈Hk(x)Hk(x)〉]

}
, 20.
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where the correlators are evaluated for equal times t = t′. To gain further insight, we note that
at points x and x′, both lying in the vacuum medium, the Green’s functions G (αβ )

i j (x, x′;ω) can be
decomposed as follows:

G (αβ )
i j (x, x′; ω) = G (αβ;0)

i j (x − x′; ω) + �
(αβ )
i j (x, x′;ω), 21.

where G (αβ;0)
i j (x − x′; ω) is the Green’s function of free space and �

(αβ )
i j (x, x′; ω) describes the EM

field scattered by the bodies.When the above decomposition is used in Equation 20, the expecta-
tion value of the stress tensor is decomposed accordingly as

〈Ti j (x)〉 = 〈T (0)
i j (x)〉 + �i j (x), 22.

where 〈T (0)
i j (x)〉 is the free-space contribution and �ij(x) is the scattering contribution. Accord-

ing to Equation 19, 〈T (0)
i j (x)〉 and �ij(x) involve frequency integrals of the imaginary parts of the

respective Green’s functions G (αβ;0)
i j (x, x′; ω) and �

(αβ )
i j (x, x′;ω).

Let us consider 〈T (0)
i j (x)〉 first. Because

lim
x→x′ Im[G (EE;0)

i j (x, x′,ω)] = lim
x→x′ Im[G (HH;0)

i j (x, x′,ω)] = 2ω3

3 c3
δi j , 23.

it is clear that 〈T (0)
i j (x)〉 is expressed by a formally divergent frequency integral. Note, however,

that according to Equation 23, 〈T (0)
i j (x)〉 represents a homogeneous and isotropic pressure acting

the surfaces of the bodies, which is independent of the material properties of the bodies. Because
this pressure cannot give rise to an overall force on the body, only a stress, as discussed above, we
can neglect it here.

Let us turn to the scattering contribution �ij(x). By performing a Wick rotation to the imagi-
nary frequency axis, we find that �ij(x) has the expression

�i j (x)= kBT
2π

∞∑
n=0

′
[
�

(EE )
i j (x, x; i ξn ) + �

(HH )
i j (x, x; i ξn )

−1
2
δi j

(
�

(EE )
kk (x, x; i ξn ) + �

(HH )
kk (x, x; i ξn )

)]
, 24.

where ξ n = 2πnkBT/� are the Matsubara imaginary frequencies, and the prime symbol in the
summations means that the n = 0 term is taken with a weight of one-half. The sum on the right-
hand side of the above equation is finite, because the scattering parts of the Green’s functions
�

(αβ )
i j (x, x′; ω) remain finite in the coincidence limit x′ → x.
The Casimir force on body r can be now obtained by integrating�ij(x) on any surface Sr drawn

in the vacuum that surrounds that body and excludes all other bodies, yielding

F (r)
i =

∮
Sr
d2σ n̂ j (x) � ji(x). 25.

The surface integral on the right-hand side of this equation can be recast in a remarkably simple
form, by taking advantage of the peculiar structure of the scattering Green’s functions �

(αβ )
i j (x, x′ )

(for brevity, from now on we do not display the dependence of the Green’s functions on the Mat-
subara frequencies ξ n). This structure becomes manifest once �

(αβ )
i j (x, x′ ) is expressed in terms of

the so-called T operator (57, 58). Recall that the T operator T (ρσ )
kl (y, y′ ) is defined to give the cur-

rents induced at the point y in the interior of the bodies by an external EM field at point y′. Using
the T operator, we can express the scattering parts of the Green’s functions as

�
(αβ )
i j (x, x′ ) =

N∑
r,r′=1

∫
Vr
d3y

∫
Vr′
d3y′G (αρ;0)

ik (x − y)T (ρσ )
kl (y, y′ )G (σβ;0)

l j (y′ − x′ ). 26.
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Despite its simple meaning, the T operator is difficult to compute in general, and its expression is
known only for bodies with sufficiently symmetric geometries, mostly in cases where the T opera-
tor is diagonal. A more powerful representation of the scattering Green’s functions can be derived
from the equivalence principle of classical EM theory (131). According to this principle, the in-
duced currents existing in the interior of the bodies can be replaced by fictitious surface currents,
which produce the same scattered field as the induced currents. By following this equivalence
principle, we arrive at an alternative representation of the scattering Green’s functions consisting
of a double surface integral extended onto the surfaces of the bodies (129, 130):

�
(αβ )
i j (x, x′ ) = −

N∑
r,r′=1

∫
Vr
d3y

∫
Vr′
d3y′ δ[Fr (y)] δ[Fr′ (y′ )]

×G (αρ;0)
ik (x − y)

(
M−1)(ρσ )

kl (y, y′ )G (σβ;0)
l j (y′ − x′ ), 27.

where δ(x) is the Dirac delta function and Fr(y) = 0 is the equation of the surface �r of the rth
body. The surface operator M (αβ )

i j (y, y′ ), whose inverse appears in the integral on the right-hand
side, has a remarkably simple expression (129, 130):

M (αβ )
i j (y, y′ ) =

⎧⎪⎨
⎪⎩

�
(r)
ik (y)

[
G (αβ;r)
kl (y − y′ ) + G (αβ;0)

kl (y − y′ )
]
�

(r)
l j (y

′ ) if y, y′ ∈ �r ,

�
(r)
ik (y) G (αβ;0)

kl (y − y′ ) �
(s)
l j (y

′ ) if y ∈ �r , ˜y′ ∈ �s,
r = s.

28.

Here,�(r)
ik (y) is the projector onto the plane tangent at �r at y, and G (αβ;r)

i j (y − y′ ) are the Green’s
functions for an infinite homogeneous and isotropic magneto-dielectric medium identical to that
of body r. Inspection of Equations 26 and 27 reveals that both representations of the scattering
Green’s functions have a common Ĝ(0)K̂ Ĝ(0) structure, where the K̂ operator coincides either
with Waterman’s T operator or with (minus) the inverse of the surface operator M̂. Importantly,
both the T operator and the surface operator M̂ satisfy the reciprocity relations (131) enjoyed by
the Green’s functions. Reference 130 shows that whenever the scattering Green’s function has the
Ĝ(0)K̂ Ĝ(0) structure, with a K̂ satisfying reciprocity, the force formula in Equation 25 can be recast
in the remarkably simple form

F(r) = kBT
∞∑
n=0

′ Tr
[
K̂(i ξn )

∂

∂xr
Ĝ (0)(i ξn )

]
, 29.

where the trace operation Tr denotes an integral over the volumes occupied by the bodies and a
sum over both the spatial indices i and j and the internal indices α and β, and the symbol �/�xr
denotes a derivative with respect to a rigid translation of the rth body. When K̂ is identified with
theT operator,Equation 29 reproduces theTGTG formula derived inReference 59. If K̂ is instead
identified with (minus) the surface operator (M̂ )−1, then Equation 29 reproduces the surface force
formula derived in Reference 129. Thus, Equation 29 encompasses in a single compact formula
the bulk and surface formulations of the Casimir force.

Starting from Equation 29, it is possible to compute the Casimir free energy of the system of
bodies. Direct integration of Equation 29 leads to a formally divergent result, Fbare. However, a
finite expression is easily recovered by subtracting from Fbare the self-energies of the individual
bodies. The details of the subtraction procedure differ slightly within the bulk and surface formu-
lations, but the final formula for the renormalized Casimir free energy F has an identical form in

108 Bimonte et al.

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
02

2.
72

:9
3-

11
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
87

.1
3.

16
2.

59
 o

n 
09

/2
6/

22
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



both approaches (130). In the simple case of two bodies, it reads

F = kBT
∞∑
n=0

′Tr log
[
1 − K̂1 Ĝ (0)K̂2Ĝ (0)

]
. 30.

Within the bulk approach, the operator K̂r coincides with the T operator T (αβ;r)
i j (y, y′ ) of body

r in isolation, while in the surface approach K̂r coincides with (minus) the inverse of the surface
operatorM (αβ;r)

i j (y, y′ ), defined by the first line of Equation 28.
We emphasize that Equations 29 and 30 are valid for any shape and relative disposition of

the bodies. In particular, both equations hold for a system of interleaved bodies, possibly nested
one inside the other. A case deserving special consideration is that of a separable configuration
of two bodies, namely a configuration in which the bodies can be separated from each other by
a plane drawn in the vacuum between them. Three typical examples of separable configurations
are those of a sphere opposite a plate, a system of two spheres, and a sphere and a cylinder, which
represent the configurations adopted in the vastmajority of experiments.Reference 130 shows that
in a separable configuration, the general formula (Equation 30) reproduces the famous scattering
formula (22, 63, 85, 90) in which the operators K̂r are replaced by the scattering matrices of the
bodies and Ĝ (0) is replaced by the so-called translation matrices.

4.2. Path Integral Approach

As in Section 4.1, we consider N dielectric bodies with the properties described above. In the
Euclidean path integral quantization of the EMfield, the Casimir free energy at finite temperature
T can be obtained as

F = −kBT
∞∑
n=0

′ log
Z (ξn )
Z∞(ξn )

, 31.

where again the sum runs over theMatsubara frequencies ξ n = 2πnkBT/�, with a weight of 1/2 for
n= 0. The partition functionZ is given by a path integral that we now derive. The partition func-
tion Z∞ describes the configuration of infinitely separated bodies and subtracts the self-energies
of the bodies from the bare free energy.

We express the action of the EM field in the absence of free sources in terms of the gauge field
A. We choose the transverse gauge with A0 = 0. The functional integral then runs over A only.
The electric field is given by E = ikA → −κA, and the magnetic field is given by B = � × A. The
action in terms of the induced sources at fixed frequency κ is then given by

Ŝ[A]=−1
2

∫
R3
d3x

[
A2εxκ

2 + 1
μx

(∇ × A)2
]

− κ

N∑
r=1

∫
Vr
d3xA · Pr 32.

for fluctuations A of the gauge field and induced bulk currents Pr inside the objects. The inverse
of the kernel of the quadratic part of this action is given by the Green’s tensor, which for spatially
constant εr and μr of body r is given by

↔
G

(AA;r)
(x, x′ ) = μr

(
1 − 1

εrμrκ2
∇ ⊗ ∇

)
e−

√
εrμrκ|x−x′ |

|x − x′| . 33.

From the relation between the gauge field A and the electric field E, the relation

−κ2
↔
G

(AA;r)
(x, x′ ) = ↔

G
(EE;r)

(x, x′ ) follows, allowing us to compare the results below with those of
the stress tensor–based derivation. Next, we define the classical solutions A r of the vector wave
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equation in each region Vr, obeying ∇ × ∇ × A r + εrμrκ
2A r = −κμrPr . The source terms of

Equation 32 can then be written as an integral over the surface of the body:

− κ

∫
Vr
d3xA · Pr = 1

μr

∫
�r

d3x
(
A− · [n r × (∇ × A r )] + (∇ × A)− · (n r × A r )

)
. 34.

The values of the gauge field A and its curl � × A appearing in this expression are those obtained
when the surface is approached from the inside, denoted by A− and (� × A)−. Note that in the
above surface integral,A and � × Amultiply vectors that are tangential to the surface; therefore,
only the tangential components of A and � × A contribute to the integral. Thus, we can use the
continuity conditions of the tangential components of E and H,

n r × E− = n r × E+,
1
μr

n r × (∇ × E)− = 1
μ0

n r × (∇ × E)+, 35.

to write the source terms also as

− κ

∫
Vr
d3xA · Pr =

∫
�r

d3x
(

1
μr

A+ · [n r × (∇ × A r )] + 1
μ0

(∇ × A)+ · (n r × A r )
)
, 36.

where the values of the gauge field A and its curl � × A appearing in this expression are now
those obtained when the surface is approached from the outside, denoted by A+ and (� × A)+.

Now we shall see the advantage of having expressed the source integrals in terms of the values
of A and � × A when the surfaces are approached from either the outside or the inside of the
objects. In the region V0, the field A � A0 is fully determined by its values on the surfaces �r

and by ε0 and μ0, which are constant across V0. When integrating out A0, we compute the two-
point correlation function of A+ and (� × A)+ on the surfaces �r, so the behavior of A0 inside the
regionsVr with r> 0 is irrelevant. Following the same arguments forA�A r inside the objects, we
find that the behavior ofA r outside of region Vr is irrelevant for computing the correlations of A−
and (� × A)− on the surfaces �r. Therefore, we can replace in the action the spatially dependent
εx by ε0 when the coupling of A0 to the surface fields A r is represented by Equation 36, and
similarly we replace εx by εr when the coupling of A r to the surface fields A r is represented by
Equation 34.

That this choice is justified can also be understood as follows. The field A0 in region V0 can
be expanded in a basis of functions that obey the wave equation with ε0. The same can be done
for A r in the interior of each object; in other words, A r can be expanded in a basis of functions
that obey the wave equation with εr in Vr. For each given set of expansion coefficients in V0

there are corresponding coefficients within each region Vr that are determined by the continuity
conditions at the surfaces �r. The functional integral over A then corresponds to integrating over
consistent sets of expansion coefficients that are related by the continuity conditions. The two-
point correlations ofA+ and (� ×A)+ on the surfaces�r are then fully determined by the integral
over the expansion coefficients of A0 in V0 only, and the interior expansion coefficients play no
role. Equivalently, the two-point correlations ofA− and (� ×A)− on the surfaces�r are then fully
determined by the integral over the expansion coefficients of A r in Vr only, and now the exterior
expansion coefficients are irrelevant. Thus, in the functional integral, the integration of A can be
replaced by N + 1 integrations over the fields A r and r = 0, . . . , N, where each A r is allowed to
extend over unbounded space with the action for a free field in a homogeneous space with εr and
μr. The multiple counting of degrees of freedom that results from N + 1 functional integrations
poses no problem, because the (formally infinite) factor in the partition function cancels when the
Casimir energy is computed from Equation 31.
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With this representation, we can write the partition function as a functional integral over the
fluctuations A r, separately in each region Vr, and the surface fieldsA r on body r, with the action

Ŝ[{A r}, {A r}] = −1
2

N∑
r=0

∫
R3
d3x
[
A2
rεrκ

2 + 1
μr

(∇ × A r )2
]

+
N∑
r=1

∫
�r

d3x
[
1
μr

A0[n r × (∇ × A r )] + 1
μ0

(∇ × A0)(n r × A r )
]

+
N∑
r=1

∫
�r

d3x
[
1
μr

A r[n r × (∇ × A r )] + 1
μr

(∇ × A r )(n r × A r )
]
. 37.

Nowwe can easily integrate out the fluctuationsA r, noting that the two-point correlation function
〈A r (x)A r′ (x′ )〉 equals zero for all r, r′ = 0, . . . ,N, where r = r′. This yields the partition function

Z (ξ )=
N∏
r=1

∫
DA r exp

[
−β

2

(
N∑
r=1

∫
�r

d3x
∫

�r

d3x′A r (x)Lr (x, x′ )A r (x′ )

+
N∑

r,r′=1

∫
�r

d3x
∫

�r′
d3x′A r (x)Mrr′ (x, x′ )Ar′ (x′ )

⎞
⎠
⎤
⎦ 38.

with the kernels

Lr (x, x′ ) = 1
μ2
r

[
∇ × ∇ × ↔

G
(AA;r)

(x, x′ )(n r × �· )(n′
r ×�· )

+ ∇ × ↔
G

(AA;r)
(x, x′ )[n r × (∇ × �· )](n′

r ×�· )

+ ∇ × ↔
G

(AA;r)
(x, x′ )(n r × �· )[n′

r × (∇′ ×�· )]

+ ↔
G

(AA;r)
(x, x′ )[n r × (∇ × �· )][n′

r × (∇′ ×�· )]
]
,

Mrr′ (x, x′ ) = 1
μ2

0
∇ × ∇ × ↔

G
(AA;0)

(x, x′ )(n r × �· )(n′
r′ ×�· )

+ 1
μ0μr

∇ × ↔
G

(AA;0)
(x, x′ )[n r × (∇ × �· )](n′

r′ ×�· )

+ 1
μ0μr′

∇ × ↔
G

(AA;0)
(x, x′ )(n r × �· )[n′

r′ × (∇′ ×�· )]

+ 1
μrμr′

↔
G

(AA;0)
(x, x′ )[n r × (∇ × �· )][n′

r′ × (∇′ ×�· )], 39.

where the arrow over the placeholder · indicates to which side of the kernel it acts. This notation
implies that the derivatives are taken before the kernel is evaluated with x and x′ on the surfaces�r;
in other words, information about the behavior of basis functions is required in an infinitesimal
vicinity of the surfaces. There is an important simplification of this representation: The bilinear
form described by the kernel Lr is degenerate on the space of functions over which the functional
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integral runs; that is,
∫

�r
d3x
∫

�r
d3x′A r (x)Lr (x, x′ )A r (x′ ) = 0 for allA r (x) that are regular solutions

of the vector wave equation ∇ × ∇ × A r + εrμrκ
2A r = 0 inside region Vr. This implies that the

kernel Lr can be ignored in the above functional integral over regular wavesA r inside the objects,
and the partition function in Equation 31 is given by the functional determinant of the kernelMrr′

alone, which can be computed in some basis for regular waves inside the bodies, evaluated at the
surfaces only.

The representation of the partition function thus obtained sums over all configurations of the
surface fields A r , and the action depends on both A r and the tangential part of its curl, which is
functionally dependent onA r . Therefore, the situation is similar to classical mechanics, where the
Lagrangian depends on the trajectory q(t) and its velocity q̇(t ). The Lagrangian path integral then
runs over all of path q(t),with q̇(t ) determined by the path automatically.To obtain a representation
in terms of a space of functions that are defined strictly on the surfaces �r only, it would be
useful to be able to integrate over A r and its derivatives independently. In classical mechanics,
one does so by using Lagrange multipliers that lead to a Legendre transformation of the action
to its Hamiltonian form. Here the situation is similar. Let us consider the part of the action, Sr,
which, after functional integration over A r, generates the kernel Lr, which above was shown to
vanish. The exponential of this part of the action can be written as a functional integral over
two new vector fields K r and K′

r that are defined on the surfaces �r and are tangential to the
surfaces,

exp(−βSr )

= Zr

∮
DK rDK′

r exp
{
−β

2
1
μ2
r

∫
�r

d3x
∫

�r

d3x′
[
K r (x) · ∇ × ∇ × ↔

G
(AA;r)

(x, x′ ) · K r (x′ )

+ K r (x) · ∇ × ↔
G

(AA;r)
(x, x′ ) · K′

r (x
′ ) + K′

r (x) · ∇ × ↔
G

(AA;r)
(x, x′ ) · K r (x′ )

+ K′
r (x) ·

↔
G

(AA;r)
(x, x′ ) · K′

r (x
′ )
]

+ 1
μr

∫
�r

d3x
(
A r · [n r × (∇ × A r ) − K′

r] + (∇ × A r ) · (n r × A r − K r )
)}

, 40.

where Zr is some normalization coefficient, and we have used
∮ DK rDK′

r to indicate that the
functional integral extends only over vector fields that are tangential to the surface �r. This rep-
resentation shows that the A r acts as a Lagrange multiplier. Integration over this field removes
the imposed constraints between the dependent tangential fields n r × A r and n r × (∇ × A r ) by
replacing them with the independent tangential surface currents K r and K′

r , respectively.
Substituting Equation 40 for each object into the expression for the partition function, in-

tegrating out the fields A r for r = 1, . . . , N, constraining the functional integral over A r to be
replaced by the substitutions n r × A r → K r and n r × (∇ × A r ) → K′

r , and finally integrating
out A0, we find

Z (ξ ) =
N∏
r=1

∮
DKr exp

[
−β

2

(
N∑
r=1

∫
�r

d3x
∫

�r

d3x′ Kr (x)L̂r (x, x
′ )Kr (x

′ )

+
N∑

r,r′=1

∫
�r

d3x
∫

�r′
d3x′ Kr (x)M̂rr′ (x, x′ )Kr′ (x

′ )

⎞
⎠
⎤
⎦, 41.
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with the kernels

L̂r (x, x′ ) = 1
μ2
r

⎛
⎝∇ × ∇ × ↔

G
(AA;r)

(x, x′ ) ∇ × ↔
G

(AA;r)
(x, x′ )

∇ × ↔
G

(AA;r)
(x, x′ )

↔
G

(AA;r)
(x, x′ )

⎞
⎠, 42.

M̂rr′ (x, x′ ) =

⎛
⎜⎝ 1

μ2
0
∇ × ∇ × ↔

G
(AA;0)

(x, x′ ) 1
μ0μr′

∇ × ↔
G

(AA;0)
(x, x′ )

1
μ0μr

∇ × ↔
G

(AA;0)
(x, x′ ) 1

μrμr′

↔
G

(AA;0)
(x, x′ )

⎞
⎟⎠. 43.

We note again that the functional integral in Equation 41 runs over tangential vector fieldsK r and
K′

r defined on the surfaces �r only. The kernels L̂ and M̂ can be combined into the joint kernel
N̂rr′ = L̂rδrr′ + M̂rr′ . With this kernel, the Casimir free energy is given by

F = −kBT
∞∑
n=0

′ log det
[
N̂ (κn )N̂−1

∞ (κn )
]
, 44.

where the determinant runs over all indices; that is, x and x′ are located on the surfaces �r, and
r, r′ = 1, . . . ,N. The kernel N̂∞ is obtained from the kernel N̂ by taking the distance between all
bodies to infinity, that is, by setting M̂rr′ = 0 for all r = r′.

The stress tensor approach and theHamiltonian version of the path integral representation are
equivalent to the one derived by Johnson and colleagues (129) as a purely numerical approach us-
ing Lagrangemultipliers to enforce the boundary conditions in the path integral. Interestingly, the
derivation of this representation, presented here from a Lagrangian path integral, demonstrates
the relation of this approach to the scattering approach when the Tmatrix is defined, as originally
done by Waterman (57), by surface integrals of regular solutions of the wave equation over the
bodies’ surfaces. This result shows the close connection of these approaches, motivating further
research in the direction of new semianalytical methods to compute Casimir forces.

5. DISCUSSION AND OPEN PROBLEMS

Although the Casimir energy is usually described as a force arising from fluctuations in empty
space, as we have shown, it can also be profitably reexpressed in terms of surface currents. A
particularly striking open problem for which surface approaches may offer new insights is the
contribution of zero-frequency modes to Casimir forces arising from thermal fluctuations.

As indicated in the preceding section, at nonzero temperature T one simply replaces the con-
tinuous integral over wave number κ by a sum over Matsubara modes:

∫ ∞

0
dκ ⇒ 2πkBT

�c

∞∑
n=0

′
, with κ ⇒ κn = 2πnkBT

�c
. 45.

Here, again, the prime on the sum indicates that the n = 0 mode is counted with a weight of 1/2.
In the limit of small T, the sum is well approximated by the zero-temperature integral, while for
large T, it is dominated by the n = 0 term. In this form, the sum captures the combined effects of
thermal and quantum fluctuations.

Because for practical reasons most Casimir experiments are carried out at room temperature,
thermal effects can play an important role (133–137). Distance scales at which both the separation
between objects can be consistently maintained and the materials act as strong reflectors of light
typically correspond to optical frequencies, which then provide the dominant quantum fluctua-
tions. Thermal effects, however, introduce an additional length scale, which at room temperature
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is an order of magnitude larger. One would expect to describe fluctuations in a metal by using the
Drude model for its permittivity (138, 139):

ε(ω,T ) = 1 − ω2
p

ω[ω + iγ (T )]
. 46.

Here, ωp is the plasma frequency and γ (T ) is the relaxation frequency. This model describes an
ordinary conductor, which reflects at all nonzero frequencies but can be penetrated by a static
magnetic field. In the limit where γ → 0, the material becomes nondissipative, described instead
by the plasma model. In this limit, we have a superconductor (140, 141), which expels all magnetic
fields. The key difference in the Casimir force these models predict thus arises from the contri-
bution of the zero-frequency transverse electric (TE) mode, which now gives a discrete contribu-
tion to the Matsubara sum rather than an infinitesimal contribution to a continuous integral at
zero temperature. In theDrudemodel this mode is not scattered appreciably by themetal,whereas
in the plasma model it is perfectly reflected.

As a result, for the plasma model, one obtains the interaction free energy per unit area between
parallel plates in the perfect conductor limit, for a � λT:

F
�cA

= − π2

720a3
− ζ (3)

2π

(
kBT
�c

)3

+ π2a
45

(
kBT
�c

)4

(plasma model). 47.

By contrast, for the Drude model calculation, one must subtract

F0

A
= kBT

4π

∫ ∞

0
k⊥ log

(
1 − e−2k⊥a

)
dk⊥ = − ζ (3)

16πa2
kBT 48.

to account for the missing TE zero-mode contribution.
Of course, quantum fluctuations of a Drude material do not dissipate energy. Rather, the dissi-

pation arising from the relaxation term represents a coupling between the EM field and the mate-
rial lattice at equilibrium, which is described by the imaginary-time/temperature-ordered Green’s
function. Given by εT(icκn), it captures the coupled fluctuations of the EM field and the mate-
rial degrees of freedom and is symmetric under time reversal, with no dissipation. Experimental
scattering data, in contrast, yield the retarded response function εR(ω), which is asymmetric in
time and does contains dissipation. However, as shown in Reference 22, one can take advantage
of the relationship εT(icκn) = εR(ic|κn|) (as established in References 142, p. 253, and 143, p. 328)
to use the analytic continuation of information obtained about εR(ic|κn|), which is accessible to
experiment, to calculate εT(icκn), which determines the fluctuation force.

While one would expect the Drude model to provide a more accurate description of real ma-
terials with dissipation, both experimental and theoretical considerations argue in favor of the
plasma model (144, 145). Most importantly, experiments (146–150) on the whole seem to better
match results obtained with the plasma model rather than the Drude model, although the difficult
task of achieving the necessary experimental precision is still in progress. At least in the absence
of impurities, a purely classical contribution to the free energy like Equation 48 leads to conflict
with the Nernst theorem for the entropy at zero temperature. A promising possible solution to
this problem involves using a surface impedance model rather than Fresnel scattering, as shown
in Reference 151, because the key ambiguity in this mystery seems to lie in the behavior of the
surface currents associated with the zero mode.More generally, because zero modes do not repre-
sent periodic fluctuations, their quantization frequently introduces subtleties. In soliton physics,
for example, collective quantization of zero modes restores translational and rotational symmetry,
a process that also requires careful attention to dissipative terms (152).
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