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Abstract: The downstream regulatory element antagonist modulator (DREAM) is a multifunctional
Ca2+-sensitive protein exerting a dual mechanism of action to regulate several Ca2+-dependent
processes. Upon sumoylation, DREAM enters in nucleus where it downregulates the expression of
several genes provided with a consensus sequence named dream regulatory element (DRE). On the
other hand, DREAM could also directly modulate the activity or the localization of several cytosolic
and plasma membrane proteins. In this review, we summarize recent advances in the knowledge of
DREAM dysregulation and DREAM-dependent epigenetic remodeling as a central mechanism in the
progression of several diseases affecting central nervous system, including stroke, Alzheimer’s and
Huntington’s diseases, amyotrophic lateral sclerosis, and neuropathic pain. Interestingly, DREAM
seems to exert a common detrimental role in these diseases by inhibiting the transcription of several
neuroprotective genes, including the sodium/calcium exchanger isoform 3 (NCX3), brain-derived
neurotrophic factor (BDNF), pro-dynorphin, and c-fos. These findings lead to the concept that
DREAM might represent a pharmacological target to ameliorate symptoms and reduce neurodegen-
erative processes in several pathological conditions affecting central nervous system.

Keywords: DREAM; calsenilin; KCNIP3; neurodegeneration

1. Introduction

The downstream regulatory element antagonist modulator (DREAM), also named
calsenilin or potassium voltage-gated channel interacting protein 3 (KCNIP3 or KChIP3), is
a multifunctional protein of 256 amino acids belonging to EF-hand Ca2+ binding protein
family. Indeed, DREAM activity is mainly dependent from four EF-hand domains that,
upon Ca2+ binding, change the protein conformation, and thus its binding ability.

DREAM was initially identified as an inhibitory transcription factor bound to regula-
tory elements located downstream from the transcription initiation site of the prodynorphin
and c-fos genes [1,2]; however, more recent evidence showed that DREAM exerts different
roles in different cell compartments [1,3]. For instance, DREAM can serve as an inhibitory
transcription factor in the nucleus but can also directly regulate cytosolic proteins involved
in the membrane excitability or calcium homeostasis outside the nucleus (Figure 1). In-
triguingly, recent data suggest that the localization of DREAM in the nucleus, and thus
its transcriptional activity, might be determined by the sumoylation on lysine residues in
position 26 and 90 of this Ca2+-binding protein [4].
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Figure 1. Possible mechanisms of DREAM action. (1) High [Ca2+] levels inhibits the transcriptional 
activity of DREAM; (2) DREAM participates in the plasma membrane trafficking of the Kv4.2 
potassium channel; (3) DREAM sumoylation allows entering into the nucleus to exert as 
transcription and/or epigenetic factor; (4) DREAM regulates the transcription of proteins involved 
in the maintenance of Ca2+ homeostasis; (5) DREAM regulates the activity of NMDA receptors by 
directly inhibiting the NR1 subunit; (6) DREAM participates in the regulation of presenilin 2 
activity; (7) DREAM, upon low levels of [Ca2+], directly binds to CREB and prevents its 
phosphorylation and thus its transcriptional activity. Abbreviations: APP, amyloid precursor 
protein; NMDA-R, N-methyl-D-aspartate receptor; PS-2, presenilin-2; NCX3, Na+/Ca2+ exchanger 3; 
GFAP, Glial fibrillary acidic protein. 

1.1. Control of Gene Expression by DREAM in the Nucleus 
One of the major mechanisms by which DREAM controls gene transcription is the 

binding to a specific DNA sequence named downstream regulatory element (DRE), whose 
central core is GTCA. DREs can be present in a promoter region as a single copy or two 
inverted copies. The effects of these DRE elements on the transcription of target genes 
depend on several conditions, including the localization downstream or upstream to the 
TATA box sequence [5], nuclear Ca2+ levels ([Ca2+]n), and post-translational modifications 
of DREAM. Mainly, the presence of DRE sequences downstream of the TATA box of a 
gene promoter results in an Ca2+-regulated transcriptional repression [4]. For these 
reasons, it is not surprising that many genes provided with DRE sequences participate in 
the transcriptional regulation of important proteins activated by [Ca2+]i including CREB, 
CtBP1, nuclear receptors or TTF-1 [6–9]. Indeed, DREAM serves as a transcriptional Ca2+ 
sensor that, in presence of low nuclear Ca2+ concentrations ([Ca2+]n), forms a tetramer that 
binds to DRE sequences, causing a transcriptional inhibition of the target gene in neurons 
(Figure 2A). By contrast, upon elevation in [Ca2+]n levels following cell stimulations, 
DREAM detaches from DRE sequences, thus reducing its inhibitory effect on transcription 
(Figure 2B). Obviously, either the transfection of dominant-negative forms of DREAM or 
the disruption of the DRE sequences causes the loss of transcriptional inhibition, and thus, 
there is an increase in the transcriptional activity as it occurs upon Ca2+ stimulation. 
However, the binding of DREAM to DRE sites can be also determined by a direct 
interaction with specific nuclear proteins of the cAMP pathway in a Ca2+-independent 

Figure 1. Possible mechanisms of DREAM action. (1) High [Ca2+] levels inhibits the transcriptional ac-
tivity of DREAM; (2) DREAM participates in the plasma membrane trafficking of the Kv4.2 potassium
channel; (3) DREAM sumoylation allows entering into the nucleus to exert as transcription and/or
epigenetic factor; (4) DREAM regulates the transcription of proteins involved in the maintenance of
Ca2+ homeostasis; (5) DREAM regulates the activity of NMDA receptors by directly inhibiting the
NR1 subunit; (6) DREAM participates in the regulation of presenilin 2 activity; (7) DREAM, upon low
levels of [Ca2+], directly binds to CREB and prevents its phosphorylation and thus its transcriptional
activity. Abbreviations: APP, amyloid precursor protein; NMDA-R, N-methyl-D-aspartate receptor;
PS-2, presenilin-2; NCX3, Na+/Ca2+ exchanger 3; GFAP, Glial fibrillary acidic protein.

1.1. Control of Gene Expression by DREAM in the Nucleus

One of the major mechanisms by which DREAM controls gene transcription is the
binding to a specific DNA sequence named downstream regulatory element (DRE), whose
central core is GTCA. DREs can be present in a promoter region as a single copy or two
inverted copies. The effects of these DRE elements on the transcription of target genes
depend on several conditions, including the localization downstream or upstream to the
TATA box sequence [5], nuclear Ca2+ levels ([Ca2+]n), and post-translational modifications
of DREAM. Mainly, the presence of DRE sequences downstream of the TATA box of
a gene promoter results in an Ca2+-regulated transcriptional repression [4]. For these
reasons, it is not surprising that many genes provided with DRE sequences participate in
the transcriptional regulation of important proteins activated by [Ca2+]i including CREB,
CtBP1, nuclear receptors or TTF-1 [6–9]. Indeed, DREAM serves as a transcriptional Ca2+

sensor that, in presence of low nuclear Ca2+ concentrations ([Ca2+]n), forms a tetramer that
binds to DRE sequences, causing a transcriptional inhibition of the target gene in neurons
(Figure 2A). By contrast, upon elevation in [Ca2+]n levels following cell stimulations,
DREAM detaches from DRE sequences, thus reducing its inhibitory effect on transcription
(Figure 2B). Obviously, either the transfection of dominant-negative forms of DREAM
or the disruption of the DRE sequences causes the loss of transcriptional inhibition, and
thus, there is an increase in the transcriptional activity as it occurs upon Ca2+ stimulation.
However, the binding of DREAM to DRE sites can be also determined by a direct interaction
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with specific nuclear proteins of the cAMP pathway in a Ca2+-independent manner [2].
Interestingly, these two Ca2+-dependent and Ca2+-independent regulatory mechanisms of
DREAM, that ultimately reduce the DRE-dependent inhibition of target genes, can occur
separately or concomitantly.
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genes. 

Most of the DREAM target genes take part in the regulation of Ca2+-dependent 
processes that include members of the cation/Ca2+ exchanger superfamily, such as 
Na+/Ca2+ exchanger 3 (NCX3) [10]; ligand- or voltage-gated channels [3]; important 
regulatory transcription factors, such as c-fos and CREB [6]; enzymes, such as 
monoglyceride lipase (MGLL) and protease cathepsin L (CTSL); hormones, such as 
preprodynorphin [5] and thyroglobulin [7]; and neurotrophic factors, such as brain-
derived neurotrophic factor (BDNF) [11]. The first identified DREAM target gene was 
preprodynorphin [5], whose transcriptional inhibition is counteracted by a 
phosphorylation of the Ca2+-sensor protein by protein-kinase A (PKA) [2]. In addition, 
DREAM also regulates the expression of BDNF [11], another gene involved in pain 
modulation [12–14]. Furthermore, DREAM represses the transcription of the c-fos gene 
that plays a relevant role in coupling neuronal activity to gene expression and mediates 
neurophysiological functions, including activity-dependent survival, plasticity, and long-

Figure 2. Transcriptional regulations of DREAM. (A) Upon low levels of [Ca2+]n, DREAM forms a
tetramer that binds to DRE sequences on the target genes and inhibits their transcription. Furthermore,
DREAM directly binds to CREB preventing its PKA-dependent phosphorylation and, thus, its
activating transcription. (B) Upon the rise in [Ca2+]n levels, DREAM is inactivated, allowing for the
detachment of this Ca2+-sensor protein from DRE sequences and CREB protein. Then, CREB can be
phosphorylated and can bind the coactivator CBP, which, in turn, recruits the basal transcription
activator factors (TAFs), TATA-binding protein (TBP) and transcription factor TFIIB. The resulting
complex stabilizes RNA polymerase II, contributing to the assembly of the transcriptional initiation
complex and, ultimately, relieves the transcriptional repression of target genes.

Most of the DREAM target genes take part in the regulation of Ca2+-dependent pro-
cesses that include members of the cation/Ca2+ exchanger superfamily, such as Na+/Ca2+

exchanger 3 (NCX3) [10]; ligand- or voltage-gated channels [3]; important regulatory tran-
scription factors, such as c-fos and CREB [6]; enzymes, such as monoglyceride lipase
(MGLL) and protease cathepsin L (CTSL); hormones, such as preprodynorphin [5] and
thyroglobulin [7]; and neurotrophic factors, such as brain-derived neurotrophic factor
(BDNF) [11]. The first identified DREAM target gene was preprodynorphin [5], whose
transcriptional inhibition is counteracted by a phosphorylation of the Ca2+-sensor pro-
tein by protein-kinase A (PKA) [2]. In addition, DREAM also regulates the expression
of BDNF [11], another gene involved in pain modulation [12–14]. Furthermore, DREAM
represses the transcription of the c-fos gene that plays a relevant role in coupling neuronal
activity to gene expression and mediates neurophysiological functions, including activity-
dependent survival, plasticity, and long-term plasticity (LTP) [15,16]. Intriguingly, this
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early immediate gene is dysregulated in several models of neuropathological conditions
in which the transcriptional repressor DREAM has also been found involved, including
stroke [17], amyotrophic lateral sclerosis (ALS) [18], Huntington’s disease (HD) [19] and
pain [20].

On the other hand, as the opposite to neurons, DREAM is also known to enhance the
transcription of some genes when is activated in astrocytes. For instance, DREAM inhibits
c-fos transcription as a consequence of the rise in [Ca2+]n following glutamate stimulation
in neurons [1]. Furthermore, the stimulation of group I metabotropic glutamate receptors 1
and 5 (mGluR1/5) positively increases the neuronal levels of DREAM [21], thus reinforcing
its transcriptional inhibition. By contrast, glutamate stimulation in astrocytes causes the
nuclear export of DREAM, thus relieving transcription inhibition of its target genes [22].
Intriguingly, this process seems to depend on the same glutamate receptor, mGluR5, present
in neurons but involves a different pathway. In addition, DREAM promotes transcription
of glial fibrillary acidic protein (GFAP) in astrocytes by binding two regions of its promoter.

In addition to the transcriptional activity of DREAM, more recent evidence showed
that DREAM can also recruit epigenetic factors in the nucleus forming a complex that down-
regulates the expression of target genes. For instance, DREAM recruits histone deacetylase
isoform 4 and 5 (HDAC4 and HDAC5) enzymes, leading to the deacetylation of histone
H4 on the promoter of NCX3 gene after stroke (Figure 3) [23]. This is of particular inter-
est since the downregulation of NCX3 expression during ischemic injury increases brain
damage [24,25]. Accordingly, the reduced NCX3 expression levels, either by enhancing
DREAM activity or by genetic knock-out of the antiporter, increases neuronal vulnerability
to intracellular Ca2+ overload and cell death in both in vitro and in vivo models mimicking
stroke [10,24]. For these reasons, drugs blocking DREAM activity and/or enhancing NCX3
activity might constitute an innovative therapeutic strategy in stroke [26].

Based on these extensive and complex regulatory mechanisms of DREAM in the con-
trol of Ca2+-related processes, it is not surprising that this Ca2+-binding protein supervises
the on/off status of specific Ca2+-dependent programs that control synaptic plasticity, learn-
ing, memory and neuronal death [27,28]. On the other hand, DREAM could also participate
in neurodegenerative diseases where there is a dysregulation of Ca2+ homeostasis.

1.2. Control of Protein Activity by DREAM Outside the Nucleus

Interestingly, DREAM was initially identified by three independent research groups
since it shows several seemingly unrelated mechanisms of action. Indeed, besides the
transcriptional activity in nucleus, DREAM exerts a significative binding activity with
several proteins in the cytosolic compartment [3,29]. In fact, by leveraging a yeast two-
hybrid screening approach, DREAM was identified as a new unknown protein interacting
with the carboxy terminal region of presenilin-2 [29] and, for these reasons, was called
calsenilin. Although this interaction was not further investigated, later, by using a similar
approach, DREAM was erroneously identified as a new protein interacting with the amino
terminal domain of Kv4.2 potassium channel [3] and, for these reasons, was also called
potassium channel interacting protein (KchIP). In this case, DREAM directly interferes
with the potassium channel properties and, thus, its currents depend on [Ca2+] levels and
the activation of cAMP pathway. On the other hand, details of these mechanisms are still
unknown because of the pleiotropic activities of this Ca2+-binding protein. Indeed, DREAM,
upon phosphorylation of serine 95, also determines the subcellular localization of the Kv4.2
potassium channel on plasma membranes [30] (Figure 1). Remarkably, this phosphorylation
process does not modify the repressor activity of DREAM in the nucleus. In addition,
DREAM can directly modulate several ligand- and voltage-dependent ionic channels,
including N-methyl-D-aspartate receptors (NMDARs) [31,32] and voltage-dependent Ca2+

channels [33]. In particular, DREAM, upon the increase in [Ca2+]i levels, binds to the NR1
subunit of the NMDAR and inhibits its currents [31,32]. This process might be interpreted
as a negative feedback mechanism to reduce NMDAR-mediated Ca2+ influx. Another
interesting mechanism of action of DREAM is the binding of important transcription
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factors, such as CREB, to counteract their activation. In particular, upon low levels of [Ca2+]i,
DREAM reinforces its binding to CREB and prevents its activation by phosphorylation
(Figure 2). Under these conditions, CREB is unable to recruit CREB-binding proteins
(CBPs) and, thus, the CBP-mediated transactivation of genes provided with cAMP response
elements (CREs) sequences is blocked [6] (Figure 2). By contrast, an increase in [Ca2+]i
impairs DREAM-dependent sequestration of CREB, thus allowing its phosphorylation and
its transcriptional activity on target genes.
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Figure 3. Epigenetic regulation of the gene encoding for Na+/Ca2+ exchanger isoform 3 (NCX3)
following stroke. (1) Experimental stroke injury increases DREAM expression in peri-ischemic
temporoparietal cortex region (2); under these conditions, DREAM recruits the epigenetic enzymes
histone deacetylase isoform 4 and 5 (HDAC4 and HDAC5), forming a complex (3) that binds to
the DRE sequence on ncx3 gene promoter (4); this complex deacetylates lysins of histones on ncx3
promoter and inhibits the expression of ncx3 gene (5); this process ultimately increases neuronal
damage following stroke (6).
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2. DREAM in CNS
2.1. Anatomical/Cellular Distribution

DREAM mRNA is found in embryos starting from day 10.5 post coitum, just after
closure of the neural tube, indicating a potential role during development [34]. In fact,
knock-out mice for DREAM show a transient reduction of astrocyte number during the
early postnatal gliogenic period until the seventh day of postnatal life [35]. In adult mice
DREAM mRNA is mainly expressed in the CNS, while a weak signal can be observed
in testis, kidneys, and the spleen and thyroid [1,3]. As regards CNS, DREAM mRNA is
expressed in almost all brain regions with peaks in the pyramidal layers of CA1, CA3 and
granular layer of dentate gyrus of rat hippocampi. DREAM mRNA is also abundant in the
piriform cortex, the anterior olfactory nucleus and in the anterior part of cerebellum. On
the other hand, DREAM mRNA signals were not present in the Purkinje cells of cerebellum
and in the molecular layer of cerebral cortex.

2.2. Physiological Roles of DREAM in CNS

DREAM is mainly expressed at the presynaptic level in neurons [36], where it par-
ticipates in the regulation of glutamate release in the synaptic cleft [37] and plays a role
in hippocampus-sensitive memory and synaptic plasticity [38–40]. In addition, DREAM
binds to the NR1 subunit of the main receptor involved in synaptic plasticity, NMDAR,
causing a reduced surface expression of this ligand-gated ion channel and, ultimately,
a decrease in NMDAR-mediated currents [31]. Furthermore, DREAM transcriptionally
downregulates another important player involved in neuronal [41] and oligodendrocyte
differentiation [42], and spatial learning and memory [43], NCX3, by binding the DRE
sequences on its gene promoter [10]. Indeed, the overexpression of a dominant positive
construct of DREAM, named EFmDREAM, significantly downregulates mRNA and protein
of NCX3 in neurons [10]. In contrast to its actions in neurons, DREAM was shown to have
no effect on NCX3 promoter activity in the U87 glial cell line, supporting the hypothesis
that the inhibitory mechanism of transcription is selective for neuronal cells [23]. Indeed,
it has been reported that DREAM can also act as a transcriptional transactivator on the
GFAP promoter during astrocyte differentiation after stimulation with pituitary adenylate
cyclase-activating polypeptide (PACAP) [35]. Such apparent differences in the action of
DREAM in glial and neuronal cells might be partially explained by an involvement of
unknown transcription and/or epigenetic cofactors. On the other hand, it should also
be considered that pleiotropic functions of DREAM, through the interaction with DRE
sequences and/or with proteins in nucleus and in cytosol, are mainly influenced by free
[Ca2+] that can rapidly change in subcellular compartments or in local microdomains with
different kinetics following neuronal activation. In addition, some conditions including
the presence of a different pattern of voltage-gate channels, and ionic pumps/exchangers,
exposure to oxidative stress and induced neuronal plasticity, might further increase, or
decrease, Ca2+ influx or clearance and, thus, the activity of DREAM. These highly variable
and transient conditions that allow or do not allow for the Ca2+ binding of DREAM might
prevail in some subcellular regions under some circumstances in a particular cell type.
Furthermore, it should be underlined that, at the present, insufficient information is avail-
able regarding the concentration-binding curve of Ca2+ to DREAM and the consequent
kinetics of DREAM activation/deactivation. Given the abovementioned complex variables,
it is difficult to formulate hypotheses on the different transcriptional effects of DREAM on
target genes in neuronal and non-neuronal cells.

3. DREAM and Stroke

Although the physiological roles of DREAM and its target gene are not completely
clarified, a growing spectrum of studies correlates the activity of this Ca2+-sensor transcrip-
tion factor with several neurological diseases including stroke. In fact, DREAM increases its
expression levels in several models of stroke, including primary hippocampal neurons after
3 h of oxygen–glucose deprivation (OGD) where it enhances the secretase-induced cleavage
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of Notch, contributing to cell death under ischemia-like conditions. In addition, DREAM
shows a small increase in the dentate gyrus 24 h after reperfusion and a dramatic increase
throughout the hippocampus 72 h after reperfusion in a rat global ischemic model [44].
More important, DREAM increases in neurons of the peri-ischemic temporoparietal cortex
region in a model of transient middle cerebral artery occlusion (tMCAO), where it down-
regulates the expression of the ncx3 gene [23]. Interestingly, this process involved another
interesting mechanism of action of DREAM. Indeed, our research group showed that under
these conditions, DREAM binds and drives two epigenetic enzymes, HDAC4 and HDAC5,
on the DRE sequence of the ncx3 promoter [23]. Accordingly, both HDAC4 and HDAC5 are
predominantly expressed in neurons [45] and increase following stroke injury, especially
in neuronal nuclei [23]. Interestingly, this tight interplay forms a complex that epigeneti-
cally regulates the expression on the targeted gene by deacetylating histone proteins, thus
condensing chromatin in this genomic region. This process is dependent on the presence
of the DRE sequence on the ncx3 promoter, and each member of the complex, HDAC4,
HDAC5 and DREAM, since it is completely lost when the DRE sequences are mutated or
when one of either HDAC4 or HDAC5 are silenced. These data add a new function for
DREAM and further expands the range of mechanisms by which this neuronal Ca2+ sensor
controls gene expression. In fact, the existence of this crosstalk between protein–DNA and
protein–protein interactions may also occur in other processes regulating gene expression
driven by DREAM.

More important, the DREAM-dependent inhibition of ncx3 expression ultimately
leads to the reduction of the neuroprotective effect exerted by this antiporter against stroke
damage [25,46] (Figure 3). In fact, the pharmacological inhibition or genetic knock-down of
DREAM show beneficial effects in experimental stroke, including tMCAO [47] and four
vessel occlusion [44] models. On the other hand, opposite results were obtained with
DREAM overexpression in an excitotoxicity neuronal model. In particular, when DREAM
is overexpressed, its amino-acid region 21–40 located on the N-terminus binds to the C0
domain of the NMDA receptor subunit, NR1. This binding reduces NMDA-mediated
currents, thus conferring neuroprotection against neuronal excitotoxicity. In addition, the
different role of DREAM in glia and the contribution of these cells in stroke physiopathology
should be considered.

4. DREAM in Neurodegenerative Diseases

Since DREAM serves as a Ca2+-sensor transcription factor in neurons, it can also par-
ticipate in the progression of several neurodegenerative disorders, including Alzheimer’s
(AD) and Huntington’s (HD) disease, and amyotrophic lateral sclerosis (ALS).

4.1. Amyotrophic Lateral Sclerosis (ALS)

ALS is the most rapidly progressing disease among neurological disorders [48]. Mean
survival time for patients suffering of ALS spans between two to five years from the onset
of symptoms [49,50]. Beside environmental neurotoxicants [51–53] that was postulated
as responsible for ALS etiopathology, one of the altered molecular mechanisms that has
been described in ALS is glutamate toxicity, which triggers an overstimulation of neuronal
excitability, leading to an increase in [Ca2+]i and, consequently, to an amplification of excito-
toxic damage. In addition, the activity or cytosolic levels of several neuronal transcription
factors seems to be altered under these conditions [54]. Interestingly, a strong positive
signal of DREAM could be shown inside and around the nucleus of motor neurons and in
astrocytes in some regions of the CNS, including the anterior horn of the spinal cord of ALS
patients [55], thus suggesting the possible role of DREAM. Recent evidence has shown that
the NCX3 gene, which is a target of DREAM, delays the neurodegenerative progression in a
mouse model of ALS [56]. Indeed, a sub-toxic acute exposure to the cycad neurotoxin beta-
methylamino-L-alanine (L-BMAA), a well-known compound mimicking ALS pathogenesis,
exerts a preconditioning effect by increasing NCX3 expression in SOD1G93A mice [56].
DREAM expression and transcriptional activity has also been found to be increased in
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rat cortical neurons transfected with a sod1G93A construct, another model mimicking
ALS, exposed to non-toxic concentration of thimerosal. Interestingly, neuronal death was
reduced by the downregulation of DREAM [57].

The role of DREAM in ALS pathophysiology was also identified by other research
groups demonstrating that its protein levels were significantly upregulated in motor neu-
rons and astrocytes of spinal cord of transgenic SOD1G93A mice. DREAM immunostaining
was mainly present in the nucleus compartment, whereas in the alive motor neurons, it
was present near the membrane or in the cytoplasm. In support of these preclinical data,
DREAM staining was also found in astrocytes present in the spinal cord and frontal cortex
of ALS patients [55]. On the other hand, the calcium-dependent excitotoxicity in ALS could
modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action
in both motor neurons and astrocytes. This modulation could act as an additional factor
to increase neuronal damage. This direct crosstalk between astrocytes and motor neurons
can become vulnerable under neurodegenerative conditions, and DREAM could act as an
additional switch to enhance motor neuronal loss.

Supporting these results, recent genome-wide gene-set analysis experiments per-
formed in the European descent ALS-control cohort of 9244 ALS cases compared to
12,795 healthy controls confirmed a DREAM dysregulation in ALS pathophysiology [58].

4.2. Alzheimer’s Disease

Alzheimer’s disease is a common and disabling neurological disorder that exponen-
tially increases with age. The central hypothesis in the pathogenesis of AD is the activation
of the amyloid cascade that leads to abnormal amyloid precipitates in the brain with
neuronal dysfunction, the induction of tangles, neuronal death, and consequent demen-
tia [59,60]. Presenilin 1 (PS1) and 2 (PS2) represent the catalytic constituent of the γ-secretase
enzyme, which cleaves the amyloid precursor protein (APP) into Aβs of varying lengths.
Mutations of either presenilin genes represent the main cause of familial forms of AD.
Interestingly, DREAM was initially identified because it directly interacts with PS1 and
PS2 in a Ca2+-independent manner, which regulates the levels of a proteolytic product
of PS2 that, in turn, potentiates the decrease of endoplasmic reticulum Ca2+ release [29].
Based on this evidence, it is not surprising that DREAM might exert a role in AD, also
considering that one of the target gene of DREAM, NCX3, is also involved in this neurode-
generative disease [61,62]. Furthermore, DREAM was found to be overexpressed in the
activated astroglia surrounding β-amyloid (Aβ) plaques in the brain of Swedish mutant
APP transgenic mice [63].

Furthermore, evidence that DREAM plays a role in AD includes: (i) transfection of
increasing amounts of DREAM leading to an augmented formation of Aβ42 in HELA
cells [64]; (ii) DREAM knock-out mice showing lower levels of Aβ42 peptide in the cere-
bellum, an area that physiologically expresses high levels of DREAM [38]; (iii) cortical
and hippocampal neurons being exposed to Aβ42, upregulating DREAM expression, and
causing apoptotic cell death [63]; (iv) DREAM being highly expressed in the brains of AD
patients and of Tg2576 transgenic mice [63].

4.3. DREAM and Huntington’s Disease (HD)

Huntington’s disease is a neurodegenerative disease caused by the presence of CAG
triplet in the huntingtin gene that ultimately causes alterations in [Ca2+]i homeostasis with
synaptic dysfunction and consequent neurodegeneration.

Interestingly, several lines of evidence have shown that DREAM is downregulated in
(i) the striatum and hippocampus of R6/2 and R6/1 mice, two animal models reproducing
HD; (ii) the striatal STHdhQ111/111 cell line, derived from knocking-in mice bearing
111 CAG repeats in the huntingtin gene; and (iii) in postmortem brain samples from HD
patients. This decreased expression level of DREAM might be interpreted as a defense
mechanism since the genetic knockdown or pharmacological inhibition of DREAM with
repaglinide or with the most potent DREAM inhibitor, IQM-PC330, delays the onset of
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motor dysfunction and reduces striatal neuronal death in a mouse model of HD [65,66].
In addition, the downregulation of DREAM promotes the activating transcription factor 6
(ATF6)-dependent transcription as well as unfolded protein response (UPR)-dependent
survival. These two mechanisms ameliorate cognition deficits in HD mice [65,67].

Thus, DREAM may represent a putative pharmacological target delaying the onset of
cognitive impairment of HD [67].

4.4. DREAM and Neuropathic Pain

Although neuropathic pain cannot be classified as a neurodegenerative disorder, there
are several conditions in which neuropathic pain is triggered by neurological diseases.
In this regard, DREAM is highly expressed in the nucleus of sensory neurons where
it can control the expression of several genes involved in nociception, including BDNF
and prodynorphin genes. Notably, prodynorphin is post-translationally processed in
opioid polypeptide hormones, such as endorphin [68], that potentiates antinociceptive
processes. In addition, DREAM is expressed in several thalamic relay nuclei involved in
somatosensory functions. Among these structures, the anterior, dorsal and ventral nuclear
groups transmit impulses encoding pain as well as information from cutaneous receptors
and from deep receptors in muscle and tendon. Based on this distribution in the CNS
and a direct transcriptional inhibition of prodynorphin and BDNF genes, it is possible to
hypothesize that DREAM could exert a role in nociception regulation. In fact, the loss
of function of this Ca2+-sensor protein causes an increased basal level of prodynorphin
expression and a reduced nociception signal triggered by thermal, mechanical and chemical
stimuli in a mouse model of pain. Intriguingly, this analgesic effect was not accompanied
by deficits in motor function, learning or memory, and immune and cardiac functions as it
occurs in opioid treatments [14]. In addition, the activation of mGluR5 causes an increase in
the protein stability of DREAM, contributing to the pronociceptive role of this metabotropic
glutamate receptor [21]. For these reasons, the pharmacological inhibition of DREAM may
represent an interesting new analgesic strategy for the treatment of pain because of the lack
of typical side-effects of opioids. Moreover, formalin injections cause an increase in DREAM
protein expression in the spinal cord of rat models of inflammatory pain [69], showing a
possible feedback regulation of DREAM expression by inflammatory pain. In addition,
more recently, it was found that the N-terminal 31–50 fragment of DREAM interacts
with transient receptor potential vanilloid 1 (TRPV1) and reduces its surface localization
in the rat dorsal root ganglia. This mechanism ultimately alleviates heat hyperalgesia
and participates in the pain-relieving effect induced by peripheral inflammation [70]. In
addition, the overexpression of a mutated form of DREAM that is lacking both Ca2+- and
cAMP-dependent regulations reduced the expression of several genes related to pain in the
spinal cord, including prodynorphin and BDNF, of transgenic mice. Under these conditions,
the dominant active mutant of DREAM caused an increased basal level of hyperalgesia
without change in A-type currents. Furthermore, these transgenic mice also showed a lack
of enhancement of spinal reflexes and increased expression of BDNF following peripheral
inflammation as compared to wild-type animals [12].

This growing evidence showing DREAM as a new pharmacological target for analgesia
is of particular interest, also considering that neuropathic pain following nerve injuries
represents a major challenge for an effective treatment due to the involvement of multiple
and diverse mechanisms.

5. Conclusions

In the current review, we aimed to examine recent data on the pathophysiology of
DREAM in the CNS with some projection to clinical applications. Our understanding of
the molecular mechanisms by which DREAM is regulated and participates in the control
of (1) gene expression by epigenetic and transcriptional mechanisms, and of (2) protein
activity is still fragmented and incomplete; however, based on the available studies, we
can conclude that DREAM exerts a neurodetrimental role by inhibiting the expression
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of neuroprotective genes or by directly binding to proteins that are useful for activating
defense processes against pathological insults.

These findings drive home the concept that DREAM could represent an interesting
pharmacological target to intervene in several neurological diseases.
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