
Journal of Systems Architecture 150 (2024) 103112

A
1
n

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

FPGA approximate logic synthesis through catalog-based AIG-rewriting
technique
Mario Barbareschi1,2, Salvatore Barone ∗,1, Nicola Mazzocca1,3, Alberto Moriconi1

Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy

A R T I C L E I N F O

Keywords:
Automated design methodology
Approximate computing
Multi-objective optimization
Approximate logic synthesis
AIG rewriting
FPGA synthesis
Low area approximate circuits
Low power approximate computing circuits

A B S T R A C T

Due to their run-time reconfigurability, short time-to-market, and lower prototype costs, FPGAs have become
increasingly popular since their introduction. They found use in a wide variety of applications, including high-
performance computing. However, when compared to ASICs, FPGAs offer lower performance, and they are
power-hungry devices with low energy-efficiency. The emergence of Approximate Computing (AxC) represents
a significant advancement in terms of enabling technology when applied to FPGA-based computing platforms.
It has been effectively exploited in several application fields, achieving significant savings in energy and latency
through a selective degradation of the output quality. Nevertheless, a generalized and systematic methodology
for FPGA-based circuit design is still lacking. Indeed, most of the methods target ASIC-based systems, and,
consequently, they offer minimal advantages or even an increase in resources when synthesized for FPGAs
due to the architectural differences between the technologies.

In this paper, we attempt to address this shortcoming by introducing our method for designing combi-
national logic circuits. It is based on and-inverter graph rewriting and multi-objective optimization, aiming
for optimal trade-offs between quality of results and hardware overhead. Extensive experimental campaigns
empirically prove that both generic logic and arithmetic circuits benefit from this approach.
1. Introduction

Since their peculiar features, such as partial run-time re-
configurability, short time-to-market, and low prototyping costs, the
popularity of Field Programmable Gate Array (FPGAs) has signifi-
cantly increased since their first introduction. In facts, despite being
low-performance, power-hungry and a lot less energy-efficient when
compared to Application Specific Integrated Circuit (ASIC), FPGA is
a common choice in a wide variety of applications, including high-
performance computing, machine-learning, big-data analytics, and so
forth. In this perspective, Approximate Computing (AxC) design
paradigm offers a potential loophole to deal with FPGA overhead, since
it allows for power and energy savings through a deliberated intro-
duction of quality-degradation into intermediate computations, while
keeping the final output quality within application constraints [1]. This
is made possible by the inherent error-resiliency of many applications,
due to self-healing properties of algorithms and computational patterns,
redundant or noisy data, the existence of several equally correct out-
puts, or even perceptual limitations of end-users. Concerning hardware

∗ Corresponding author.
E-mail addresses: mario.barbareschi@unina.it (M. Barbareschi), salvatore.barone@unina.it (S. Barone), nicola.mazzocca@unina.it (N. Mazzocca),

alberto.moriconi@unina.it (A. Moriconi).
1 Authors are listed in alphabetical order.
2 Associate Member, IEEE.
3 Member, IEEE.

design, however, most of the research effort is devoted to obtaining
performance improvements in ASIC-systems using gate or transistor-
level approximation techniques. Conversely, the scientific literature
includes only a restrained number of contributions pertaining to FPGA-
based systems. Anyway, most of the discussed contributions rely upon
either in-depth considerations and understanding of the underlying
architecture of the target FPGA [2,3], or manual manipulation of
Look-Up Tables (LUTs) [4], i.e, the main building block of the FPGA
fabric.

Albeit being able to provide relevant results, the mentioned method-
ologies are neither scalable nor able to offer a significant approximate
solution space, e.g., multiple trade-offs between the quality of re-
sult and hardware resource savings. Consequently, more systematic
approaches have been proposed [5,6]. Nevertheless, as the authors
themselves point out, the Achilles’ heel of such approaches lies in
the effort required to build accurate and faithful hardware resources
predictors.

Bearing in mind the above, in this paper we resort to the And-
Inverter Graph (AIG) rewriting technique, originally proposed in [7],
vailable online 18 March 2024
383-7621/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.sysarc.2024.103112
Received 19 October 2023; Received in revised form 5 February 2024; Accepted 13
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

March 2024

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:mario.barbareschi@unina.it
mailto:salvatore.barone@unina.it
mailto:nicola.mazzocca@unina.it
mailto:alberto.moriconi@unina.it
https://doi.org/10.1016/j.sysarc.2024.103112
https://doi.org/10.1016/j.sysarc.2024.103112
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.

m

-

v
{
s
a

but meant to be synthesized onto FPGA technology. In particular, we
exploit the inherent affinity between k-feasible cut enumeration in
AIGs and LUT mapping while employing Satisfiability-Modulo The-
ory (SMT)-based Exact Synthesis (ES) for AIGs to build approximate
LUT configurations. The proposed approach makes advantage of a
Multi-objective Optimization Problem (MOP) to select replacements
leading to approximate configurations minimizing both error and AIG
node-count, avoiding both machine-learning based predictors and high-
fidelity estimators during the Design Space Exploration (DSE).

Resorting to the framework from [7], that is open-source and freely
available at https://github.com/SalvatoreBarone/pyALS, we conducted
a thorough experimental campaign to evaluate the approach against
both generic-logic circuits and arithmetic circuits, while resorting to
different error metrics.

Our original contribution can be summarized as follows: (i) we
adapt the methodology from [7] to target the FPGA technology; (ii)
we benchmark ALS based on AIG rewriting against several circuits
from LGSynth and basic arithmetic circuits, executing more than 1200
different syntheses; (iii) through a thorough analysis, we deeply ana-
lyze how FPGA overhead, i.e., both the area and power consumption,
correlates with AIG node-count, giving a detailed explanation based
on the well-known power dissipation model for LUTs [8]; (iv) we
check our proposal against the state-of-the-art, giving both qualitative
and quantitative comparison; (v) we provide different case studies,
targeting three different challenging hardware circuits, namely the
Sobel edge-detector, Finite Impulse Response (FIR) and Convolutional
Neural Network (CNN).

The remainder of this paper is organized as follows. Section 2
reviews relevant contributions from the scientific literature, while Sec-
tion 3 first provides the reader with the required technical background,
and then discusses in details the approximation methodology. Section 4
discusses the experimental setup and results, Section 5 discusses the
effects of our approximation approach on the power dissipation model
of LUTs, and Section 6 compares our approach with the state-of-the-art.
Finally, before drawing conclusions in Section 8, in Section 7 we discuss
several case-studies in which approximate circuits resulting from our
method are exploited to reduce hardware requirements of larger and
complex applications.

2. Related work

Performance of computing systems can be effectively enhanced by
exploiting the AxC design paradigm [1] that trades off limited quality
of results for performance gains or energy savings. AxC is applicable to
a large variety of application fields, including signal, image and video
processing [9,10], data analytics, machine learning [11–14], and even
critical applications [15,16].

Anyway, most of the contributions focus on arithmetic circuits,
since, usually, they are building blocks of larger complex applica-
tions [17,18].

Concerning hardware, the scientific literature distinguishes in tim-
ing and functional techniques [19]. While the former forces the circuit
to operate on non-nominal voltage values or frequencies, the latter
manipulates the logic being implemented. Starting from a reference
implementation, logic can be altered, for instance, by reducing the
precision of involved operands [20,21], exploiting the observability
do not care set of nodes [22], by replacing near-identical pairs of
signals [23], netlist transformations [24–26], abstract syntax tree trans-
formations [27,28], and so forth. Furthermore, besides assuming a
reference implementation as a starting point, the approach from [29]
also allows generating approximate components from scratch through
multi-objective Cartesian Genetic Programming (CGP).

All the above-mentioned approaches operate at the transistor or
gate-netlist level, and allow for large silicon area and power savings
while targeting ASIC. Nonetheless, due to the architectural differences
between target technologies, savings achieved are far modest while
2

targeting FPGA [5,30]. As a consequence, several works from the
scientific literature proposed FPGA-based approaches for designing
approximate components, especially arithmetic ones, exploiting the
underlying architecture of the target FPGA.

Several contributions exploit the underlying architecture of fabrics
to break the carry chain at one or multiple positions, while exploiting
unused LUT inputs to predict the carry [3,31]. Authors of [4,30]
exploits the structure of the 6-input lookup tables and carry chains
of FPGAs, defining a methodology for recursively designing 𝑛 × 𝑛

ultipliers based on 𝑛
2 × 𝑛

2 ones, optimized for FPGA-based systems.
As drawbacks, rather than using the carry chain, the critical path delay
and power consumption are reduced using additional LUTs to either
compute or predict the carry for partial product summation.

In [6], the authors propose a methodology for designing application-
specific approximate arithmetic operators for FPGA based systems.
The methodology utilizes the 6-input LUTs and the associated carry
chains to implement approximate operators while exploiting multi-
objective Bayesian optimization to search for approximate multiplier
that satisfy an application’s accuracy and performance constraints.
Furthermore, to cope with the large design space, various machine-
learning models have been adopted to estimate the behavioral accuracy
and corresponding performance gains of approximate circuits.

A different approach has been proposed in [5], that exploits machine
learning models to sift libraries of approximate components, which
have been previously designed using ASIC-oriented approximation
techniques. That methodology articulates in two distinct phases, i.e., the
training of predictors for FPGA hardware requirements and the actual
Pareto-front construction. It has been tested on circuits belonging to
the EvoApprox8 library of approximate components [32], searching
for those providing optimal trade-offs between error and FPGA over-
head, specifically the power consumption. Nevertheless, the machine-
learning based estimation approach of hardware resources is unfeasible
if no library of approximate components is available, and, addition-
ally, it demands high-fidelity estimators, that, as authors themselves
observed, may be thoroughly cumbersome to achieve, even if a large
library of components is available.

3. Catalog-based AIG-rewriting

As mentioned, we resort to the approach from [7], which is based on
non-trivial local rewriting of AIGs and MOP and devised for ASIC tech-
nology. Hence, we provide the reader with essentials concerning these
building blocks. In particular, we briefly introduce the AIG representa-
tion of digital circuits in Section 3.1, that is the circuit representation
on which the approximation approach operates. Then, in Section 3.2 we
provide full details concerning how k-feasible cuts within an AIG and
their ES are exploited to introduce approximation. Finally, we discuss
how to select approximate circuits minimizing both error induced by
approximation and FPGA hardware requirements, i.e., how we perform
DSE, in Section 3.4.

3.1. And-inverter graphs

An AIG [33] is a direct a-cyclic graph in which there are Primary
Input (PI) nodes, which have no incoming edges, and logic-AND nodes,
which have two incoming edges. Edges represent physical connections
between nodes, and they can be marked as complemented or not.

Consider a Boolean function 𝑓 ∶ B𝑛 → B𝑚 and its set of input
ariables {𝑥1,… , 𝑥𝑛}. An AIG is formally defined as the set of nodes
𝑥𝑛+1,… , 𝑥𝑛+𝑟} combined accordingly to Eq. (1), with 𝑟 being the AIG
ize, i.e., its number of nodes, 𝑠1𝑖 < 𝑠2𝑖 < 𝑖 being indexes of the nodes
nd 𝑝1𝑖, 𝑝2𝑖 being the polarity of the incoming edges of the 𝑖th node.

Conventionally, the polarity of complemented edges is 0.

𝑥 = 𝑥𝑝1𝑖 ∧ 𝑥𝑝2𝑖 𝑖 ∈ 𝑛 + 1, 𝑛 + 𝑟 (1)
𝑖 𝑠1𝑖 𝑠2𝑖 []

https://github.com/SalvatoreBarone/pyALS

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.

r

A
h

𝑓

A
o
a
C
t
𝐿

𝑝

A

d

Fig. 1. AIG representation and 4-LUT-mapping of a 2-bits unsigned multiplier. Nodes implement the AND operation, solid line edges is the direct input, while dashed line edges
epresents inverted (i.e. complemented) input.
n AIG is said to realize the Boolean function 𝑓 ∶ B𝑛 → B𝑚 i.f.f. Eq. (2)
olds.

𝑖 = 𝑥𝑝𝑖𝑠𝑖 𝑖 ∈ [1, 𝑚] , 𝑠𝑖 ∈ [𝑛 + 1, 𝑛 + 𝑟] (2)

set {𝑥𝑖1 ,… , 𝑥𝑖𝑘} of nodes is said to be a path of length 𝑘 i.f.f. it is an
rdered sequence of interconnected nodes starting at a PI and ending
t a Primary Output (PO). The longest path is called the critical path.
onsider the set of paths ending in a node 𝑥𝑖, described by Eq. (3):
he (𝑖, 𝐿) pair – consisting of the root node 𝑥𝑖 and the set of leaf nodes
⊆ {𝑥1,… , 𝑥𝑛+𝑠} – defines a cut i.f.f.

(a) ∀𝑝 ∈ 𝑝𝑎𝑡ℎ𝑠(𝑖), 𝑝∪𝐿 ≠ ∅ i.e., all paths to 𝑥𝑖 contain at least a leaf
node from 𝐿, and

(b) ∀𝑙 ∈ 𝐿 ∃𝑝 ∈ 𝑝𝑎𝑡ℎ𝑠(𝑖) ∶ 𝑙 ∈ 𝑝 i.e., each leaf in 𝐿 is at least within
a path to 𝑥𝑖.

𝑎𝑡ℎ𝑠(𝑖) =
⋃

𝑗∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑖), 𝑗≠0
{𝑝𝑎𝑡ℎ𝑠(𝑗), 𝑖} (3)

cut is k-feasible if |𝐿| ≤ 𝑘, where |𝐿| is the cardinality of 𝐿.
The set of all k-feasible cuts having 𝑥𝑖 as the root node is recursively

efined by Eq. (4).

𝑐𝑢𝑡𝑠𝑘 (𝑖) =

⎧

⎪

⎨

⎪

⎩

∅ 𝑖 = 0

𝑖 𝑖 ∈ [1, 𝑛]

𝑐𝑢𝑡𝑠𝑘
(

𝑠1𝑖
)

⊕𝑘 𝑐𝑢𝑡𝑠𝑘
(

𝑠2𝑖
)

𝑖 ∈ [𝑛 + 1, 𝑛 + 𝑟]

(4)

The ⊕𝑘 operator in (4) is the saturating union over all the combinations
of subsets extracted from two sets, defined by (5).

𝑀1 ⊕𝑘 𝑀2 = {𝑚1 ∪ 𝑚2 ∶ |𝑚1 ∪ 𝑚2| ≤ 𝑘, 𝑚1 ∈ 𝑀1, 𝑚2 ∈ 𝑀2} (5)

3.2. Generating approximate variants

The approximation technique from [7] cleverly exploits k-feasible
cuts, from now on k-cuts, as the mean to introduce approximation. In
essence, k-cuts within the AIG for a concerned circuit are enumerated
using a partial-enumeration algorithm, since a complete enumeration
is unfeasible for 𝑘 ≥ 6 [34]. Then, approximate variants for the circuit
are generated by superseding carefully selected cuts with approximate
ones of better performances. It is worth noticing that partial k-cut
enumerations is, from a functional perspective, equivalent to k-LUT
mapping; therefore, partial cut-enumeration algorithms are effectively
adopted for FPGA synthesis [34].

Consider, for instance, the AIG in Fig. 1(a), which represents a 4-
3

inputs-4-outputs Boolean function implementing the 2-bits unsigned
Fig. 2. Approximate configuration of the AIG of Fig. 1(a). This is obtained by replacing
the 𝑜[3] = 𝑎[0] ∧ 𝑎[1] ∧ 𝑏[0] ∧ 𝑏[1] Boolean function using the constant zero.

integer multiplication, and concentrate on the 4-feasible cut having the
𝑜[3] node as the root node, and PIs as leaf nodes, i.e., the LUT-12 of
Fig. 1. Such LUT implements the 𝑜[3] = 𝑎[0] ∧ 𝑎[1] ∧ 𝑏[0] ∧ 𝑏[1] Boolean
function, for which the constant zero is a possible replacement.

Then, by rewriting back the AIG, it will result in the Boolean
function whose AIG is depicted in Fig. 2. The relationship between
the size and the depth of AIGs and hardware requirements of the
corresponding circuits suggests that whether the approximate circuit
consists of fewer AIG nodes, then its hardware requirements will be
lower than the original one, as suggested in [34].

To generate suitable replacements for k-cuts, authors of [7] ex-
ploit the ES. Indeed, ES could be effectively exploited to generate
approximate variants for a given Boolean function 𝑓 , by searching
for a function 𝑓 ′ ≠ 𝑓 that requires less resources w.r.t. 𝑓 yet it
is acceptable according to some error metric. Consequently, for each
unique k-cut resulting from the partial cut enumeration, the first step
of the catalog-based AIG-rewriting approach consists of the generation
of approximate k-cuts, i.e., k-cuts at increasing Hamming distance w.r.t.
the original specification. In the following, we introduce the ES and the
catalog-generation procedure.

3.3. Exact synthesis and approximate k-cuts generation

Essentially, the ES problem consists of finding a combinational cir-
cuit that realizes a given Boolean function specification, and that turns
out optimal w.r.t. some cost criteria, which is usually the number of
nodes and/or the circuit depth. So far, its computational complexity is

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.

a

o

I

∃

f

[

F
W
s
s
2

𝑒

L
a
r
t

/

unknown, although the minimum circuit size problem, of which the ES
is an instance, has been extensively studied and efficient algorithms
for it are considered to be unlikely [35]. Nevertheless, solutions for the
ES problem can be efficiently found by solving the decision problem
in Eq. (6), which asks whether there exists an AIG of a given size 𝑟 and

given maximum depth 𝑑 that realizes a certain Boolean function 𝑓 .
In the following sections, we make use of the function HasAIG(f, r, d):
it either returns an AIG of size 𝑟 (combined with a polarity 𝑝 for the
utput node) that satisfies Eq. (6) if it exists, or unsat if such an AIG

does not exist.

∃{𝑥𝑛+1,… , 𝑥𝑛+𝑟}, 𝑝 ∈ [0, 1] ∶
(

𝑥𝑝𝑛+𝑟 = 𝑓
)

∧
(

𝑙𝑛+𝑟 ≤ 𝑑
)

(6)

f the AIG depth is not considered, then (6) gets simplified as follows.

{𝑥𝑛+1,… , 𝑥𝑛+𝑟}, 𝑝 ∈ [0, 1] ∶
(

𝑥𝑝𝑛+𝑟 = 𝑓
)

(7)

Consider an 𝑛-inputs Boolean function 𝑓 ∶ B𝑛 → B. The ES problem
ormulation requires

(i) introducing {𝑠1𝑖, 𝑠2𝑖} indexes and {𝑝1𝑖, 𝑝2𝑖} Boolean variables, for
𝑖 ∈ [𝑛 + 1, 𝑛 + 𝑟];

(ii) enforcing constraint in Eq. (8), in order to both forbid cycles and
to define an ordering between nodes;

𝑠1𝑖 < 𝑠2𝑖 < 𝑖 𝑖 ∈ [𝑛 + 1, 𝑛 + 𝑟] (8)

(iii) encoding the logic-AND behavior of each node, as stated in
Eq. (9);

𝑏(𝑡)𝑖 = 𝑎(𝑡)1𝑖 ∧ 𝑎(𝑡)2𝑖 (9)

(iv) encoding PIs connection and enforcing values propagation
through the AIG, using Eq. (10)

𝑠𝑐𝑖 = 𝑗 ⇒ 𝑎(𝑡)𝑐𝑖 = 𝑏(𝑡)𝑗 ⊕ 𝑝𝑐𝑖 𝑐 = {1, 2} (10)

and, finally
(v) encoding the equivalence constraint and the actual function

semantic (11).

𝑏(𝑡)𝑛+𝑟 = 𝑝 ⊕ 𝑓 (𝑡) (11)

This formulation makes use of the explicit function representation
– i.e., 𝑓 is represented in terms of truth table values, for each of
the possible 2𝑛 input assignments. Moreover, in order to encode the
behavior of the Boolean function for each input assignment, each node
𝑖 ∈ [𝑛 + 1, 𝑛 + 𝑟] is replicated once for each of the input vectors 𝑡 ∈
[0,… , 2𝑛 − 1]. The 𝑎(𝑡)1𝑖 , 𝑎

(𝑡)
2𝑖 and 𝑏(𝑡)𝑖 variables represent, respectively, the

value of input signals for the 𝑖th node and its output while the circuit
input is set to the input vector 𝑡 ∈ [0,… , 2𝑛 − 1]. The 𝑏(𝑡)𝑛+𝑟 node, which is
the node having the largest index, is the root node of the AIG, i.e., the
output node.

3.4. Design space exploration

As we mentioned, approximate variants for the circuit are generated
by superseding carefully selected cuts with approximate ones of better
performances. Hence, once the catalog is generated for each of the
k-cuts – or k-LUT – within the circuit, the main challenge is to find
replacements leading to Pareto-optimal trade-offs between quality of
results and hardware requirements.

This requires coping with two major concerns: on one hand, the
number of approximate variants and resulting approximate configura-
tions grows quickly with the size of the concerned Boolean functions,
and, on the other hand, preserving the quality of results while pursuing
a reduction in hardware requirements are conflicting design goals.

As in [7], we cope with these exploiting MOP-based DSE, that is
quite common in recent approaches from the scientific literature [36–
4

39]. S
4. Evaluation

As mentioned, for evaluation purpose, we resorted to the tool
from [7], that is released under GNU GPL3 open-source license4.

Fig. 3 recaps and further details the work-flow. The tool takes
the Hardware Description Language (HDL) implementation of the
concerned circuit, and generates the corresponding AIG representa-
tion. Then, k-cuts enumeration is performed by leveraging fabric-
independent k-LUT mapping, i.e, we do not consider any vendor-
specific FPGA fabric at this stage. The catalog generation takes place as
discussed in Section 3.2, and, as in [7], catalog entries are organized
and stored in a database so that they can be subsequently reused5.

The Archived Multi-Objective Simulated Annealing (AMOSA) heuris-
tic [40] orchestrates the DSE: decision variables of the problem are
k-LUT within the mapped circuit, and their domain is given by cat-
alog entries. A LUT within the mapped circuit is randomly selected,
and replaced using a suitable entry taken from the catalog; then,
fitness-functions are evaluated to state the Pareto-dominance rela-
tionship between new candidate solutions and archived ones. While
dominated candidate solution may be discarded by the heuristic, non-
dominated ones are archived for further consideration. At the end of
the DSE phase, the tool provides the HDL implementation for each non-
dominated archived solutions, allowing for the final hardware imple-
mentations and measurement of the actual FPGA resource-requirement.

4.1. Experimental setup

For evaluation purpose, we considered a subset of the LGSynt91
generic-logic benchmark [41]. Furthermore, since they are building
blocks for larger applications, such as Artificial Neural Networks (ANNs)
[18,42–45], we also consider several arithmetic circuits, including
various adders and multipliers. Specifically, we considered arithmetic
circuits from the ArithsGen [46] and from the Arithmetic Module
Generator [47,48] frameworks, as well as circuits from the EPFL
Combinational Benchmark Suite [49].

We performed the ES of 4-feasible or 6-feasible cuts within the
mentioned circuits, since a higher cardinality of AIG-cuts prohibitively
increases the time needed to accomplish the ES [50]. The fitness-
functions driving the optimization are error and hardware require-
ments, both to be minimized.

Pertaining to error metrics, as in [7], we resort to the Error Prob-
ability (EP) metric (12) when dealing with the LGSynth91, where the
[[⋅]] notation denotes the Iverson bracket (13).

𝑒𝑝𝑟𝑜𝑏(𝑓, 𝑓) =
1
2𝑛

∑

∀𝑥∈B𝑛
[[𝑓 (𝑥) ≠ 𝑓 (𝑥)]] (12)

[𝑃]] =

{

1 if P is True
0 otherwise

(13)

or what pertains to arithmetic circuits, we resort to the Absolute
orst-Case Error (AWCE) (14) as a metric for error assessment, as-

igning weights to POs according to their significance, i.e., the least
ignificant bit is assigned a weight of 20 = 1, the next one a weight of
1 = 2, and so forth.

𝑎𝑤𝑐𝑒(𝑓, 𝑓) = max
∀𝑥∈B𝑛

|𝑖𝑛𝑡(𝑓 (𝑥)) − 𝑖𝑛𝑡(𝑓 (𝑥))| (14)

Regarding hardware-resource requirements, the number of FPGA
UTs, the power consumption and the maximum clock speed should be
ccurately measured for an accurate assessment. Anyway, this would
equire FPGA synthesis to be performed, leading the computational-
ime of DSE to be unsustainable. Therefore, as in [7], we resort to a

4 Both the source-code and documentation are freely available at https:
/github.com/SalvatoreBarone/pyALS

5 We made the database freely available at https://github.com/
alvatoreBarone/pyALS-lut-catalog

https://github.com/SalvatoreBarone/pyALS
https://github.com/SalvatoreBarone/pyALS
https://github.com/SalvatoreBarone/pyALS-lut-catalog
https://github.com/SalvatoreBarone/pyALS-lut-catalog

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.

m
o
s
o

c
c
c
f
h
r
t
d
h
t

Fig. 3. Details of the workflow.
Fig. 4. FPGA resource requirements for generic-logic circuits from the LGSynth91 benchmark.
a
g
c
v
v

odel-based estimation to drive the DSE. We estimate both the number
f FPGA LUTs and latency from the AIG representation of circuits,
ince the correlation between hardware requirements and the number
f nodes and depth of the AIGs has been empirically proven in [34].

Speaking of the AMOSA configuration, we address it on a per-
ircuit basis, resorting to advice from [7]. As a summary of a typical
onfiguration, when generic-logic circuits from LGSynth91 are con-
erned, we let the cooling factor to vary in the [0.8, 0.9] range, the
inal temperature of the matter varying in the [10−7, 1] range, the
ard and soft archive-size limit vary in the [50, 15] and [100, 300]
anges, respectively, the initial hill-climbing and annealing iterations in
he [100, 350] and [250, 750] ranges, respectively. Having said that,
epending on the circuit and the chosen configuration for the AMOSA
euristic, experiments involving such circuits take from a few minutes
o several hours to complete.
5

For what pertains to arithmetic circuits, we observed that, as far
s adders are concerned, the same configuration allows achieving
ood trade-offs between diversity of final non-dominated solutions and
omputational time. Such a configuration consists of a cooling factor
arying in the [0.8, 0.95] range, the final temperature of the matter
arying in the [10−3, 10−1] range, hard and soft archive-size limits set

to 100 and 250 elements, respectively, while the initial hill-climbing
and annealing iterations are set to 200 and 350 respectively. On the
other hand, when multipliers are concerned, the increased complexity
of the problem – in terms of number of decision variables – requires
more effort to be spent during DSE. We came up with the following
configuration: the cooling factor is set to 0.95, the final temperature of
the matter set to 10−7 degrees, the hard and archive-size limits set to
150 and 300 elements, respectively, initial hill-climbing and annealing
iterations set to 550 and 750, respectively. As it is easy to foresee, the

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.
Fig. 5. FPGA resource requirements for arithmetic circuits. Kindly note that the 𝑥-axis is in semilogarithmic scale.
Table 1
Computational-time for circuits belonging to the LGSynth91 benchmark.
Circuit alu2 alu4 apex6 C6288 count frg2 i5 i6 rot term1 unreg x3

Comp.Time 16 m 7 m 6 m 9 m 4 m 23 m 13 s 11s 8 m 52 m 2 m 7 m
Table 2
Computational-time for circuits arithmetic circuits.
Circuit CLA16 CSelA16 CSkA16 HCA16 KSA16 RCA16 HCA8 RCA8 RCL8 ATM8 DTM8 WTM8 sine

Comp.Time ≈20 h ≈20 h ≈26 h ≈25 h ≈20 h ≈21 h ≈13 h ≈12 h ≈13 h ≈66 h ≈60 h ≈62 h ≈210 h
i
t
T
a
D
b
c
r
n
i
o

l
m
c
i
d
T

more effort is spent during DSE, the more it lasts; consequently, while
experimenting on adders typically requires a few hours, experiments
involving multipliers may require a few days to complete.

Results, as well as computational time, are discussed in the follow-
ing.

4.2. Experimental results

Tables 1 and 2 report the computational time that experiments tool
to complete, respectively, for generic logic and arithmetic circuits.

At the end of the DSE, we targeted the Xilinx xc7a35ticsg324-1L
Artix-7 FPGA to measure actual hardware requirements of resulting cir-
cuits. Synthesis was performed by Xilinx Vivado 2021.01 with default
settings and disabling DSPs.

Fig. 4(a), Fig. 4(b) plot the number of required FPGA LUTs and
power consumption against EP for circuits from the LGSynth91 bench-
mark. Figs. 5(a) and 5(b), instead, plots resource requirements, in
terms of the number of required FPGA LUTs and power consumption
against AWCE for various 8-bits arithmetic circuits, including array-tree
multiplier (ATM), Dadda-tree multiplier (DTM), Wallace-tree multiplier
(WTM), carry-skip adder (CSkA), ripple-carry adder (RCA) Han-Carlson
adder (HCA) and carry-lookahead adder (CLA), which have been gener-
6

ated while resorting to the Arithmetic Circuit Generator for Hardware h
Accelerators (ArithsGen) [46]. Last, Figs. 6(a) and 6(b) plots resource
requirements for the circuits from the EPFL Combinational Benchmark
Suite [49].

Note that the 𝑥-axis for Fig. 5(a), Fig. 5(b), Fig. 6(a) and Fig. 6(b) is
n semilogarithmic scale. The red star denotes the exact circuit, while
he blue dots ∙ denote approximate configurations resulting from DSE.
here may be solutions that have the same error and gate-count (they
re in a non-dominance relationship with each other) coming from the
SE that, when synthesized to FPGA still have the same error, of course,
ut they require different amount of LUTs to be implemented, or they
onsume different power. Hence, they are no more in non-dominance
elationship; therefore, the dominated ones are actually discarded and
ot plotted. Hence, any point in Fig. 4(a) exhibiting the same error as
n Fig. 4(b) may not refer to the same approximate configuration. This,
f course, also applies to Fig. 5(a) and Fig. 5(b).

As for the area overhead, it is clear that approximate circuits require
ess FPGA LUTs on the error increasing since, as we select approxi-
ate solutions minimizing AIG node-count. In the same way, power

onsumption takes advantage of the approach as it decreases on the
ntroduced error. But, as one can notice, Fig. 4(b) reports more non-
ominated solutions than Fig. 4(a) as well as Fig. 5(b) and Fig. 5(a).
his implies that given two different approximate configurations ex-

ibiting the same error and requirements in terms of FPGA LUTs, one

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.
Fig. 6. FPGA resource requirements for the sin circuit, from the EPFL Combinational Benchmark Suite [49]. Kindly note that the plots is in semilogarithmic scale.
w
𝑓
t

i
l
c
a
c

𝐸

F

of these has lower power consumption. This phenomenon can certainly
also happen with ASIC technology, Anyway, at a first glance, it appears
to be occurring very frequently, contrary to the experimental result
reported in [7] based onto ASIC implementations.

This experimental observation led us to investigate how two dif-
ferent approximate implementations could exhibit two power con-
sumption values against the same amount of FPGA LUTs, i.e., how
approximate variants of a given circuit exhibit different values of dy-
namic power consumption despite requiring the same amount of LUTs.
We provide an in-depth analysis of FPGA dynamic power consumption
based on LUTs model in Section 5.

4.3. Achieved savings while targeting different technologies

As discussed before, almost all the AxC approaches operate at the
transistor or gate-netlist level, and allow for large silicon area and
power savings while targeting ASIC. Nonetheless, due to the archi-
tectural differences between target technologies, savings achieved are
far modest while targeting FPGA [5,6,30]. Though, since the previ-
ous Section empirically prove the AxC technique from [7] can be
effectively adopted for both FPGA-based systems, besides ASIC ones,
it is interesting to compare results the technique provides, varying
the target implementation, in terms of silicon and power savings.
Figs. 7 and 8 report such a comparison for generic logic circuits and
arithmetic ones. The blue bullets ∙ denotes savings induced in ASIC
implementations, while the orange triangles ▴ denote savings for FPGA
technology. Except in sporadic cases, the results shown in the figures
mentioned above confirm what is known in the literature: applying the
same approximation technique does not produce the same gain when
considering different implementations. However, the gap is not much,
especially for arithmetic circuits. And for some circuits the gain on
FPGA is greater, opening the way for future investigations about which
error metrics or properties a circuit must possess in order for it to be
approximated with the same profit on both ASIC and FPGA.

5. The power dissipation model of LUTs

In this section, we aim to analyze the correlation existing between
AIG node count and power consumption of approximate circuits. To
this aim, two different strategies are possible. On one hand, we could
rely on simulation-based tools that considering an FPGA configuration
(namely bitstream), a specific FPGA device and a user-define workload
(namely, a test-bench) can estimate power consumption by stimulating
the input signals and executing a low-level device simulation. On the
other hand, as we will discuss later, we could resort to a LUT model,
that is generic and independent of a specific FPGA fabric, from which
we could estimate the switching activity and get the power consump-
tion avoiding costly simulation. Furthermore, instead of providing to
each circuit a proper workload, we can consider each time a worst-case
scenario.
7

5.1. Switching activity estimation

The power consumption for FPGA includes two terms, i.e., the
static and the dynamic power. The former is the power from transistor
leakage on all connected voltage rails and the circuits required for the
FPGA to operate normally. It is highly operating-temperature depen-
dent, yet a function of the manufacturing process and supply voltage,
but it is not correlated to the design configured onto the device fabric.
Conversely, the dynamic power is the power of the user design, due
to the input data pattern and the design internal activity. This power
is instantaneous and varies at each clock cycle, it depends on voltage
levels, logic, and routing resources used (including I/O terminations,
clock managers, and other circuits that need power when used).

Anyway, it can be roughly estimated as 𝑃 = 𝑉 2
𝑑𝑑 ⋅𝑓𝑐𝑙𝑘 ⋅

∑

𝑛𝑖
𝐶𝑖 ⋅𝐸𝑠𝑤(𝑛𝑖),

here 𝐶𝑖 is the capacitance of the node 𝑛𝑖, 𝑉𝑑𝑑 is the supply voltage,
𝑐𝑙𝑘 is the clock frequency, and 𝐸𝑠𝑤(𝑛𝑖) is the average number of output
ransitions per time-unit 𝑇 = 1

𝑓𝑐𝑙𝑓
at node 𝑛𝑖, i.e., the SwA.

As it is easy to foresee, reducing the resource overhead required by a
given circuit – i.e., the number of LUTs a circuit requires, as provided by
our approach – implies a reduction in the dynamic power consumption.
But experimental results, shown in the previous section, evidences that
there is a further contribution to power savings, that clearly comes
from SwA of involved LUTs reduction, being operating conditions –
i.e., 𝑉𝑑𝑑 , 𝑓𝑐𝑙𝑘, – out of the scope of our approach and left unchanged
w.r.t. original circuit specification.

Estimating SwA, i.e., 𝐸𝑠𝑤(𝑛𝑖), requires determining 𝑝0(𝑛𝑖) and 𝑝1(𝑛𝑖),
.e., the probability of the output signal at each node 𝑛𝑖 being either
ogic-0 or logic-1, respectively. Under the zero-delay model, the 𝐸𝑠𝑤(𝑛𝑖)
an be estimated using Eq. (15) from [51]. Please, note that (15)
lso supposes that the 𝑛𝑖 node can assume only the two mentioned
omplementary logic values; hence, 𝑝0(𝑛𝑖) = 1 − 𝑝1(𝑛𝑖).

𝑠𝑤(𝑛𝑖) =
𝑝0(𝑛𝑖) ⋅ 𝑝1(𝑛𝑖)
𝑝0(𝑛𝑖) + 𝑝1(𝑛𝑖)

= 𝑝0(𝑛𝑖) − 𝑝0(𝑛𝑖)2 (15)

In the case of FPGA, determining 𝑝0(𝑛𝑖) requires characterizing the
activity of inputs and output signals, resorting, for instance, to a model
such as the one from [8].

Essentially, a K-LUT takes 𝐾 input signals 𝑆 = {𝑠0,… , 𝑠𝐾−1} that
allow selecting, as output, one between 2𝐾 configuration bits from
𝑋 = {𝑥0,… , 𝑥2𝐾−1}, as defined by the technology mapping 𝑇𝑚(𝑆,𝑋).

Although the actual implementation may be quite different, the
model from [8] states K-LUTs can be modeled as fully balanced binary
trees of height 𝐾−1, 2𝐾−1 internal nodes corresponding to 2-to −1 mul-
tiplexers, and 2𝐾 leaves representing configuration bits, as depicted in
ig. 9. For an accurate estimation of the 𝐸𝑠𝑤, all the configuration bits,

not just the one being selected as output, have to be considered, since
even those that do not actually reach it partially propagate towards the
output anyway contribute to the SwA, affecting the frequencies with
which each configuration bit passes through multiplexers. Thus, the

model computes the actual frequency with which the configuration bits

Journal of Systems Architecture 150 (2024) 103112

8

M. Barbareschi et al.

Fig. 7. Comparison of savings provided with generic circuits while targeting either the ASIC or the FPGA technology. The blue bullets ∙ denotes savings induced in ASIC
implementations, while the orange triangles ▴ denote savings for FPGA technology.

Fig. 8. Comparison of savings provided with arithmetic circuits while targeting either the ASIC or the FPGA technology. The blue bullets ∙ denotes savings induced in ASIC
implementations, while the orange triangles ▴ denote savings for FPGA technology.

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.

f
l
r

r
o
a
r
a
N

𝑝

r
n
b
o
𝑝
w
c
b
i
c
s
c
i
a
b
𝐹
o

𝐸

i

Fig. 9. Model of a 4-LUT as a fully balanced binary-tree of multiplexers.
o
T
t
t
o

5

p
e
e

0
(
r
1
k
L

e
L
b
i

traverse each node of the tree based on frequencies 𝑓𝑖 with which the
𝑖th configuration bit is selected as output, as in (16).

𝐹 = {𝑓𝑖 ∈ R ∶ 𝑓𝑖 ∈ [0, 1] ∧
2𝐾−1
∑

𝑖=0
𝑓𝑖 = 1} (16)

The frequency whereby the configuration bits traverse each node of
the tree can be computed using Eq. (17). The 𝑓𝓁,𝐿 is the sum of the
requencies of the leaves on the left-hand side of the 2𝓁 trees rooted at
evel 𝓁, while 𝑓𝓁,𝑅 is the sum of the frequencies of the leaves on the
ight-hand side of the 2𝓁 trees rooted at level 𝓁. Clearly, 𝑓𝓁,𝐿+𝑓𝓁,𝑅 = 1.

𝑓𝓁,𝐿 =
2𝓁−1
∑

𝑗=0

2𝐾−𝓁−1−1
∑

𝑖=0
𝑓𝑗⋅2𝐾−𝓁+𝑖 (17)

To compute 𝑝0(𝑛𝑖), we resort to Eq. (18) from [8], that allows
ecursively computing 𝑝0(𝑛𝑖) for each internal node of the tree based
n the same but computed at child nodes, plus 𝑓𝓁,𝐿 and 𝑓𝓁,𝑅. In such
n Equation, 𝐿(𝑛𝑖) and 𝑅(𝑛𝑖) respectively denote the left-hand-side and
ight-hand-side child of 𝑛𝑖, while 𝑓𝓁,𝐿 and 𝑓𝓁,𝑅 denote the left-hand side
nd right-hand side frequencies of the tree at level 𝓁, as given by (17).
ote the root-node is at level 0.

0(𝑛𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝0
(

𝐿(𝑛𝑖)
)

𝑓𝓁𝑖 ,𝐿 + 𝑝0
(

𝑅(𝑛𝑖)
)

𝑓𝓁𝑖 ,𝑅,
𝑖 ∈

[

0, 2𝐾 − 2
]

(

𝑥𝑗 = 1 → 0
)

∧
(

𝑥𝑗 = 0 → 1
)

,
𝑖 ∈

[

2𝐾 − 1, 2𝐾+1 − 1
]

, 𝑗 ∈ [0, 2𝐾 − 1]

(18)

Please note that the first (top) case applies to all nodes which index
anges in

[

0, 2𝐾 − 2
]

, i.e., all nodes of the tree but leaves. For such
odes, 𝑝0(𝑛𝑖) – i.e., the probability of the output signal at node 𝑛𝑖
eing logic-0 – is recursively computed as the sum of the probability
f the output at left and right children nodes being logic-0 – viz.
0(𝐿(𝑛𝑖)) and 𝑝0(𝑅(𝑛𝑖)), respectively – each multiplied to the frequency
hereby the configuration bits traverse each node of the tree until the

onsidered child of 𝑛𝑖 – i.e., 𝑓𝓁,𝐿 and 𝑓𝓁,𝑅, respectively, as computed
y Eq. (17). Conversely, the second (bottom) case applies to nodes with
ndex in

[

2𝐾 − 1, 2𝐾+1 − 1
]

, that are leaves of the tree, that matches
onfiguration bits of the LUT. In this case, the probability of the output
ignal at node 𝑛𝑖 simply matches configuration bits; hence, it coherently
ollapses to 𝑝0(𝑛𝑖) = 0 if the corresponding configuration bit is 1, else
t equals to 1. Hence, 𝑝0(𝑛𝑖) directly depends on the configuration bits
nd left-hand side and right-hand side frequencies values as computed
y Eq. (17). The SwA for a whole K-LUT, given its configuration bits,
, can be computed using (19), that only contemplates internal nodes
f the LUT.

𝑠𝑤 =
2𝐾−2
∑

𝑖=0
𝑝0(𝑛𝑖) − 𝑝0(𝑛𝑖)2 (19)

It is worth noticing that, there are more than one 𝑇𝑚(𝑆,𝑋) that sat-
9

sfies the proper mapping for a given boolean function and, depending
n which one is selected during the synthesis, it exhibits different SwA.
he selection of mapping solution with less SwA is due to the synthesis
ool, namely Xilinx Vivado in our case, involving a signal reordering of
he K-LUT. It goes that SwA optimization through signal reordering is
ut of our scope and not considered by the proposed approach.

.2. Result discussing and final remarks

Despite expectations arising from experimental result, no direct
roportionality relationship between the number of nodes and SwA is
vident from the model discussed before. Furthermore, counterintuitive
xamples can be found.

Consider, for instance, the LUT configuration 𝑋 = {0, 0, 0, 0, 1, 1, 0,
, 1, 0, 1, 0, 1, 1, 1, 1}, that requires 4 AIG nodes and, according to Eqs.
15) – (19), has 1.625 SwA: its approximation at Hamming distance 1
esulting from ES, i.e., 𝑋 = {1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1}, exhibits
.98 SwA despite requiring 3 AIG nodes. Besides, to the best of our
nowledge, no correlation between the AIG node-count and SwA for
UTs has ever been identified in the scientific literature either.

Thus, to shed light on the source of the observed phenomenon, we
xploited Eqs. (17)–(19) to characterize every catalog entry – i.e., every
UT specification – we collected during our experimental campaign
oth in terms of AIG node-count and SwA. To this end, we assume
nputs are equally probable – i.e, 𝑓𝑖 =

1
2𝐾 , 𝑖 = 1⋯ 2𝐾 − 1 in (16) – and

we take the signal reordering of inputs into account, by considering,
for each of the catalog entries, the actual reordering that minimizes
the SwA. The box-and-whisker plot in Fig. 10 reports this preliminary
characterization. At first glance, a general decreasing trend in terms
of SwA, as far as the AIG node-count decreases, can be observed.
Consequently, during DSE, while the AMOSA is attempting to minimize
the AIG node-count, it is very likely that it (accidentally) pursues
also SwA minimization; hence, resulting approximate circuits exhibit
a lower power dissipation.

Anyway, the SwA variation ranges overlap for adjacent AIG node
values, and, furthermore, we can also observe that, although values
of the SwA tend to be gathered around the median value, there are
several outliers, even for those LUTs requiring a moderate number of
AIG nodes, e.g., three or four nodes. Therefore, even though the SwA of
a LUT is close to the median value, during the catalog-generation pro-
cedure it may produce configurations exhibiting higher SwA, despite
requiring less nodes. This gives reason to the existence of counterin-
tuitive examples, although they do not have significant impact on the
overall approximate circuit.

Indeed, still concerning counterintuitive examples, the LUTs we
collected during the experimental campaign underwent a further char-
acterization, to highlight their common features, if any. Such a char-
acterization drew attention to the AIG topology and truth-density –
i.e., is the number of truth assignments over the input set. In particular,
approximate LUTs that constitute counterintuitive examples exhibit

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.

t
d
B
i
(
c
b

t
r
(
H
t
U
i
t

6

t
c
f
q

s
E
i
F
q
t
a
T
c
e
o
t
d
f
(
w
a
a
t
A
c
1

Fig. 10. SwA of catalog entries, varying the AIG node-count.
∙
f
P

a
c
t
i
m
r

g
t
D
t
o
t
r
C
s
o
c
c
t
e
s
p
t

e
a
f
N
a
m
r
r
o

he following common features: (a) they exhibit complete functional
ependency from all inputs; (b) they do not implement elementary
oolean functions, such as logic-AND or logic OR; (c) the exact spec-

fication from which they originate has truth-density is almost 50%;
d) their truth-density is almost 50%; (e) the number of nodes of the
orresponding AIG is very close to the theoretical minimum required
y (a).

Additionally, we observed that in case (c) is true, to reach the
ermination criterion, the catalog-generation procedure is very likely to
eorganize the truth table until resulting in propagating an input signal
meant that the approximate specification has 50% of truth density).
ence, during intermediate stages of the mentioned procedure, the

ruth-density fluctuates around to 50%, without ever being equal to it.
nder these circumstances, the signal reordering of inputs is ineffective

n reducing the SwA, since either the truth assignment is insusceptible
o reordering or any reordering equals the original specification.

. Comparison with previous works

In Section 2 we discussed several contributions from the scien-
ific literature pertaining to the design of FPGA-based approximate
omputing systems, emphasizing the most recent contributions. In the
ollowing, we compare our approach with the state of the art, both
ualitatively and quantitatively.

One of the most interesting approach is that from [5], that, roughly,
ifts through a library of approximate components (specifically, the
voapproxLib [52], that has been designed while targeting ASIC) look-
ng for those circuits providing optimal error/resources trade-offs for
PGA. Machine-learning models are exploited to predict FPGA re-
uirements, avoiding FPGA synthesis. From a methodological perspec-
ive, when compared to the mentioned approach, our methodology
llows designing FPGA-based approximate components from scratch.
his means it does not require a library of ASIC-based approximate
omponents, from which those providing optimal trade-offs between
rror and FPGA resource requirements have to be sifted. Furthermore,
ur method does not require high-fidelity predictors, since it exploits
he node-count and depth of AIGs to estimate resource requirements
uring the DSE. In order to get a fair comparison of circuits resulting
rom our method against those from [5], we considered the exact
non-approximate) multiplier and adder from the ApproxFPGAs library,
hich are freely available at https://github.com/ehw-fit/approx-fpgas
s starting point for our approach. In particular, we considered 8-bits
nd 12-bits operators, and once our workflow was completed, we syn-
hesized resulting circuits while targeting a Xilinx xc7a35ticsg324-1L
rtix-7 FPGA. For an unbiased comparison, we also resynthesized the
ircuits from the ApproxFPGAs library on the same device. Figs. 11 and
10

2 report results both in terms of FPGA LUT and power consumption,
Table 3
Computational-time required to design 8-bits unsigned-integer arithmetic circuits.

Circuit mul8u add8u mul12u add12u

Our method ≈67 h ≈13 h ≈72 h ≈15 h
ApproxFPGAs [5] ≈192 h ≈24 h ≈34 h ≈22 h

respectively. Red crosses × denote results from [5], while blue dots
denote results from our method. As the reader can observe, results

rom our method are competitive with the state-of-the-art, since the
areto-fronts in Figs. 11 and 12 are barely distinguishable.

It is interesting to note, as far as power is concerned, that the
pproximate circuits resulting from our approach are equally good
ompared with those obtained from other state-of-the-art methods even
hough they may be more onerous in terms of LUTs, as is evident
n Figs. 11(c) and 11(d), which report LUTs for 8-bits adder and
ultipliers, respectively, and Figs. 12(c) and 12(d), which, instead,

eport power consumption.
Pertaining to computational time, Table 3 compares our methodolo-

ies against [5]. The first row of that Table reports the computational
ime needed to perform our workflow as a whole – including the ES, the
SE and the final rewriting and hardware synthesis – while resorting

o the algorithm configuration discussed in Section 4.1, performed
n a 16-cores/32-threads AMD Ryzen 9550. The second row of the
able reports the computational time required by the ApproxFPGAs as
eported in [5], while running on a 16-cores/32-threads Intel Xeon E5
PU. These times include the time required for synthesizing the data-
et, training and evaluating the models, and re-synthesizing the Pareto
ptimal circuits. Please note that, for the method in [5], the larger the
ircuit, the smaller the search space, due to the reduced number of
andidate circuits in the library; hence, circuit size and computational
ime do not correlate. Since we do not need any model to be trained to
stimate hardware requirements of candidate approximate circuits, and
ince we can perform faithful estimations from AIG nodes, when com-
ared with [5], our method requires significantly less computational
ime to provide approximate circuits.

The approach from [6] is one of the latest contributions to the sci-
ntific literature. Basically, it encodes circuits as binary strings. Given
circuit requiring 𝑁 LUTs for partial product generation, the method

rom [6] encodes each of the variant through a binary string of length
, and allows generating 2𝑁 different approximate variants. A ‘‘0’’ at
ny location in the N-bits string disables corresponding LUT, which
eans that LUT will not contribute to producing the intermediate

esults. Concerning fitness functions driving the DSE, the authors of [6]
esort to the product between the power-delay-product and the number
f LUTs as a measure for hardware resource requirements, while the

https://github.com/ehw-fit/approx-fpgas

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.
Fig. 11. Comparison with [5] in terms of FPGA LUT. Red crosses × denote results from [5], while blue dots ∙ denote results from our method.
AWCE (14) or the Mean Absolute Error (MAE) (20) have been adopted
to measure the error.

𝑒mae(𝑓, 𝑓) =
1
2𝑛

∑

𝑥∈B𝑛
|𝑓 (𝑥) − 𝑓 (𝑥)| (20)

From the qualitative perspective, the grain with which approxima-
tion can be introduced in circuits while exploiting our approach is
finer when compared to that in [6]. In fact, as we observed in the
previous section, results indicates that some replacements produce a
reduction in power consumption, even though they did not result in
any decrease in the number of LUTs. As a result, a more gradual and
controlled degradation of the quality of results can be produced while
lowering the hardware overhead. Indeed, the only case our approach
leads to LUT suppression happens when the replacement being selected
from the catalog either propagates one of the input signals, or even a
constant signal. The only downside of having such a fine degree with
which it is possible to act on the circuits is, as is easy to imagine, a
generalized increase in the size of the search space.

In order to quantitatively compare the methods, we performed our
method while performing the DSE to minimize the AIG node count as
well as the error entailed by approximation. The latter is measured
either as AWCE or MAE. For a fair comparison, we measured the actual
FPGA requirements by synthesizing resulting circuits while targeting
the xc7vx330t device of the Virtex-7 family, as done in [6].

In Figs. 13 and 14 we report a comparison of results from the
mentioned methods in terms of FPGA resources (measured either as
number of LUT or power consumption) and error (which is measured
11
in terms of AWCE or MAE). In the mentioned figures, red crosses ×
denote results from [6], while blue dots ∙ denote results from our
method. As the reader can observe, such results confirm our previous
statement: our method allows more gradual and controlled degradation
of the quality of results while lowering the hardware overhead. Indeed,
results from our method exhibit lower power consumption w.r.t. those
from [6], albeit the latter produces circuits requiring less LUTs.

As for the computational time, once again we can safely claim our
approach allows faster design, as it does not involve any model to be
trained to estimate hardware requirements of candidate approximate
circuits. Indeed, since we can perform faithful estimations from AIG
nodes, when compared with [6], our method requires significantly less
computational time to provide approximate circuits: while the accuracy
and PPA estimation for a single approximate 8-bits multiplier consumes
nearly 3.55 min of processing time with the method in [6], our method
allows evaluating hundreds of variants in the same amount of time,
since assessing the error on the whole 216 possible inputs for an 8-
bit multiplier only a few seconds, and the time required to count the
number of AIG nodes is paltry.

7. Case studies

In this Section, we discuss several case-studies in which approximate
circuits resulting from our method are exploited to reduce hardware
requirements of larger and complex applications. In particular, we
discuss the implementation of a Sobel edge detector in Section 7.1, a
FIR filter in Section 7.2, and, finally, we discuss convolutional neural
networks in Section 7.3.

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.
Fig. 12. Comparison with [5] in terms of power consumption. Red crosses × denote results from [5], while blue dots ∙ denote results from our method.
Fig. 13. Comparison with [6] in terms of LUTs. Red crosses × denote results from [6], while blue dots ∙ denote results from our method.
7.1. The Sobel edge-detector

One of the major fields of application for AxC is image-processing,
since, due to perceptual limitations of human eyes, imperceptible re-
duction of image quality can lead to important savings. One quite
common image-processing application is the Sobel edge-detector; there-
fore, we provide a case-study concerning the design of a hardware
accelerator for the aforementioned application, exploiting approximate
components resulting from our approach. We only approximate adders,
12
since, at the hardware level, multiplications by two can be implemented
as a left shift, which is just wiring requiring no resources. Specifically,
we adopted an approximate implementation of a 16-bits Kogge-Stone
adder that exhibits AWCE of 32, costs 46 LUTs when synthesized on
a Xilinx xc7a35ticsg324-1L Artix-7 FPGA (6 LUTs, or 11% less than its
exact counterpart), and consumes 155 mW (26 mW, or 16% less than its
exact counterpart) on the same device. We target the above-mentioned
FPGA while performing synthesis of both the exact and the approximate
implementations of the Sobel edge-detector, to measure their actual

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.
Fig. 14. Comparison with [6] in terms of power consumption. Red crosses × denote results from [6], while blue dots ∙ denote results from our method.
Fig. 15. Visual test. Original images are on the left; while the output of the exact implementation of the edge-detector is reported in the center. Images resulting from the
approximate edge-detector are on the right. From top to bottom, the right-most images exhibit PSNR of 28.9 and 28.5.
hardware requirements. The exact implementation of the mentioned
edge-detector requires 435 LUTs and consumes 743 mW, while its
approximate implementation requires 349 LUTs and 620 mW, provid-
ing savings up to 19% and 16% for LUTs and power consumption,
respectively.

Furthermore, we also report a comparison between images com-
puted through the use of the exact and the approximate implementa-
tions in Fig. 15: images computed using the approximate implemen-
tation are reported on the right of Fig. 15, and exhibit a PSNR in
the [28.5, 28.9] range w.r.t. reference images, i.e., those reported at the
center of Fig. 15. Kindly note that the higher the PSNR the higher the
quality of the images.

7.2. The FIR filter

In this case study, we target one of the most common signal pro-
cessing applications, which is the FIR filter, whose general definition
13
is reported in (21). There, 𝑥𝑗 is the 𝑗th sample of the input signal,
𝑏𝑖 is the 𝑖th coefficient of the signal, and 𝑦𝑛 is the 𝑛th sample of the
output signal. Here we will replace the multiplication in (21) using an
approximate multiplier to save FPGA LUTs and power.

𝑦𝑛 =
𝑁
∑

𝑖=0
𝑏𝑖 ⋅ 𝑥𝑛−𝑖 (21)

We consider two different FIR filters: they both have a 500 Hz cut-
off frequency, 60 dB attenuation in the stop band, and use fixed-point
arithmetic. The first is a low-pass filter that adopts the Q1.7 fixed-
point arithmetic, while the second is a high-pass filter using the Q1.15
representation. Please note that fixed-point arithmetic can be per-
formed using regular signed integer circuitry. In order to evaluate our
approach, we assess the impact of approximation by measuring the
PSNR between the output signals produced by the non-approximate and
approximate FIRs.

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.
Fig. 16. PSNR and hardware resources for 8-bits and 16-bits FIRs while using
approximate multipliers. The red star ⋆ denotes the reference (non-approximate)
implementation, while the blue bullets ∙ denotes filters being implemented using
approximate multipliers.

Specifically, we adopted the 8-bits and 16-bits Wallace tree mul-
tiplier as starting point, and, after the DSE, we synthesized the design
targeting a Xilinx xc7a35ticsg324-1L Artix-7 FPGA, collecting hardware
requirements. We, then, performed simulation in order to compute
the PSNR while processing a saw-tooth signal. Figs. 16(a) and 16(b)
report results for the 8-bits and 16-bits FIRs, respectively. The red star
⋆ denotes the reference (non-approximate) implementation, while the
blue bullets ∙ denotes filters being implemented using approximate mul-
tipliers. As the reader can observe, approximate multipliers resulting
from our method allow achieving significant savings while itroducing
only a restrained amount of error in the final application.

7.3. Convolutional neural network

In this case study, we target CNNs, a class of ANNs most commonly
applied to analyzing visual imagery [53,54]. The computational model
of artificial neurons is inspired by its biological counterpart, but ANNs
are organized in distinct layers, which define the network’s depth,
rather than being modeled as an amorphous blob of connected neurons.
Neurons belonging to adjacent layers can be either fully or partially
connected, while there is no connection between neurons within the
same layer. Various types of layers with various topologies have been
defined over the years. For instance, in Fully-Connected Layers (FCLs),
neurons of the layer are connected to all the neurons of the preceding
layer, while in Convolutional Layers (CLs), neurons in a layer are
connected only to a small region of the previous layer, and they perform
computations that are not just a function of the inputs. Indeed, as
reported in Eq. (22), the output of each of the neurons is a non-linear
function 𝑓 of the weighted-sum involving learned weights 𝑤𝑖 and inputs
𝑥𝑖, plus a bias 𝑏.

𝑦 = 𝑓

(𝑛
∑

𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏

)

(22)
14

𝑖

Fig. 17. Accuracy loss and hardware resources for LeNet-5 while using approximate
multipliers. The red star ⋆ denotes the reference (non-approximate) implementation,
while the blue bullets ∙ denotes CNN being implemented using approximate multipliers.

Concerning approximation, it is typically introduced by replac-
ing exact multiplications within neurons with approximate ones [43].
Hence, we aim at designing a multiplier to perform the 𝑤𝑖 ⋅ 𝑥𝑖 part
of Eq. (22), targeting convolutional layers of the CNN with the goal of
simultaneously reducing the hardware requirements and the impact of
approximation on the classification accuracy loss during the inference
phase. We resort to the approach from [42], which replaces accurate
convolution layers within ANNs using approximate ones. Specifically,
for each convolution layer, a suitable approximate multiplier is se-
lected, while the overall classification error – i.e., accuracy loss – and
energy consumption are simultaneously minimized through a MOP.
During the DSE, we estimate the power-consumed by the approximate
CNN as the weighted sum of power-consumption of each multiplier of
the net, respectively, as done in [42].

The network architecture we consider in our case study is LeNet5
[55], trained to classify images from the Modified National Institute
of Standards and Technology (MNIST) benchmark [56], which consists
of 70000 28 × 28 grayscale images of handwritten digits, of which
60000 are for training purpose and 10000 testing. The network has
been quantized using 8-bit signed integer arithmetic, and it exhibits
99.07% accuracy.

Results are reported in Fig. 17. Once again, we denote the reference
(non-approximate) implementation of the CNN using the red star ⋆,
while the blue bullets ∙ denotes CNN being implemented using approx-
imate multipliers. Please, note we only report the power consumption,
since area requirements strictly depends on the architecture of the
tensor processing unit. Power, instead, largely depends on the number
of multiplications being performed. Since the negligible accuracy loss
and the savings we can observe in Fig. 17, we can reiterate that our
method is able to provide efficient implementations for approximate
multipliers suitable for FPGA synthesis.

8. Conclusion

In this paper, we proposed the AIG rewriting technique [7] to
provide approximate synthesis of logic circuit on FPGA technology,
exploiting similarities between k-feasible cut enumeration and LUT-
mapping for FPGA technology. We compute approximate LUTs while
resorting to SMT-based ES for AIGs, and we go through multi-objective
optimization to select LUTs-replacements leading to approximate con-
figurations minimizing both error and circuit area. We underwent the
methodology to a thorough experimental campaign involving both
generic-logic circuits and arithmetic circuits, and experimental evi-
dence proved our approach allows achieving significant savings both in
terms of silicon area and power consumption. Furthermore, findings we
discussed in Section 5 are worth being considered to further improve

the effectiveness of the proposed approach when the FPGA is the

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.

d

target technology. Last, we compared our approach with state-of-the-art
proving solutions resulting from the former are competitive with those
from the latter.

CRediT authorship contribution statement

Mario Barbareschi: Writing – review & editing, Writing – original
raft, Methodology, Investigation. Salvatore Barone: Writing – review

& editing, Writing – original draft, Software, Methodology. Nicola
Mazzocca: Supervision. Alberto Moriconi: Writing – review & editing,
Writing – original draft, Software, Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] Q. Xu, T. Mytkowicz, N.S. Kim, Approximate computing: A survey, IEEE De-
sign Test 33 (1) (2016) 8–22, http://dx.doi.org/10.1109/MDAT.2015.2505723,
Conference Name: IEEE Design Test.

[2] J. Echavarria, S. Wildermann, A. Becher, J. Teich, D. Ziener, FAU: Fast and error-
optimized approximate adder units on LUT-based FPGAs, in: 2016 International
Conference on Field-Programmable Technology (FPT), 2016, pp. 213–216, http:
//dx.doi.org/10.1109/FPT.2016.7929536.

[3] B.S. Prabakaran, S. Rehman, M.A. Hanif, S. Ullah, G. Mazaheri, A. Kumar, M.
Shafique, DeMAS: An efficient design methodology for building approximate
adders for FPGA-based systems, in: 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), 2018, pp. 917–920, http://dx.doi.org/10.23919/
DATE.2018.8342140, ISSN: 1558-1101.

[4] S. Ullah, S.S. Murthy, A. Kumar, SMApproxlib: library of FPGA-based approximate
multipliers, in: Proceedings of the 55th Annual Design Automation Confer-
ence, ACM, San Francisco California, 2018, pp. 1–6, http://dx.doi.org/10.1145/
3195970.3196115, URL https://dl.acm.org/doi/10.1145/3195970.3196115.

[5] B.S. Prabakaran, V. Mrazek, Z. Vasicek, L. Sekanina, M. Shafique, ApproxFPGAs:
Embracing ASIC-based approximate arithmetic components for FPGA-based sys-
tems, in: 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp.
1–6, http://dx.doi.org/10.1109/DAC18072.2020.9218533, ISSN: 0738-100X.

[6] S. Ullah, S.S. Sahoo, N. Ahmed, D. Chaudhury, A. Kumar, AppAxO: Designing
application-specific approximate operators for FPGA-based embedded systems,
ACM Trans. Embed. Comput. Syst. (2022) 3513262, http://dx.doi.org/10.1145/
3513262, URL https://dl.acm.org/doi/10.1145/3513262.

[7] M. Barbareschi, S. Barone, N. Mazzocca, A. Moriconi, A catalog-based AIG-
rewriting approach to the design of approximate components, IEEE Trans. Emerg.
Top. Comput. (2022) http://dx.doi.org/10.1109/TETC.2022.3170502.

[8] M.J. Alexander, Power optimization for FPGA look-up tables, in: Proceedings of
the 1997 International Symposium on Physical Design - ISPD ’97, ACM Press,
Napa Valley, California, United States, 1997, pp. 156–162, http://dx.doi.org/
10.1145/267665.267707, URL http://portal.acm.org/citation.cfm?doid=267665.
267707.

[9] H.A. Almurib, T.N. Kumar, F. Lombardi, Approximate DCT image compression
using inexact computing, IEEE Trans. Comput. 67 (2) (2018) 149–159, http:
//dx.doi.org/10.1109/TC.2017.2731770.

[10] A. Mercat, J. Bonnot, M. Pelcat, K. Desnos, W. Hamidouche, D. Menard,
Smart search space reduction for approximate computing: A low energy HEVC
encoder case study, J. Syst. Archit. 80 (2017) 56–67, http://dx.doi.org/10.
1016/j.sysarc.2017.09.003, URL https://www.sciencedirect.com/science/article/
pii/S1383762117300371.

[11] V.K. Chippa, S.T. Chakradhar, K. Roy, A. Raghunathan, Analysis and char-
acterization of inherent application resilience for approximate computing, in:
Proceedings of the 50th Annual Design Automation Conference on - DAC
’13, ACM Press, Austin, Texas, 2013, p. 1, http://dx.doi.org/10.1145/2463209.
2488873, URL http://dl.acm.org/citation.cfm?doid=2463209.2488873.

[12] V.K. Chippa, D. Mohapatra, K. Roy, S.T. Chakradhar, A. Raghunathan, Scalable
effort hardware design, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22 (9)
(2014) 2004–2016, http://dx.doi.org/10.1109/TVLSI.2013.2276759.

[13] S. Venkataramani, S.T. Chakradhar, K. Roy, A. Raghunathan, Approximate com-
puting and the quest for computing efficiency, in: 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015, pp. 1–6, http://dx.doi.org/10.1145/
2744769.2744904, ISSN: 0738-100X.
15
[14] G. Li, X. Ma, Q. Yu, L. Liu, H. Liu, X. Wang, CoAxNN: Optimizing on-device
deep learning with conditional approximate neural networks, J. Syst. Archit.
143 (2023) 102978, http://dx.doi.org/10.1016/j.sysarc.2023.102978, URL https:
//www.sciencedirect.com/science/article/pii/S1383762123001571.

[15] B. Deveautour, M. Traiola, A. Virazel, P. Girard, QAMR: an approximation-
based fully reliable TMR alternative for area overhead reduction, in: 2020 IEEE
European Test Symposium (ETS), 2020, pp. 1–6, http://dx.doi.org/10.1109/
ETS48528.2020.9131574, ISSN: 1558-1780.

[16] M. Traiola, J. Echavarria, A. Bosio, J. Teich, I. O’Connor, Design space ex-
ploration of approximation-based quadruple modular redundancy circuits, in:
2021 IEEE/ACM International Conference on Computer Aided Design (ICCAD),
2021, pp. 1–9, http://dx.doi.org/10.1109/ICCAD51958.2021.9643561, ISSN:
1558-2434.

[17] W. Liu, Q. Liao, F. Qiao, W. Xia, C. Wang, F. Lombardi, Approximate designs for
fast Fourier transform (FFT) with application to speech recognition, IEEE Trans.
Circuits Syst. I. Regul. Pap. 66 (12) (2019) 4727–4739, http://dx.doi.org/10.
1109/TCSI.2019.2933321.

[18] Z.-G. Tasoulas, G. Zervakis, I. Anagnostopoulos, H. Amrouch, J. Henkel,
Weight-oriented approximation for energy-efficient neural network inference
accelerators, IEEE Trans. Circuits Syst. I. Regul. Pap. 67 (12) (2020) 4670–4683,
http://dx.doi.org/10.1109/TCSI.2020.3019460.

[19] A. Ranjan, S. Venkataramani, S. Jain, Y. Kim, S.G. Ramasubramanian, A. Raha, K.
Roy, A. Raghunathan, Automatic synthesis techniques for approximate circuits,
in: S. Reda, M. Shafique (Eds.), Approximate Circuits: Methodologies and CAD,
Springer International Publishing, Cham, 2019, pp. 123–140, http://dx.doi.org/
10.1007/978-3-319-99322-5_6.

[20] T. Yeh, P. Faloutsos, M. Ercegovac, S. Patel, G. Reinman, The art of deception:
Adaptive precision reduction for area efficient physics acceleration, in: 40th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007),
2007, pp. 394–406, http://dx.doi.org/10.1109/MICRO.2007.9, ISSN: 2379-3155.

[21] M. Traiola, A. Savino, S. Di Carlo, Probabilistic estimation of the application-level
impact of precision scaling in approximate computing applications, Microelec-
tron. Reliabil. 102 (2019) 113309, http://dx.doi.org/10.1016/j.microrel.2019.06.
002, URL https://linkinghub.elsevier.com/retrieve/pii/S0026271418309442.

[22] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, A. Raghunathan, SALSA:
Systematic logic synthesis of approximate circuits, in: DAC Design Automa-
tion Conference 2012, 2012, pp. 796–801, http://dx.doi.org/10.1145/2228360.
2228504, ISSN: 0738-100X.

[23] S. Venkataramani, K. Roy, A. Raghunathan, Substitute-and-simplify: A unified
design paradigm for approximate and quality configurable circuits, in: 2013
Design, Automation Test in Europe Conference Exhibition (DATE), 2013, pp.
1367–1372, http://dx.doi.org/10.7873/DATE.2013.280, ISSN: 1530-1591.

[24] J. Castro-Godínez, H. Barrantes-García, M. Shafique, J. Henkel, AxLS: A frame-
work for approximate logic synthesis based on netlist transformations, IEEE
Trans. Circuits Syst. II 68 (8) (2021) 2845–2849, http://dx.doi.org/10.1109/
TCSII.2021.3068757.

[25] E. Zacharelos, I. Nunziata, G. Saggese, A.G. Strollo, E. Napoli, Approximate
recursive multipliers using low power building blocks, IEEE Trans. Emerg.
Top. Comput. 10 (3) (2022) 1315–1330, http://dx.doi.org/10.1109/TETC.2022.
3186240.

[26] H. Waris, C. Wang, W. Liu, J. Han, F. Lombardi, Hybrid partial product-
based high-performance approximate recursive multipliers, IEEE Trans. Emerg.
Top. Comput. 10 (1) (2022) 507–513, http://dx.doi.org/10.1109/TETC.2020.
3013977.

[27] K. Nepal, Y. Li, R.I. Bahar, S. Reda, ABACUS: A technique for automated
behavioral synthesis of approximate computing circuits, in: 2014 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2014, pp. 1–6, http:
//dx.doi.org/10.7873/DATE.2014.374, ISSN: 1558-1101.

[28] K. Nepal, S. Hashemi, H. Tann, R.I. Bahar, S. Reda, Automated high-level gen-
eration of low-power approximate computing circuits, IEEE Trans. Emerg. Top.
Comput. 7 (1) (2019) 18–30, http://dx.doi.org/10.1109/TETC.2016.2598283.

[29] L. Sekanina, Z. Vasicek, Approximate circuit design by means of evolvable
hardware, in: 2013 IEEE International Conference on Evolvable Systems (ICES),
2013, pp. 21–28, http://dx.doi.org/10.1109/ICES.2013.6613278.

[30] S. Ullah, S. Rehman, M. Shafique, A. Kumar, High-performance accurate and
approximate multipliers for FPGA-based hardware accelerators, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 41 (2) (2022) 211–224, http://dx.doi.
org/10.1109/TCAD.2021.3056337.

[31] W. Ahmad, B. Ayrancioglu, I. Hamzaoglu, Low error efficient approximate adders
for FPGAs, IEEE Access 9 (2021) 117232–117243, http://dx.doi.org/10.1109/
ACCESS.2021.3107370, Conference Name: IEEE Access.

[32] V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina, EvoApprox8b: Library of
approximate adders and multipliers for circuit design and benchmarking of
approximation methods, in: Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, 2017, pp. 258–261, http://dx.doi.org/10.23919/DATE.
2017.7926993, ISSN: 1558-1101.

[33] A. Mishchenko, S. Chatterjee, R. Brayton, DAG-aware AIG rewriting: a fresh look
at combinational logic synthesis, in: 2006 43rd ACM/IEEE Design Automation
Conference, 2006, pp. 532–535, http://dx.doi.org/10.1145/1146909.1147048,
ISSN: 0738-100X.

http://dx.doi.org/10.1109/MDAT.2015.2505723
http://dx.doi.org/10.1109/FPT.2016.7929536
http://dx.doi.org/10.1109/FPT.2016.7929536
http://dx.doi.org/10.1109/FPT.2016.7929536
http://dx.doi.org/10.23919/DATE.2018.8342140
http://dx.doi.org/10.23919/DATE.2018.8342140
http://dx.doi.org/10.23919/DATE.2018.8342140
http://dx.doi.org/10.1145/3195970.3196115
http://dx.doi.org/10.1145/3195970.3196115
http://dx.doi.org/10.1145/3195970.3196115
https://dl.acm.org/doi/10.1145/3195970.3196115
http://dx.doi.org/10.1109/DAC18072.2020.9218533
http://dx.doi.org/10.1145/3513262
http://dx.doi.org/10.1145/3513262
http://dx.doi.org/10.1145/3513262
https://dl.acm.org/doi/10.1145/3513262
http://dx.doi.org/10.1109/TETC.2022.3170502
http://dx.doi.org/10.1145/267665.267707
http://dx.doi.org/10.1145/267665.267707
http://dx.doi.org/10.1145/267665.267707
http://portal.acm.org/citation.cfm?doid=267665.267707
http://portal.acm.org/citation.cfm?doid=267665.267707
http://portal.acm.org/citation.cfm?doid=267665.267707
http://dx.doi.org/10.1109/TC.2017.2731770
http://dx.doi.org/10.1109/TC.2017.2731770
http://dx.doi.org/10.1109/TC.2017.2731770
http://dx.doi.org/10.1016/j.sysarc.2017.09.003
http://dx.doi.org/10.1016/j.sysarc.2017.09.003
http://dx.doi.org/10.1016/j.sysarc.2017.09.003
https://www.sciencedirect.com/science/article/pii/S1383762117300371
https://www.sciencedirect.com/science/article/pii/S1383762117300371
https://www.sciencedirect.com/science/article/pii/S1383762117300371
http://dx.doi.org/10.1145/2463209.2488873
http://dx.doi.org/10.1145/2463209.2488873
http://dx.doi.org/10.1145/2463209.2488873
http://dl.acm.org/citation.cfm?doid=2463209.2488873
http://dx.doi.org/10.1109/TVLSI.2013.2276759
http://dx.doi.org/10.1145/2744769.2744904
http://dx.doi.org/10.1145/2744769.2744904
http://dx.doi.org/10.1145/2744769.2744904
http://dx.doi.org/10.1016/j.sysarc.2023.102978
https://www.sciencedirect.com/science/article/pii/S1383762123001571
https://www.sciencedirect.com/science/article/pii/S1383762123001571
https://www.sciencedirect.com/science/article/pii/S1383762123001571
http://dx.doi.org/10.1109/ETS48528.2020.9131574
http://dx.doi.org/10.1109/ETS48528.2020.9131574
http://dx.doi.org/10.1109/ETS48528.2020.9131574
http://dx.doi.org/10.1109/ICCAD51958.2021.9643561
http://dx.doi.org/10.1109/TCSI.2019.2933321
http://dx.doi.org/10.1109/TCSI.2019.2933321
http://dx.doi.org/10.1109/TCSI.2019.2933321
http://dx.doi.org/10.1109/TCSI.2020.3019460
http://dx.doi.org/10.1007/978-3-319-99322-5_6
http://dx.doi.org/10.1007/978-3-319-99322-5_6
http://dx.doi.org/10.1007/978-3-319-99322-5_6
http://dx.doi.org/10.1109/MICRO.2007.9
http://dx.doi.org/10.1016/j.microrel.2019.06.002
http://dx.doi.org/10.1016/j.microrel.2019.06.002
http://dx.doi.org/10.1016/j.microrel.2019.06.002
https://linkinghub.elsevier.com/retrieve/pii/S0026271418309442
http://dx.doi.org/10.1145/2228360.2228504
http://dx.doi.org/10.1145/2228360.2228504
http://dx.doi.org/10.1145/2228360.2228504
http://dx.doi.org/10.7873/DATE.2013.280
http://dx.doi.org/10.1109/TCSII.2021.3068757
http://dx.doi.org/10.1109/TCSII.2021.3068757
http://dx.doi.org/10.1109/TCSII.2021.3068757
http://dx.doi.org/10.1109/TETC.2022.3186240
http://dx.doi.org/10.1109/TETC.2022.3186240
http://dx.doi.org/10.1109/TETC.2022.3186240
http://dx.doi.org/10.1109/TETC.2020.3013977
http://dx.doi.org/10.1109/TETC.2020.3013977
http://dx.doi.org/10.1109/TETC.2020.3013977
http://dx.doi.org/10.7873/DATE.2014.374
http://dx.doi.org/10.7873/DATE.2014.374
http://dx.doi.org/10.7873/DATE.2014.374
http://dx.doi.org/10.1109/TETC.2016.2598283
http://dx.doi.org/10.1109/ICES.2013.6613278
http://dx.doi.org/10.1109/TCAD.2021.3056337
http://dx.doi.org/10.1109/TCAD.2021.3056337
http://dx.doi.org/10.1109/TCAD.2021.3056337
http://dx.doi.org/10.1109/ACCESS.2021.3107370
http://dx.doi.org/10.1109/ACCESS.2021.3107370
http://dx.doi.org/10.1109/ACCESS.2021.3107370
http://dx.doi.org/10.23919/DATE.2017.7926993
http://dx.doi.org/10.23919/DATE.2017.7926993
http://dx.doi.org/10.23919/DATE.2017.7926993
http://dx.doi.org/10.1145/1146909.1147048

Journal of Systems Architecture 150 (2024) 103112M. Barbareschi et al.
[34] A. Mishchenko, S. Cho, S. Chatterjee, R. Brayton, Combinational and sequential
mapping with priority cuts, in: 2007 IEEE/ACM International Conference on
Computer-Aided Design, 2007, pp. 354–361, http://dx.doi.org/10.1109/ICCAD.
2007.4397290, ISSN: 1558-2434.

[35] C.D. Murray, R.R. Williams, On the (Non) NP-hardness of computing circuit
complexity, Theory Comput. 13 (1) (2017) 1–22, http://dx.doi.org/10.4086/toc.
2017.v013a004, URL http://www.theoryofcomputing.org/articles/v013a004.

[36] L. Sekanina, Z. Vasicek, V. Mrazek, Automated search-based functional approxi-
mation for digital circuits, in: S. Reda, M. Shafique (Eds.), Approximate Circuits,
Springer International Publishing, Cham, 2019, pp. 175–203, http://dx.doi.
org/10.1007/978-3-319-99322-5_9, URL http://link.springer.com/10.1007/978-
3-319-99322-5_9.

[37] S. Barone, M. Traiola, M. Barbareschi, A. Bosio, Multi-objective application-
driven approximate design method, IEEE Access 9 (2021) 86975–86993, http:
//dx.doi.org/10.1109/ACCESS.2021.3087858.

[38] M. Barbareschi, S. Barone, N. Mazzocca, Advancing synthesis of decision tree-
based multiple classifier systems: an approximate computing case study, Knowl.
Inf. Syst. (2021) 1–20, http://dx.doi.org/10.1007/s10115-021-01565-5, URL
https://link.springer.com/article/10.1007/s10115-021-01565-5.

[39] M. Barbareschi, S. Barone, A. Bosio, J. Han, M. Traiola, A genetic-algorithm-
based approach to the design of DCT hardware accelerators, ACM J. Emerg.
Technol. Comput. Syst. 18 (3) (2022) 1–25, http://dx.doi.org/10.1145/3501772,
URL https://dl.acm.org/doi/10.1145/3501772.

[40] S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb, A simulated annealing-based
multiobjective optimization algorithm: AMOSA, IEEE Trans. Evol. Comput. 12
(3) (2008) 269–283, http://dx.doi.org/10.1109/TEVC.2007.900837, Conference
Name: IEEE Transactions on Evolutionary Computation.

[41] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide: Version 3.0,
Citeseer, 1991.

[42] V. Mrazek, Z. Vasicek, L. Sekanina, M.A. Hanif, M. Shafique, ALWANN: Au-
tomatic layer-wise approximation of deep neural network accelerators without
retraining, in: 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2019, pp. 1–8, http://dx.doi.org/10.1109/ICCAD45719.2019.
8942068, URL http://arxiv.org/abs/1907.07229, arXiv:1907.07229.

[43] M.S. Ansari, V. Mrazek, B.F. Cockburn, L. Sekanina, Z. Vasicek, J. Han, Improving
the accuracy and hardware efficiency of neural networks using approximate
multipliers, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28 (2) (2020)
317–328, http://dx.doi.org/10.1109/TVLSI.2019.2940943.

[44] M.H. Ahmadilivani, M. Barbareschi, S. Barone, A. Bosio, M. Daneshtalab, S.
Della Torca, G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo, Special session:
Approximation and fault resiliency of DNN accelerators, in: 2023 IEEE 41st VLSI
Test Symposium (VTS), IEEE, 2023, pp. 1–10.

[45] M.S. Kim, A.A. Del Barrio, H. Kim, N. Bagherzadeh, The effects of approx-
imate multiplication on convolutional neural networks, IEEE Trans. Emerg.
Top. Comput. 10 (2) (2022) 904–916, http://dx.doi.org/10.1109/TETC.2021.
3050989.

[46] J. Klhufek, V. Mrazek, ArithsGen: Arithmetic circuit generator for hardware
accelerators, in: 2022 25th International Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS), 2022, pp. 44–47, http://dx.doi.org/
10.1109/DDECS54261.2022.9770152, ISSN: 2473-2117.

[47] N. Homma, T. Aoki, Arithmetic module generator, 2022, URL https://www.ecsis.
riec.tohoku.ac.jp/topics/amg/.

[48] R. Ueno, N. Homma, T. Aoki, Automatic generation system for multiple-
valued galois-field parallel multipliers, IEICE Trans. Inf. Syst. E100.D (8)
(2017) 1603–1610, http://dx.doi.org/10.1587/transinf.2016LOP0010, URL https:
//www.jstage.jst.go.jp/article/transinf/E100.D/8/E100.D_2016LOP0010/_article.

[49] L. Amaru, P.-E. Gaillardon, G.D. Micheli, The EPFL combinational benchmark
suite, in: Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS), Mountain View, California, USA, 2015, URL http://infoscience.epfl.ch/
record/207551.

[50] M. Soeken, L.G. Amarù, P.-E. Gaillardon, G. De Micheli, Exact synthesis of
majority-inverter graphs and its applications, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 36 (11) (2017) 1842–1855, http://dx.doi.org/10.1109/
TCAD.2017.2664059.
16
[51] M. Pedram, Power minimization in IC design Principles and applications, ACM
Trans. Des. Autom. Electron. Syst. 1 (1) (1996) 54.

[52] V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang, J. Han, Scalable construction
of approximate multipliers with formally guaranteed worst case error, IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 26 (11) (2018) 2572–2576, http:
//dx.doi.org/10.1109/TVLSI.2018.2856362.

[53] Y. Bengio, Learning deep architectures for AI, Found. Trends Mach. Learn. 2 (1)
(2009) 1–127, http://dx.doi.org/10.1561/2200000006.

[54] J. Schmidhuber, Deep learning in neural networks: An overview, Neural
Netw. 61 (2015) 85–117, http://dx.doi.org/10.1016/j.neunet.2014.09.003, https:
//linkinghub.elsevier.com/retrieve/pii/S0893608014002135.

[55] Backpropagation applied to handwritten zip code recognition, Neural Comput. 1
(4) (1989) 541–551, http://dx.doi.org/10.1162/neco.1989.1.4.541.

[56] Y. LeCun, C. Cortes, C. Burges, MNIST Handwritten digit database, 1998, URL
http://yann.lecun.com/exdb/mnist/.

Mario Barbareschi is a Tenured Assistant Professor of Com-
puter Systems at the Department of Electrical Engineering
and Information Technologies of the University of Naples
Federico II. He received the Ph.D. in Computer and Au-
tomation Engineering in 2015 from the University of Naples
Federico II. His research interests include Hardware Security
and Trust, Approximate Computing, emerging technologies,
and embedded systems. He has authored more than 70
peer-reviewed papers published in leading journals and
international conferences.

Salvatore Barone received the Ph.D. in Information Tech-
nologies and Electrical Engineering in 2022, and the Master
Degree in Computer Engineering cum laude in 2018, both
from the University of Naples Federico II, Italy, where he is
an Assistant Professor. His research interests include Safety
Critical Systems, Railway Systems, Approximate Computing
and Embedded Systems based on the FPGA technology.

Nicola Mazzocca is full professor of Computer Systems at
the Department of Electrical Engineering and Information
Technologies of the University of Naples Federico II. Since
1994, he has held numerous university courses and in
professional training activities on different topics, including,
high-performance systems, distributed systems, embedded
systems, security, and reliability. His research activities
concern: computer architecture, distributed systems, high-
performance systems, and safety-critical applications. He is
author of more than 250 papers on international journals,
books, and conference proceedings of congresses.

Alberto Moriconi received the Master Degree in Computer
Engineering cum laude in 2019, from the University of
Naples Federico II, Italy, where he is currently a Ph.D. stu-
dent. His research interests include Approximate Computing,
Safety Critical Systems, Railway Systems, and Embedded
Systems based on the FPGA technology.

http://dx.doi.org/10.1109/ICCAD.2007.4397290
http://dx.doi.org/10.1109/ICCAD.2007.4397290
http://dx.doi.org/10.1109/ICCAD.2007.4397290
http://dx.doi.org/10.4086/toc.2017.v013a004
http://dx.doi.org/10.4086/toc.2017.v013a004
http://dx.doi.org/10.4086/toc.2017.v013a004
http://www.theoryofcomputing.org/articles/v013a004
http://dx.doi.org/10.1007/978-3-319-99322-5_9
http://dx.doi.org/10.1007/978-3-319-99322-5_9
http://dx.doi.org/10.1007/978-3-319-99322-5_9
http://link.springer.com/10.1007/978-3-319-99322-5_9
http://link.springer.com/10.1007/978-3-319-99322-5_9
http://link.springer.com/10.1007/978-3-319-99322-5_9
http://dx.doi.org/10.1109/ACCESS.2021.3087858
http://dx.doi.org/10.1109/ACCESS.2021.3087858
http://dx.doi.org/10.1109/ACCESS.2021.3087858
http://dx.doi.org/10.1007/s10115-021-01565-5
https://link.springer.com/article/10.1007/s10115-021-01565-5
http://dx.doi.org/10.1145/3501772
https://dl.acm.org/doi/10.1145/3501772
http://dx.doi.org/10.1109/TEVC.2007.900837
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb41
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb41
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb41
http://dx.doi.org/10.1109/ICCAD45719.2019.8942068
http://dx.doi.org/10.1109/ICCAD45719.2019.8942068
http://dx.doi.org/10.1109/ICCAD45719.2019.8942068
http://arxiv.org/abs/1907.07229
http://arxiv.org/abs/1907.07229
http://dx.doi.org/10.1109/TVLSI.2019.2940943
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb44
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb44
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb44
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb44
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb44
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb44
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb44
http://dx.doi.org/10.1109/TETC.2021.3050989
http://dx.doi.org/10.1109/TETC.2021.3050989
http://dx.doi.org/10.1109/TETC.2021.3050989
http://dx.doi.org/10.1109/DDECS54261.2022.9770152
http://dx.doi.org/10.1109/DDECS54261.2022.9770152
http://dx.doi.org/10.1109/DDECS54261.2022.9770152
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
http://dx.doi.org/10.1587/transinf.2016LOP0010
https://www.jstage.jst.go.jp/article/transinf/E100.D/8/E100.D_2016LOP0010/_article
https://www.jstage.jst.go.jp/article/transinf/E100.D/8/E100.D_2016LOP0010/_article
https://www.jstage.jst.go.jp/article/transinf/E100.D/8/E100.D_2016LOP0010/_article
http://infoscience.epfl.ch/record/207551
http://infoscience.epfl.ch/record/207551
http://infoscience.epfl.ch/record/207551
http://dx.doi.org/10.1109/TCAD.2017.2664059
http://dx.doi.org/10.1109/TCAD.2017.2664059
http://dx.doi.org/10.1109/TCAD.2017.2664059
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb51
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb51
http://refhub.elsevier.com/S1383-7621(24)00049-3/sb51
http://dx.doi.org/10.1109/TVLSI.2018.2856362
http://dx.doi.org/10.1109/TVLSI.2018.2856362
http://dx.doi.org/10.1109/TVLSI.2018.2856362
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://linkinghub.elsevier.com/retrieve/pii/S0893608014002135
https://linkinghub.elsevier.com/retrieve/pii/S0893608014002135
https://linkinghub.elsevier.com/retrieve/pii/S0893608014002135
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://yann.lecun.com/exdb/mnist/

	FPGA approximate logic synthesis through catalog-based AIG-rewriting technique
	Introduction
	Related Work
	Catalog-based AIG-rewriting
	And-Inverter Graphs
	Generating Approximate Variants
	Exact Synthesis and Approximate k-cuts generation
	Design Space Exploration

	Evaluation
	Experimental setup
	Experimental results
	Achieved savings while targeting different technologies

	The power dissipation model of LUTs
	Switching Activity Estimation
	Result discussing and final remarks

	Comparison with previous works
	Case Studies
	The Sobel edge-detector
	The FIR filter
	Convolutional Neural Network

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

