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Surfaces with pg = q = 2, K2
= 6, and

Albanese Map of Degree 2

Matteo Penegini and Francesco Polizzi

Abstract. We classify minimal surfaces of general type with pg = q = 2 and K2 = 6 whose Albanese

map is a generically finite double cover. We show that the corresponding moduli space is the dis-

joint union of three generically smooth irreducible components MIa, MIb, MII of dimension 4, 4, 3,

respectively.

Introduction

Minimal surfaces S of general type with pg = q = 2 fall into two classes according to

the behavior of their Albanese map α : S → A. Indeed, since q = 2, either α(S) = C ,

where C is a smooth curve of genus 2, or α is surjective and S is of Albanese general

type.

The surfaces that belong to the former case satisfy K2
S = 8 and are now completely

classified; see [Z03, Pe11]. Those belonging to the latter case present a much richer

and subtler geometry, and their full description is still missing; we refer the reader to

the introduction of [PP10] and the references given there for a recent account on this

topic.

So far, the only known example of a surface of general type with pg = q = 2 and

K2
S = 6 was the one given in [Pe11]; in that case, the Albanese map is a generically

finite quadruple cover of an abelian surface with a polarization of type (1, 3).

As the title suggests, in this paper we investigate surfaces with the above invariants

and whose Albanese map is a generically finite double cover. The results that we

obtain are quite satisfactory, indeed we are not only able to show the existence of

such new surfaces, but we also provide their complete classification, together with a

detailed description of their moduli space.

Before stating our results, let us introduce some notation. Let (A,L) be a

(1, 2)-polarized abelian surface and let us denote by φ2 : A[2] → Â[2] the restric-

tion of the canonical homomorphism φL : A → Â to the subgroup of 2-division

points. Then imφ2 consists of four line bundles {OA,Q1,Q2,Q3}. Let us denote by

imφ×2 the set {Q1,Q2,Q3}.

Our first result is the following theorem.
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Theorem A (see Theorem 2.6) Given an abelian surface A with a symmetric po-

larization L of type (1, 2), not of product type, for any Q ∈ imφ2 there exists a curve

D ∈ |L2⊗Q| whose unique non-negligible singularity is an ordinary quadruple point at

the origin o ∈ A. Let Q1/2 be a square root of Q, and if Q = OA, assume moreover that

Q1/2 6= OA. Then the minimal desingularization S of the double cover of A branched

over D and defined by L ⊗ Q1/2 is a minimal surface of general type with pg = q = 2,

K2
S = 6, and Albanese map of degree 2.

Conversely, every minimal surface of general type with pg = q = 2, K2
S = 6 and

Albanese map of degree 2 can be constructed in this way.

When Q = Q1/2
= OA we obtain instead a minimal surface with pg = q = 3; see

Proposition 2.4 and Remark 2.5.

We use the following terminology:

• if Q = OA, we say that S is a surface of type I. Furthermore, if Q1/2 /∈ imφ×2 , we

say that S is of type Ia, whereas if Q1/2 ∈ imφ×2 we say that S is of type Ib;
• if Q ∈ imφ×2 , we say that S is a surface of type II.

Since q = 2, the results in [Ca91] imply that the degree of the Albanese map is

a topological invariant; see Proposition 3.1. Therefore we may consider the moduli

space M of minimal surfaces of general type with pg = q = 2, K2
S = 6, and Albanese

map of degree 2. Let MIa, MIb, MII be the algebraic subsets whose points parameter-

ize isomorphism classes of surfaces of type Ia, Ib, II, respectively. Therefore M can

be written as the disjoint union

M = MIa ⊔MIb ⊔MII .

Our second result is the following theorem.

Theorem B (see Theorem 3.7) The following hold:

(i) MIa, MIb, MII are the connected components of M;

(ii) these are also irreducible components of the moduli space of minimal surfaces of

general type;

(iii) MIa,MIb,MII are generically smooth, of dimension 4, 4, 3, respectively;

(iv) the general surface in MIa and MIb has ample canonical class; all surfaces in MII

have ample canonical class.

This work is organized as follows.

In Section 1 we fix notation and terminology, and we prove some technical results

on abelian surfaces with (1, 2)-polarization that are needed in the sequel of the paper.

In the Section 2 we give the proof of Theorem A. Moreover, we provide a descrip-

tion of the canonical system |KS| in each of the three cases Ia, Ib, II. It turns out

that if S is either of type Ia or of type II, then the general curve in |KS| is irreducible,

whereas if S is of type Ib then |KS| = Z + |Φ|, where |Φ| is a base-point free pencil of

curves of genus 3.

Finally, Section 3 is devoted to the proof of Theorem B. Such a proof involves the

calculation of the monodromy action of the paramodular group G∆ on the set Â[2],

with ∆ =
(

1 0
0 2

)
. This is probably well known to the experts, but, at least to our

knowledge, it is nowhere explicitly written, so we dedicated an appendix to it.
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Notation and Conventions

We work over the field C of complex numbers.

If A is an abelian variety and Â := Pic0(A) is its dual, we denote by o and ô the

zero point of A and Â, respectively. Moreover, A[2] and Â[2] stand for the subgroups

of 2-division points.

If L is a line bundle on A, we denote by φL the morphism φL : A → Â given by

x 7→ t∗x L⊗L−1. If c1(L) is non-degenerate, then φL is an isogeny, and we denote by

K(L) its kernel.

A coherent sheaf F on A is called a IT-sheaf of index i if

H j(A,F ⊗ Q) = 0 for all Q ∈ Pic0(A) and j 6= i.

If F is an IT-sheaf of index i and P it the normalized Poincaré bundle on A × Â, the

coherent sheaf

F̂ := RiπÂ∗(P⊗ π∗

AF)

is a vector bundle of rank hi(A,F), called the Fourier–Mukai transform of F.

By surface we mean a projective, non-singular surface S, and for such a surface

ωS = OS(KS) denotes the canonical class, pg(S) = h0(S, ωS) is the geometric genus,

q(S) = h1(S, ωS) is the irregularity and χ(OS) = 1−q(S)+ pg(S) is the Euler–Poincaré

characteristic. If q(S) > 0, we denote by α : S → Alb(S) the Albanese map of S.

Throughout the paper, we denote Cartier divisors on a variety by capital letters

and the corresponding line bundles by italic letters, so we write for instance L =

OS(L).

If |L| is any complete linear system of curves on a surface, its base locus is denoted

by Bs |L|.
If X is any scheme, by a first-order deformation of X we mean a deformation over

SpecC[ǫ]/(ǫ2).

In Section 1 we use the following special case of Eagon–Northcott complex. Let

us consider a short exact sequence of sheaves on S of the form

0 −→ L −→ F −→ M⊗ Ip −→ 0,

where L, M are line bundles, F is a rank 2 vector bundle, and p is a point. Then the

symmetric powers S2F and S3F fit into short exact sequences

0 −→ F ⊗ L −→ S2
F −→ M

2 ⊗ I
2
p −→ 0,

0 −→ S2
F ⊗ L −→ S3

F −→ M
3 ⊗ I

3
p −→ 0.

1 Abelian Surfaces with (1, 2)-polarization

In this section we prove some technical facts about abelian surfaces with polariza-

tion of type (1, 2) that are needed in the sequel of the paper. The crucial results are

Proposition 1.4, Proposition 1.5, Corollary 1.7, and Corollary 1.12. For the state-

ments whose proof is omitted we refer the reader to [Ba87, HvM89, BPS09, PP10]

and [BL04, Chapter 10].
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Let A be an abelian surface and L an ample divisor on A with L2
= 4. Then L

defines a positive definite line bundle L := OA(L) on A, whose first Chern class is a

polarization of type (1, 2). By abuse of notation we consider the line bundle L itself

as a polarization. Moreover, we have h0(A,L) = 2, so the linear system |L| is a pencil.

Proposition 1.1 ([Ba87, p. 46]) Let (A,L) be a (1, 2)-polarized abelian surface and

let G ∈ |L|. Then we have one of the following cases:

(a) G is a smooth, connected curve of genus 3;

(b) G is an irreducible curve of geometric genus 2, with an ordinary double point;

(c) G = E + F, where E and F are elliptic curves and EF = 2;

(d) G = E+F1 +F2, with E, F1, F2 elliptic curves such that EF1 = 1, EF2 = 1, F1F2 = 0.

Moreover, in case (c) the surface A admits an isogeny onto a product of two elliptic curves,

and the polarization of A is the pull-back of the principal product polarization, whereas

in case (d) the surface A itself is a product E × F and L = OA(E + 2F).

Let us denote by ∆ the matrix
(

1 0
0 2

)
, and by A∆ the moduli space of (1, 2)-po-

larized abelian surfaces; then there exists a Zariski dense set U ⊂ A∆ such that,

given any (A,L) ∈ U, all divisors in |L| are irreducible, i.e., of type (a) or (b); see

[BPS09, Section 3].

Definition 1.2 If (A,L) ∈ U, we say that L is a general (1, 2)-polarization. If |L|
contains some divisor of type (c), we say that L is a special (1, 2)-polarization. Finally,

if the divisors in |L| are of type (d), we say that L is a product (1, 2)-polarization.

In the rest of this section we assume that L is not a product polarization. Then

|L| has four distinct base points {e0, e1, e2, e3}, which form an orbit for the action of

K(L) ∼= (Z/2Z)2 on A. Moreover all curves in |L| are smooth at each of these base

points; see [Ba87, Section 1].

Let us denote by (−1)A the involution x → −x on A. Then we say that a divisor C

on A is symmetric if (−1)∗AC = C . Analogously, we say that a vector bundle F on A is

symmetric if (−1)∗AF = F.

Since L is ample, [Ba87] implies that, up to translations, we may suppose that L

is symmetric and that the base locus of |L| coincides with K(L). Moreover:

• for all sections s ∈ H0(A,L) we have (−1)∗As = s (in particular, all divisors in |L|
are symmetric);

• we may assume that e0 = o and that e1, e2, e3 are 2-division points, satisfying

e1 + e2 = e3.

There exist exactly three 2-torsion line bundles Q1, Q2, Q3 on A, with Q1 ⊗ Q2 = Q3,

such that the linear system |L + Qi | contains an irreducible curve that is singular at

o. More precisely, one shows that h0(A,L⊗ Qi ⊗ I2
o) = 1 and that the unique curve

Ni ∈ |L + Qi | that is singular at o actually has an ordinary double point there.

Denoting by φ2 : A[2] → Â[2] the homomorphism induced by φL : A → Â on

the subgroups of 2-division points, both kerφ2 and imφ2 are isomorphic to (Z/2Z)2.

Indeed, we have

kerφ2 = K(L) and imφ2 = {OA,Q1,Q2,Q3}.
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Let imφ×2 be the set {Q1,Q2,Q3}.

Proposition 1.3 Let Q,Q ′ ∈ Â and p ∈ Bs|L + Q|. Then

h0(A,L⊗ Q
′ ⊗ I

2
p) =

{
0 if Q ′ ⊗ Q−1 /∈ imφ×2 ,

1 if Q ′ ⊗ Q−1 ∈ imφ×2 .

Proof Since p ∈ Bs |L + Q|, translating by p we see that h0(A,L ⊗ Q ′ ⊗ I2
p) 6= 0 if

and only if h0(A,L⊗Q ′ ⊗Q−1 ⊗ I2
o) 6= 0.Now the claim follows, because this holds

precisely when Q ′ ⊗ Q−1 ∈ imφ×2 .

For any Q ∈ Â, let us consider the linear system |L2 ⊗ Q ⊗ I4
o| := PH0(A,L2 ⊗

Q⊗ I4
o) consisting of the curves in |2L + Q| having a point of multiplicity at least 4 at

o. We first analyze the case Q = OA.

Proposition 1.4 We have h0(A,L2 ⊗ I4
o) = 2; that is, the linear system |L2 ⊗ I4

o| ⊂
|2L| is a pencil. Moreover, if C ∈ |L2 ⊗ I4

o|, then we have one of the following cases:

(a) C is an irreducible curve of geometric genus 3, with an ordinary quadruple point

(this corresponds to the general case);

(b) C is an irreducible curve of geometric genus 2, with an ordinary quadruple point

and an ordinary double point;

(c) C = 2C ′, where C ′ is an irreducible curve of geometric genus 2 with an ordinary

double point;

(d) L is a special (1, 2)-polarization and C = 2C ′, where C ′ is the union of two elliptic

curves intersecting transversally in two points.

Proof Since the three curves 2Ni belong to |L2 ⊗ I4
o| and each Ni is irreducible, by

Bertini’s theorem it follows that the general element C ∈ |L2 ⊗ I4
o| is irreducible

and smooth outside o. On the other hand we have (2L)2
= 16, so C has an or-

dinary quadruple point at o. Blowing up this point, the strict transform of C has

self-intersection 0, so |L2 ⊗ I4
o| is a pencil.

Assume first that L is a general polarization. We have shown that the general curve

in |L2 ⊗I4
o| belongs to case (a). In order to complete the proof, observe that |L2 ⊗I4

o|
contains the following distinguished elements:

• three reduced, irreducible curves B1, B2, B3 such that Bi has an ordinary quadruple

point at o, an ordinary double point at ei and no other singularities (see [BL04, Corol-

lary 4.7.6]). These curves are as in case (b);
• three non-reduced elements, namely 2N1, 2N2, 2N3. These curves are as in case

(c).

Moreover, all other elements of |L2 ⊗ I4
o| are smooth outside o; this can be seen by

blowing-up o and applying the Zeuthen–Segre formula to the fibration induced by

the strict transform of the pencil, see [PP10, Section 1.2].

Finally, assume that L is a special polarization. Then there is just one more possi-

bility, namely that C = 2C ′, where C ′ is the translate of a reducible curve E + F ∈ |L|
by a suitable 2-division point. This yields case (d).
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Let us consider now the case where Q is non-trivial. In the sequel, {i, j, k} always

denotes a permutation of {1, 2, 3}.

Proposition 1.5 Let Q ∈ Â be non-trivial. Then |L2 ⊗ Q ⊗ I4
o| is empty, unless

Q ∈ im φ×2 . More precisely, for all i ∈ {1, 2, 3} we have h0(A,L2 ⊗ Qi ⊗ I4
o) = 1, so

that |L2 ⊗ Qi ⊗ I4
o| consists of a unique element, namely the curve N j + Nk.

Proof Assume that there exists an effective curve C ∈ |L2 ⊗Q⊗ I4
o|. Blowing up the

point o, the strict transform C̃ of C is numerically equivalent to the strict transform

of a general element of the pencil |L2 ⊗ I4
o|. Since Q is non-trivial, by the description

of the non-reduced elements of |L2 ⊗ I4
o| given in Proposition 1.4 we must have

C̃ = Ñ j + Ñk, so Q = Qi .

Summing up, Propositions 1.4 and 1.5 imply the following corollary.

Corollary 1.6 Let Q ∈ Â. Then |L2 ⊗ Q ⊗ I4
o| is empty, unless Q ∈ im φ2. In this

case

dim |L2 ⊗ Q⊗ I
4
o| =

{
1 if Q = OA,

0 if Q ∈ imφ×2 .

Corollary 1.7 Let (A,L) be a (1, 2)-polarized abelian surface, and let C be a reduced

divisor numerically equivalent to 2L that has a quadruple point at p ∈ A. Then C

belongs to one of the following cases, all of which occur:

(i) C is irreducible, with an ordinary quadruple point at p and no other singularities;

(ii) C is irreducible, with an ordinary quadruple point at p, an ordinary double point

and no other singularities;

(iii) C = C1+C2, where Ci is irreducible and numerically equivalent to L, with an ordi-

nary double point at p and no other singularities. Since C1C2 = 4, the singularity

of C at p is again an ordinary quadruple point.

Proposition 1.8 There exists a rank 2 indecomposable vector bundle F on A, such that

h0(A,F) = 1, h1(A,F) = 0, h2(A,F) = 0,

c1(F) = L, c2(F) = 1.

(1.1)

Moreover, F is symmetric, and it is isomorphic to the unique locally free extension of the

form

(1.2) 0 −→ OA −→ F −→ L⊗ Io −→ 0.

Proof Let L∗ be the (1, 2)-polarization on Â which is dual to L. Then L∗−1 is an IT-

sheaf of index 2, and its Fourier–Mukai transform F := L̂∗−1 is a rank 2 vector bun-

dle on A, which satisfies (1.1) by [BL04, Theorem 14.2.2] and [Mu81, Corollary 2.8].

In addition, [BL04, Proposition 14.4.3] implies c1(F) = L. Finally, Hirzebruch–

Riemann–Roch implies c2(F) = 1 and by [PP10, Proposition 2.2] and [PP10, Propo-

sition 2.4], since L is not a product polarization, we infer that F is symmetric and

isomorphic to the unique locally free extension (1.2).
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Proposition 1.9 Let Q ∈ Â. The following holds:

(i) if Q /∈ im φ×2 , then

h0
(

A, S2
F ⊗

2∧
F
∨ ⊗ Q

)
= 0, h1

(
A, S2

F ⊗
2∧
F
∨ ⊗ Q

)
= 0,

h2
(

A, S2
F ⊗

2∧
F
∨ ⊗ Q

)
= 0;

(ii) if Q ∈ im φ×2 , then

h0
(

A, S2
F ⊗

2∧
F
∨ ⊗ Q

)
= 1, h1

(
A, S2

F ⊗
2∧
F
∨ ⊗ Q

)
= 2,

h2
(

A, S2
F ⊗

2∧
F
∨ ⊗ Q

)
= 1.

Proof Tensoring (1.2) with Q we obtain h0(A,F⊗Q) = 1; that is, F⊗Q has a non-

trivial section. By [F98, Proposition 5 p. 33] there exists an effective divisor C and a

zero-dimensional subscheme W ⊂ A such that F⊗Q fits into a short exact sequence

(1.3) 0 −→ C −→ F ⊗ Q −→ L⊗ Q
2 ⊗ C

−1 ⊗ IW −→ 0,

where C = OA(C). Then h0(A,C) = 1 and

(1.4) 1 = c2(F ⊗ Q) = C(L −C) + ℓ(W ).

Now there are three possibilities:

(i) C is an elliptic curve;

(ii) C is a principal polarization;

(iii) C = 0.

We want to show that (i) and (ii) cannot occur.

In case (i) we have C2
= 0, then by (1.4) we obtain CL = 1 and ℓ(W ) = 0. Thus

[BL04, Lemma 10.4.6] implies that L is a product polarization, a contradiction.

In case (ii), the Index Theorem yields (CL)2 ≥ C2L2
= 8, so using (1.4) we deduce

CL = 3, ℓ(W ) = 0. Tensoring (1.3) by Q−1 and setting C ′ := C⊗ Q−1, we obtain

0 −→ C
′ −→ F −→ L⊗ C

′−1 −→ 0.

Since C ′ is also a principal polarization, by applying the same argument used in the

proof of [PP10, Proposition 2.2], we conclude again that L must be a product polar-

ization.

Therefore the only possibility is (iii), namely C = 0. It follows ℓ(W ) = 1; that is,

W consists of a unique point p ∈ A and (1.3) becomes

(1.5) 0 −→ OA −→ F ⊗ Q −→ L⊗ Q
2 ⊗ Ip −→ 0.
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Moreover, since F⊗Q is locally free, we have p ∈ Bs |L+2Q|, see [Ca90, Example 1.7]

or [F98, Theorem 12 p. 39] . Applying the Eagon–Northcott complex to (1.5) and

tensoring with
∧2

F∨ ⊗ Q−1, we get

0 −→ F
∨ −→ S2

F ⊗
2∧
F
∨ ⊗ Q −→ L⊗ Q

3 ⊗ I
2
p −→ 0,

hence

h0
(

A, S2
F ⊗

2∧
F
∨ ⊗ Q

)
= h0(A,L⊗ Q

3 ⊗ I
2
p).

On the other hand, since p ∈ Bs |L + 2Q|, Proposition 1.3 yields

(1.6) h0(A,L⊗ Q
3 ⊗ I

2
p) =

{
0 if Q /∈ imφ×2 ,

1 if Q ∈ imφ×2 .

Using Serre duality, the isomorphism F∨ ∼= F ⊗
∧2

F∨, and (1.6), since Q ∈ imφ×2
if and only if Q−1 ∈ imφ×2 , we obtain

h2
(

A, S2
F ⊗

2∧
F
∨ ⊗ Q

)
= h0

(
A, S2

F ⊗
2∧
F
∨ ⊗ Q

−1
)
= h0

(
A, S2

F ⊗
2∧
F
∨ ⊗ Q

)

for all Q ∈ Â. Moreover Hirzebruch–Riemann–Roch gives χ(A, S2F⊗
∧2

F∨⊗Q) =

0, hence we get

h1
(

A, S2
F ⊗

2∧
F
∨ ⊗ Q

)
= 2 · h0

(
A, S2

F ⊗
2∧
F
∨ ⊗ Q

)
.

This completes the proof.

Proposition 1.10 For any Q ∈ Â, we have

h0
(

A, S3
F ⊗

2∧
F
∨ ⊗ Q

)
= 2, h1

(
A, S3

F ⊗
2∧
F
∨ ⊗ Q

)
= 0,

h2
(

A, S3
F ⊗

2∧
F
∨ ⊗ Q

)
= 0.

Proof By Hirzebruch–Riemann–Roch we obtain χ(A, S3F ⊗
∧2

F∨ ⊗ Q) = 2, so it

suffices to show that hi(A, S3F ⊗
∧2

F∨ ⊗ Q) = 0 for i = 1, 2. The sheaf F ⊗ Q−1

satisfies IT of index 0 and h0(A,F ⊗ Q−1) = 1, so its Fourier–Mukai transform

L
−1
δ := ̂F ⊗ Q−1 is a line bundle on Â, which satisfies IT of index 2 by [BL04, The-

orem 14.2.2] and has h2(Â,L−1
δ ) = 2 by [Mu81, Corollary 2.8]. This means that

Lδ = (L−1
δ )−1 is a (1, 2)-polarization. Since F is a symmetric vector bundle, by

using [Mu81, Corollary 2.4] we obtain

L̂δ = (−1)∗A(F ⊗ Q
−1) = F ⊗ Q;

that is, the rank 2 vector bundle F⊗Q is the Fourier–Mukai transform of Lδ . There-

fore, taking the isogeny φ = φ
L

−1
δ

: Â → A and using [Mu81, Proposition 3.11], we

can write

(1.7) φ∗(F ⊗ Q) = Lδ ⊕ Lδ.
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On the other hand, φ is a finite map, so we have

Hi
(

A, S3
F ⊗

2∧
F
∨ ⊗ Q

)
∼= φ∗Hi

(
A, S3

F ⊗
2∧
F
∨ ⊗ Q

)

⊆ Hi
(

Â, φ∗
(

S3
F ⊗

2∧
F
∨ ⊗ Q

))
.

Since

S3
F ⊗

2∧
F
∨ ⊗ Q = S3(F ⊗ Q) ⊗

2∧
(F ⊗ Q)∨,

by using (1.7) we deduce

Hi
(

Â, φ∗
(

S3
F ⊗

2∧
F
∨ ⊗ Q

))
= Hi(Â,Lδ)

⊕4.

The right-hand side vanishes for i = 1, 2, so we are done.

Let σ : B → A be the blow-up of A at o and let E ⊂ B be the exceptional divisor.

Since Pic0(B) ∼= σ∗ Pic0(A), by abusing notation we will often identify degree 0 line

bundles on B with degree 0 line bundles on A, and we will simply write Q instead of

σ∗Q.

The strict transform of the pencil |L2 ⊗ I4
o| gives the base-point free pencil

|σ∗(2L) − 4E| in B, whose general element is a smooth curve of genus 3.

Proposition 1.11 Let D ∈ |σ∗(2L) − 4E| be a smooth curve and let Q ∈ Â. Then

OD(Q) = OD if and only if Q ∈ imφ2.

Proof If Q = OA, the result is clear, so we assume that Q ∈ Â is non-trivial. Since

h1(B,Q) = h2(B,Q) = 0, by using the short exact sequence

0 −→ OB(Q − D) −→ OB(Q) −→ OD(Q) −→ 0

and Serre duality, we obtain

h1
(

D,OD(Q)
)
= h2

(
B,OB(Q − D)

)
= h0

(
B,OB(D − Q + E)

)

= h0
(

B, σ∗
OA(2L − Q) − 3E

)
= h0(A,L2 ⊗ Q

−1 ⊗ I
3
o).

(1.8)

In order to compute the last cohomology group, we will exploit the vector bundle F.

In fact, applying the Eagon–Northcott complex to (1.2) and tensoring with
∧2

F∨ ⊗
Q−1, we get

(1.9) 0 −→ S2
F⊗

2∧
F
∨⊗Q

−1 −→ S3
F⊗

2∧
F
∨⊗Q

−1 −→ L
2 ⊗Q

−1 ⊗ I
3
o −→ 0.

By using (1.9) and Propositions 1.9 and 1.10, we obtain

h0(A,L2 ⊗ Q
−1 ⊗ I

3
o) =

{
2 if Q /∈ imφ×2 ,

3 if Q ∈ imφ×2 .
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Since D is a smooth curve of genus 3, by using (1.8) and Riemann–Roch we deduce

h0(D,OD(Q)) = h1(D,OD(Q)) − 2 =

{
0 if Q /∈ imφ2,

1 if Q ∈ imφ2.

This completes the proof.

Corollary 1.12 Let Q ∈ Â and let D be a smooth curve in the pencil |σ∗(2L) − 4E|.
Then OD(σ∗(L + Q) − 2E) = OD if and only if Q ∈ imφ2.

Proof For all i ∈ {1, 2, 3} the effective curve Ñi ∈ |σ∗(L+Qi)−2E| does not intersect

D, so OD(σ∗(L + Qi)− 2E) = OD. So we have OD(σ∗(L + Q)− 2E) = OD if and only

if OD(Q − Qi) ∈ imφ2, i.e., if and only if Q ∈ imφ2; see Proposition 1.11.

2 Surfaces with pg = q = 2, K2
= 6 and Albanese Map of Degree 2

In the sequel, S will be a smooth minimal surface of Albanese general type with pg =

q = 2, and α : S → A will be its Albanese map, which we suppose is of degree 2. Let

DA ⊂ A be the branch locus of α and let

S //

α
��
>

>

>

>

>

>

>

X

f

��

A

be the Stein factorization of α. Then f : X → A is a finite double cover, and, since

S is smooth, it follows that X is normal; see [BHPV03, Chapter I, Theorem 8.2]. In

particular X has at most isolated singularities, hence the curve DA is reduced.

Proposition 2.1 Assume that K2
S = 6 and that the Albanese map α : S → A is a

generically finite double cover. Then there exists a polarization LA = OA(LA) of type

(1, 2) on A such that DA is a curve in |2LA| whose unique non-negligible singularity is

an ordinary quadruple point p.

Proof DA is linearly equivalent to 2LA for some divisor LA in A. There is a “canonical

resolution” diagram

(2.1)

S̄ −−−−→ X

β

y
y f

B
σ

−−−−→ A,

where S̄ is smooth and σ : B → A is composed of a series of blow-ups; see [BHPV03,

Chapter III, Section 7]. Let x1, x2, . . . , xr be the centers of these blow-ups, and let Ei

be the inverse image of xi on B (with right multiplicities such that EiE j = −δi j , KB =
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σ∗KA+
∑r

i=1 Ei). Then the branch locus DB of β : S̄ → B is smooth and can be written

as

DB = σ∗DA −

r∑

i=1

diEi ,

where the di are even positive integers, say di = 2mi . Let us recall a couple of defini-

tions:

• a negligible singularity of DA is a point x j such that d j = 2, and di ≤ 2 for any

point xi infinitely near to x j ;
• a [2d + 1, 2d + 1]- singularity of DA is a pair (xi , x j) such that xi belongs to the first

infinitesimal neighbourhood of x j and di = 2d + 2, d j = 2d.

For example, a double point and an ordinary triple point are negligible singularities,

whereas a [3, 3]-point is not. By using the formulae in [BHPV03, p. 237] we obtain

(2.2) 2 = 2χ(OS̄) = L2
A −

r∑

i=1

mi(mi − 1), K2
S̄ = 2L2

A − 2

r∑

i=1

(mi − 1)2,

which imply

6 = K2
S ≥ K2

S̄ = 4 + 2

r∑

i=1

(mi − 1).

If mi = 1 for all i, then all the xi are negligible singularities and (2.2) gives K2
S = 4,

a contradiction. Then we can assume m1 = 2, m2 = · · · = mr = 1. Therefore (2.2)

yields L2
A = 4, that is LA := OA(LA) is a polarization of type (1, 2) on A. Now we

have two possibilities:

(i) x1 is not infinitely near to x2; then DA ∈ |2LA| contains an ordinary quadruple

point p and (possibly) some negligible singularities;

(ii) x1 is infinitely near to x2; then DA ∈ |2LA| contains a point p of type [3, 3] and

(possibly) some negligible singularities.

But in case (ii) the surface S̄ contains a (−1)-curve, hence K2
S = 7, a contradiction.

Therefore DA must be a curve of type (i). The existence of such a curve was proven

in Corollary 1.7, so we are done.

Remark 2.2 The argument used in the proof of Proposition 2.1 shows that if we

were able to find a curve in |2LA| with a singular point of type [3, 3], then we could

construct a surface S with pg = q = 2 and K2
S = 7. Unfortunately, at present we do

not know whether such a curve exists.

Proposition 2.3 LA is not a product polarization.

Proof Assume by contradiction that LA is a product polarization. Then A = E × F,

with natural projection maps πE : A → E and πF : A → F, and L ≡ E + 2F. Let Fp be

the fibre of πE passing through p. Since DA has a quadruple point at p and DAFp = 2,
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Bézout theorem implies that Fp is a component of DA. Similarly, since DA − Fp has a

triple point at p and (DA − Fp)Fp = 2, it follows that Fp is a component of DA − Fp.

Therefore DA contains the curve Fp with multiplicity at least 2, which is impossible,

since DA must be reduced.

Up to a translation we can now suppose p = o, and by using Corollary 1.6 we

can write L2
A = L2 ⊗ Q, where Q ∈ imφ2 and L is a symmetric polarization, not of

product type, such that h0(A,L2 ⊗ I4
o) = 2.

In the rest of this section we assume for simplicity that DA contains no negligible

singularities besides the quadruple point o; this is an open condition, equivalent to

the ampleness of KS. Hence the map σ : B → A is just the blow-up at o, we have

S̄ = S, and (2.1) induces the following commutative diagram

S
β

//

α
��
>

>

>

>

>

>

>

>

B
ϕ

//

σ

��

P1

A

where β : S → B is a finite double cover and ϕ : B → P1 is the morphism induced

by the base-point free pencil |σ∗(2L) − 4E|. The double cover β is branched along a

smooth divisor

DB ∈ |σ∗(2L + Q) − 4E|,

hence it is defined by a square root of OB(DB), namely LB := OB(σ∗(L + Q1/2)− 2E),

where Q1/2 is a square root of Q.

Proposition 2.4 S is a minimal surface of general type with pg = q = 2 and K2
S = 6,

unless Q = Q1/2
= OA. In the last case we have instead pg = q = 3 and K2

S = 6.

Proof Standard formulae for double covers ([BHPV03, p. 237]) give χ(OS) = 1 and

K2
S = 6. Moreover we have β∗ωS = ωB ⊕ (ωB ⊗ LB), hence we obtain

pg(S) = h0
(

B,OB(E)
)

+ h0
(

B,OB

(
σ∗(L + Q1/2) − E

))
= 1 + h0(A,L⊗Q

1/2 ⊗ Io).

If Q1/2 is not trivial, then h0(A,L⊗Q1/2 ⊗ Io) = 1, otherwise h0(A,L⊗ Io) = 2.

Remark 2.5 If Q = Q1/2
= OA then S is the symmetric product of a smooth curve

of genus 3; see [HP02, Pi02]. Let us give an alternative construction of the double

cover f : S → A in this particular case. Take a smooth curve C of genus 3, admitting

a double cover ϕ : C → E onto an elliptic curve E. Let o be the identity in the group

law of E, and for all x ∈ C let us denote by x ′ the conjugate point of x with respect to

the involution C → C induced by ϕ. Then S := Sym2(C) contains the elliptic curve

Z := {x + x ′|x ∈ C}, which is isomorphic to E. Moreover, there is a morphism

ᾱ : S −→ Pic0(C) given by ᾱ(x + y) = OC

(
x + y − ϕ∗(o)

)
.
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Now take any point x + x ′ ∈ Z and let a := ϕ(x) = ϕ(x ′). We have

ᾱ(x + x ′) = OC

(
x + x ′ − ϕ∗(o)

)
= ϕ∗

OE(a − o) ∈ ϕ∗ Pic0(E);

that is, the induced map

α : S −→ A := Pic0(C)/ϕ∗ Pic0(E)

contracts Z to a point. Moreover, α has generic degree 2; in fact α(x+ y) = α(x ′+ y ′)

for all x, y ∈ C .

Since we are interested in the case pg(S) = q(S) = 2, in the sequel we always

assume Q1/2 6= OA. Summing up, we have proven the following result.

Theorem 2.6 Given an abelian surface A with a symmetric polarization L of type

(1, 2), not of product type, for any Q ∈ imφ2 there exists a curve DA ∈ |L2 ⊗ Q| whose

unique non-negligible singularity is an ordinary quadruple point at the origin o ∈ A.

Let Q1/2 be a square root of Q, and if Q = OA, assume, moreover, that Q1/2 6= OA.

Then the minimal desingularization S of the double cover of A branched over DA and

defined by L⊗Q1/2 is a minimal surface of general type with pg = q = 2, K2
S = 6, and

Albanese map of degree 2.

Conversely, every minimal surface of general type with pg = q = 2, K2
S = 6 and

Albanese map of degree 2 can be constructed in this way.

In order to proceed with the study of our surfaces, let us introduce the following

definition.

Definition 2.7 Let S be a minimal surface of general type with pg = q = 2, K2
S = 6,

and Albanese map of degree 2.

• If Q = OA, we say that S is a surface of type I. Furthermore, if Q1/2 /∈ imφ×2 , we

say that S is of type Ia, whereas if Q1/2 ∈ imφ×2 we say that S is of type Ib.
• If Q ∈ imφ×2 we say that S is a surface of type II.

Remark 2.8 If S is a surface of type I, then DA is as in Corollary 1.7(i) or (ii). If S is

a surface of type II, then DA is as in Corollary 1.7(iii). See Figures 1 and 2.

We denote by R ⊂ S the ramification divisor of β : S → B and by Z the divisor

β∗E. Then Z is an elliptic curve and Z2
= −2.

Proposition 2.9 The pullback via β : S → B of the general curve D in the pencil

|D| = |σ∗(2L) − 4E| is reducible if and only if S is of type Ib.

Proof The restriction of β to D is the trivial double cover if and only if LB ⊗ OD =

OD, i.e., if and only if OD(σ∗(L + Q1/2) − 2E) = OD. Thus the result follows from

Corollary 1.12.

Now we want to describe the canonical system of our surfaces. Let us analyze

first surfaces of type I. Then Q1/2 is a non-trivial 2-torsion line bundle, and, for the

general surface S, the branch locus DB of β : S → B is a smooth curve of genus 3

belonging to the pencil |D| = |σ∗(2L) − 4E|.



208 M. Penegini and F. Polizzi

Figure 1: The branch curves DA and DB for a general surface of type I

Figure 2: The branch curves DA and DB for a surface of type II

Proposition 2.10 Let S be a surface of type I; then the following holds.

(i) If S is of type Ia, the pullback via β : S → B of the pencil |D| on B is a base-point

free pencil |Φ| on S, whose general element Φ is a smooth curve of genus 5 satisfying

ΦZ = 8. Moreover, the canonical system |KS| has no fixed part, hence the general

canonical curve of S is irreducible. Finally, 2R ∈ |Φ|.
(ii) If S is of type Ib, i.e., Q1/2

= Qi for some i ∈ {1, 2, 3}, there is a commutative

diagram

(2.3) S
β

//

φ

��

B

ϕ

��

P1
b

// P1,

where b : P1 → P1 is a double cover branched in two points, namely the point

corresponding to the branch locus DB and the point corresponding to the curve
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2Ñi , where Ni is the unique curves in |L ⊗ Qi | with an ordinary double point at

o and “∼” stands for the strict transform in B. The general fibre Φ of the map

φ : S → P1 is a smooth curve of genus 3; moreover, Z is the fixed part of |KS| and

|KS| = Z + |Φ|, i.e., the canonical system is composed with the pencil |Φ|. Finally,

R ∈ |Φ|.

Proof (i) The fact that Φ is a smooth curve of genus 5 follows from Proposition 2.9;

moreover ΦZ = (β∗D)(β∗E) = 2DE = 8. We have 2R = β∗DB ∈ |Φ| and by

Hurwitz’s formula KS = β∗KB + R = Z + R. Since dim |KS| = 1 and neither Z nor R

move in a pencil, we deduce that |KS| has no fixed part.

(ii) If S is of type Ib, then by Proposition 2.9 the pull-back via β of a general

element of |D| is the disjoint union of two smooth curves of genus 3. So there exists

a base-point free genus 3 pencil |Φ| on S, and we obtain diagram (2.3). In this case

LB = OB(Ñi) is effective, and it is not difficult to see that b : P1 → P1 is branched

only at the two points corresponding to DB and Ni . Moreover, R = β∗Ñi ∈ |Φ|, so

we can write

|KS| = |β∗KB + R| = Z + |Φ|;

that is, the fixed part of the canonical pencil of S is |Z| and its movable part is |Φ|.

Let us consider now surfaces of type II. Then Q = Qi for some i ∈ {1, 2, 3}, so

Q1/2 is a degree 0 line bundle whose order is exactly 4 and the curve DB consists of

two distinct half-fibres of |D|, namely DB = Ñ j + Ñk. Therefore S is of type II if and

only if DB is disconnected. Proposition 2.9 implies that the pullback via β of a general

curve in |D| is irreducible, so we obtain the following proposition.

Proposition 2.11 If S is a surface of type II, then the pullback via β : S → B of the

pencil |D| on B is a base-point free pencil |Φ| on S, whose general element Φ is a smooth

curve of genus 5 satisfying ΦZ = 8. Moreover, the canonical system |KS| has no fixed

part, hence the general canonical curve of S is irreducible. Finally, R = R1 + R2 with

4R1, 4R2 ∈ |Φ|.

Proof The first two parts of the statement follow from Proposition 2.9 by the same

argument used in the proof of Proposition 2.10(i). It remains only to prove the as-

sertion about R. Let R1, R2 be the two effective curves in S such that β∗Ñ j = 2R1,

β∗Ñk = 2R2; then R = R1 + R2. Moreover, since Ñ j and Ñk are both half-fibres of

|D|, it follows that 4R1, 4R2 ∈ |Φ|, and we are done.

Remark 2.12 The general surface of type I has ample canonical divisor. In addition,

all surfaces of type II have ample canonical divisors.

3 The Moduli Space

Let S be a minimal surface of general type with pg = q = 2, K2
S = 6 and Albanese

map of degree 2; for a general choice of S we may assume that KS is ample; see Remark

2.12. The following result can be found in [Ca11, Section 5].
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Proposition 3.1 Let S be a minimal surface of general type with q(S) ≥ 2, and Al-

banese map α : S → A, and assume that α(S) is a surface. Then this is a topological

property. If in addition q(S) = 2, then the degree of the α is a topological invariant.

Proof By [Ca91] the Albanese map α induces a homomorphism of cohomology

algebras

α∗ : H∗(Alb(S),Z) −→ H∗(S,Z),

and H∗(Alb(S),Z) is isomorphic to the full exterior algebra
∧∗

H1(Alb(S),Z)) ∼=∧∗
H1(S,Z). In particular, if q = 2, the degree of the Albanese map equals the

index of the image of
∧4

H1(S,Z) inside H4(S,Z), and it is therefore a topological

invariant.

By Proposition 3.1 it follows that one may study the deformations of S by relating

them to those of the flat double cover β : S → B. By [Se06, p. 162] we have an exact

sequence

0 −→ TS −→ β∗TB −→ Nβ −→ 0,

where Nβ is a coherent sheaf supported on R called the normal sheaf of β.

Proposition 3.2 Assume that KS is ample. If S is a surface of type I, then Nβ = OR.

If S is a surface of type II, then Nβ is a non-trivial 2-torsion element of Pic0(R).

Proof Since KS is ample, R is smooth and we have an isomorphism

Nβ = (NR/S)⊗2
= OR(2R);

see [Rol10, Lemma 3.2]. If S is of type I, then either R ∈ |Φ| or 2R ∈ |Φ| (see Propo-

sition 2.10), so Nβ is trivial. If S is of type II, then 4R ∈ |Φ| (see Proposition 2.11),

so Nβ is a non-trivial 2-torsion line bundle.

Proposition 3.3 Assume that KS is ample. Then the sheaf β∗TB satisfies

h0(S, β∗TB) = 0, h1(S, β∗TB) = 4, h2(S, β∗TB) = 4.

Proof Since β : S → B is a finite map, by using projection formula and the Leray

spectral sequence we deduce

(3.1) hi(S, β∗TB) = hi(B, β∗β
∗TB) = hi(B,TB) + hi(B,TB ⊗ L

−1
B ), i = 0, 1, 2.

There is a short exact sequence

(3.2) 0 −→ TB −→ σ∗TA −→ OE(−E) −→ 0;

see [Se06, p. 73]. Then a straightforward computation yields

(3.3) h0(B,TB) = 0, h1(B,TB) = 4, h2(B,TB) = 2.
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Now let us tensor (3.2) with L
−1
B . Since σ∗TA = OB ⊕ OB and L

−1
B ⊗ OE(−E) =

OE(E), by taking cohomology we obtain

(3.4) hi(B,TB ⊗ L
−1
B ) = 2 · hi(B,L−1

B ), i = 0, 1, 2.

Moreover we have

(3.5) h0(B,L−1
B ) = 0, h1(B,L−1

B ) = 0, h2(B,L−1
B ) = 1,

where the first equality comes from the fact that DA = 2LB is an effective divisor, the

third equality follows from Serre duality and h0(B,LB⊗OB(E)) = 1, sinceQ1/2 6= OA,

and the second one is a consequence of Riemann–Roch.

Therefore the claim follows using (3.1), (3.3), (3.4), and (3.5).

We have a commutative diagram

(3.6) 0

��

0

��

0

��

0 // TS
//

��

β∗TB
//

��

Nβ
//

��

0

0 // TS
//

��

α∗TA
//

��

Nα
//

��

0

0 // OZ(−Z) //

��

OZ(−Z) //

��

0

0 0

whose central column is the pullback of (3.2) via β : S → B.

Proposition 3.4 Let S be a minimal surface with pg = q = 2, K2
S = 6, and Albanese

map of degree 2, and assume that KS is ample. Then

h1(S,TS) =

{
4 if S is of type I,

3 if S is of type II.

Proof Proposition 3.3 yields H0(S, β∗TB) = 0, so looking at the central column of

diagram (3.6) we obtain the long exact sequence in cohomology

0 −→ H0(S, α∗TA) −→ H0(Z,OZ(−Z)) −→ H1(S, β∗TB)
δ

−→ H1(S, α∗TA) −→ 0.
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Since h0(S, α∗TA) = h0(Z,OZ(−Z)) = 2, it follows that the map δ is an isomor-

phism. Therefore the commutativity of (3.6) implies that the image of H1(S,TS) in

H1(S, β∗TB) coincides with the image of H1(S,TS) in H1(S, α∗TA) ∼= H1(A,TA). So

we obtain the exact sequence

(3.7) 0 −→ H0(R,Nβ) −→ H1(S,TS)
γ

−→ H1(A,TA).

We claim that the image of γ has dimension 3. In order to prove this, we borrow

an argument from [PP10, Section 6]. Take a positive integer m ≥ 2 such that there

exists a smooth pluricanonical divisor Γ ∈ |mKS| and let Γ ′ be the image of Γ in A.

By [Se06, Section 3.4.4 p. 177], the first order deformations of a pair (X,Y ), where

X ⊂ Y is a closed subscheme and Y is nonsingular, are parameterized by the vector

space H1(Y,TY 〈X〉), where TY 〈X〉 is the sheaf of germs of tangent vectors to Y that

are tangent to X. Notice that TY 〈X〉 is usually denoted by TY (− log X) when X is

a normal crossing divisor with smooth components. In our situation, a first-order

deformation of the pair (Γ, S) induces a first-order deformation of the pair (Γ ′,A),

because the the differential map dα : TS → TA sends vectors tangent to Γ into vectors

tangent to Γ
′. Hence we have a commutative diagram

H1(S,TS〈Γ〉)

ǫ

��

γ ′

// H1(A,TA〈Γ
′〉)

ǫ ′

��

H1(S,TS)
γ

// H1(A,TA).

Let us now observe the following facts.

• Since S is smooth, the line bundle ωm
S extends along any first-order deformation

of S, because the relative dualizing sheaf is locally free for any smooth morphism of

schemes; see [Man08, p. 182]. Moreover, since S is minimal of general type, we have

h1(S, ωm
S ) = 0, so every section of ωm

S extends as well; see [Se06, Section 3.3.4]. This

means that no first-order deformation of S makes Γ disappear; in other words, ǫ is

surjective. Therefore im γ ⊆ im ǫ ′.
• Since (Γ ′)2 > 0, the line bundle OA(Γ ′) is ample on A; therefore it deforms

along a subspace of H1(A,TA) of dimension 3; see [Se06, p. 152]. Since every first-

order deformation of the pair (A,Γ ′) induces a first-order deformation of the pair

(A,OA(Γ ′)), it follows that the image of ǫ ′ is at most 3-dimensional.

According to the above remarks, we obtain

dim(im γ) ≤ dim(im ǫ ′) ≤ 3.

On the other hand, given any abelian surface A with a (1, 2)-polarization, not of

product type, by the results of Section 2 we can construct a surface S of type I or II
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such that Alb(S) = A. Then the dimension of im γ equals the dimension of the mod-

uli space of (1, 2)-polarized abelian surfaces, which is precisely 3. So (3.7) implies

h1(S,TS) = 3 + h0(R,Nβ),

and by using Proposition 3.2 we are done.

By Proposition 3.1 we may consider the moduli space M of minimal surfaces S of

general type with pg = q = 2, K2
S = 6, and Albanese map of degree 2. Let MIa,

MIb, MII be the subsets whose points parameterize isomorphism classes of surfaces

of type Ia, Ib, II, respectively. Therefore M can be written as the disjoint union

M = MIa ⊔MIb ⊔MII .

Moreover, set MI := MIa ⊔MIb.

Proposition 3.5 The following holds:

(i) MIa and MIb are irreducible, generically smooth of dimension 4;

(ii) MII is irreducible, generically smooth of dimension 3.

Proof (i) The construction of a surface of type I depends on the following data:

• the choice of a (1, 2)-polarized abelian surface (A,L), not of product type ;
• the choice of a general divisor DA in the pencil |L2 ⊗ I4

o|;
• the choice of a non-trivial line bundle Q such that Q2

= OA.

Let A∆[2] be the space of pairs (A,Q), where A is a (1, 2)-polarized abelian surface

and Q ∈ Â is the isomorphism class of a non-trivial, 2-torsion line bundle. In the

appendix (see Proposition A.2) we show that A∆[2] is a quasi-projective variety, dis-

joint union of two connected, irreducible components of dimension 3

A
(a)
∆

[2] and A
(b)
∆

[2],

which correspond to Q /∈ imφ×2 and Q ∈ imφ×2 , respectively. Therefore there are

two generically finite dominant maps

P
(a) −→ MIa, P

(b) −→ MIb,

where P(a) and P(b) are suitable projective bundles on A
(a)
∆

[2] and A
(b)
∆

[2]. It follows

that MIa and MIb are irreducible of dimension 4. On the other hand, Proposition 3.4

implies that for a general [S] ∈ MI we have

dim T[S]MI = h1(S,TS) = 4.

This shows that both MIa and MIb are generically smooth.
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(ii) The construction of a surface of type II depends on the following data:

• the choice of a (1, 2)-polarized abelian surface (A,L), not of product type ;
• the choice of Q ∈ imφ×2 , which yields the unique curve DA ∈ |L2 ⊗ Q⊗ I4

o|;
• the choice of a square root Q1/2 of Q.

Let A∆[2, 4] be space of triplets (A,Q,Q1/2), where A is the isomorphism class of a

(1, 2)-polarized abelian surface, Q ∈ imφ×2 , and Q1/2 is a square root of Q. In the ap-

pendix (see Proposition A.3) we show that A∆[2, 4] is a 3-dimensional, irreducible,

quasi-projective variety. We have a generically finite, dominant map

A∆[2, 4] −→ MII ,

so MII is irreducible of dimension 3. On the other hand, Proposition 3.4 implies that

for a general [S] ∈ MII we have

dim T[S]MII = h1(S,TS) = 3,

hence MII is generically smooth.

Proposition 3.6 MIa, MIb, and MII are connected components of M.

Proof We proved that M is the disjoint union of three irreducible constructible sets

M = MIa ⊔MIb ⊔MII ,

so it is sufficient to show that MIa, MIb, MII are all open in M. In other words, given

a flat family S → D over a small disk D , such that S0 ∈ MIa (resp. S0 ∈MIb, MII),

we must show that St ∈ MIa (resp. St ∈ MIb, MII) for t 6= 0. We may associate

with the family S → D the family X → D , whose fibre over t ∈ D is the Stein

factorization Xt of St , that is the contraction of the elliptic curve Zt ⊂ St . By the

previous results it follows that, up to a base change, the family S → D is the double

cover of a family B → D of blow-ups Bt of (1, 2)-polarized abelian surfaces and the

family X → D is the double cover of the family A → D , where At is the minimal

model of Bt . Globalizing the results of Section 2 we see that the polarizations Lt on

the abelian surfaces At glue together in order to give an ample line bundle L on A

and that there exists a divisor DB on B whose restriction to the fibre Bt is the branch

locus DBt
of βt : St → Bt . Moreover, we find a commutative diagram

S

β
//

α   A
A

A

A

A

A

A

A

B

σ

��

A

and a line bundle Q ∈ Pic0(A ) of order 2 such that DB
∼= σ∗(2L + Q) − 4E ,

where σ : B → A is the relative blow-down and E is the exceptional divisor of σ.

We denote by Qt the restriction of Q to At .



Surfaces with pg = q = 2, K2
= 6, and Albanese Map of Degree 2 215

Now let us consider the three cases separately.

• MII is open in M.

It is equivalent to prove that MI is closed in M, namely that St ∈ MI for t 6= 0

implies S0 ∈ MI . The condition St ∈ MI for t 6= 0 implies that DBt
is connected for

any t 6= 0; it follows that DB0
is also connected, hence S0 is again a surface of type I.

• MIa is open in M.

Assume that S0 ∈ MIa. By Proposition 2.10, this is equivalent to say that the branch

locus DB0
of β0 : S0 → B0 is connected and that |KS0

| is base-point free. Clearly these

are both open conditions, so MIa is open in M.

• MIb is open in M.

Assume that S0 ∈ MIb. Then we have (A0,Q0) ∈ A
(b)
∆

[2]. By Proposition A.2 in the

appendix it follows that A(b)
∆

[2] is a connected component of A∆[2], in particular it

is open therein. Hence (At ,Qt ) ∈ A
(b)
∆

[2] for t 6= 0, proving that MIb is open in M.

Notice that the same argument gives an alternative proof of the fact that MIa is open

in M, since A(a)
∆

[2] is the other connected component of A∆[2].

This completes the proof of Proposition 3.6.

Summing up, Propositions 3.5 and 3.6 and Remark 2.12 imply the following re-

sult.

Theorem 3.7 Let M be the moduli space of minimal surfaces S of general type with

pg = q = 2, K2
S = 6, and Albanese map of degree 2. Then the following holds:

(i) M is the disjoint union of three connected components, namely

M = MIa ⊔MIb ⊔MII ;

(ii) these are also irreducible components of the moduli space of minimal surfaces of

general type;

(iii) MIa,MIb,MII are generically smooth of dimension 4, 4, 3, respectively;

(iv) the general surface in MIa and MIb has ample canonical class; all surfaces in MII

have ample canonical class.

A Appendix: The Spaces A∆[2] and A∆[2, 4] and their Connected
Components

First let us recall some well-known facts about the moduli space of polarized abelian

surfaces that can be found, for instance, in [BL04, Chapter 8].

Let us denote by ∆ the matrix
(

1 0
0 2

)
and let

H2 := {Z ∈ M2(C) | t Z = Z, Im Z > 0}

be the Siegel upper half-space. We define a polarized abelian surface of type ∆ with

symplectic basis to be a triplet (A,H, {λ1, λ2, µ1, µ2}) with A = C2/Λ an abelian

surface, H a polarization of type ∆ on A, and {λ1, λ2, µ1, µ2} a basis of the lattice
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Λ, symplectic with respect to H. Then any Z ∈ H2 determines a polarized abelian

surface of type ∆ with symplectic basis (AZ ,HZ , {λ1, λ2, µ1, µ2}) as follows: just set

λZ := (Z,D)Z2g , HZ = (Im Z)−1

and let {λ1, λ2, µ1, µ2} be the columns of the matrix (Z,D). Moreover, there exists

a universal family, that is, a holomorphic family X∆ → H2 parameterizing these

objects; see [BL04, Section 8.7].

If Z,Z ′ ∈ H2, the polarized abelian surfaces (AZ ,HZ) and (AZ ′ ,HZ ′) are isomor-

phic if and only if Z ′
= M · Z, where

G∆ :=




Z Z Z 2Z
2Z Z 2Z 2Z
Z Z Z 2Z
Z 1

2
Z Z Z


 ∩ Sp4(Q)

is the full paramodular group (see [BL04, Chapter 8], [Mu99]), and the action is

defined as follows: for any M =
( α β
γ δ

)
∈ G∆ and Z ∈ H2, we set

(A.1) M · Z := (αZ + β)(γZ + δ)−1.

Notice that the following special matrices lie in G∆:

Mb :=




1 0 b11 2b12

0 1 2b12 2b22

0 0 1 0

0 0 0 1


 ,

Md :=




d22 −d21 0 0

−2d12 d11 0 0

0 0 d11 2d12

0 0 d21 d22


 with

(
d11 2d12

d21 d22

)
∈ SL2(Z),

M1,2 :=




0 0 1 0

0 0 0 2

−1 0 0 0

0 − 1
2

0 0


 .

The action (A.1) is properly discontinuous, so the moduli space A∆ of (1, 2)-po-

larized abelian surfaces is a quasi-projective variety of dimension 3, obtained as the

quotient Hg/G∆. Then G∆ is the orbifold fundamental group of A∆, and there is an

induced monodromy action of G∆ on both A[2] and Â[2]; see [Har79].

Proposition A.1 The monodromy action of G∆ on Â[2] has precisely three orbits,

namely

{OA}, imφ×2 , and Â[2] \ imφ2.
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Proof Let us start by making a couple of observations. First, the trivial line bundle

OA is obviously invariant for the monodromy action. Second, for the computation of

the monodromy we may assume that NS(A) is 1-dimensional, generated by the nu-

merical class of L. Then for any M ∈ G∆ the monodromy transformation associated

with M sends L to L⊗Q, with Q ∈ Â. Since K(L) = K(L⊗Q), it follows that kerφ2

is invariant under the monodromy action; hence imφ×2 is invariant too. It remains

to show that Â[2] \ imφ2 forms a single orbit.

Set A = C2/Λ and write the period matrix for A as

(
z11 z12 1 0

z21 z22 0 2

)
,

with Z :=
(

z11 z12
z21 z22

)
∈ H2. Then the lattice Λ is spanned by the four column vectors

λ1 :=

(
z11

z21

)
, λ2 :=

(
z12

z22

)
, µ1 :=

(
1

0

)
, µ2 :=

(
0

2

)
,

and the matrix of the alternating form E : Λ × Λ → Z with respect to this basis is(
0 ∆

−∆ 0

)
. Therefore,

E(λ1, µ1) = 1, E(µ1, λ1) = −1, E(λ2, µ2) = 2, E(µ2, λ2) = −2,

and all the other values are 0.

The finite subgroup Â[2] of Â is isomorphic to (Z/2Z)4, and, by the Appell–

Humbert theorem, its elements can be canonically identified with the 16 characters

Λ → C∗ with values in {±1}, see [BL04, Chapter 2]. Since

K(L) = {x ∈ A | E(x,Λ) ⊆ Z},

it follows that K(L) = 〈λ2

2
, µ2

2
〉 and imφ2 = 〈φ2(λ1

2
), φ2(µ1

2
)〉. In other words, imφ2

corresponds to the four characters

e2πi(·,x) : Λ −→ {±1}

with x = 0, λ1

2
, µ1

2
, λ1+µ1

2
. We will denote a character χ : Λ → {±1} by the vector

(χ(λ1), χ(λ2), χ(µ1), χ(µ2)). Therefore, imφ2 consists of

χ0 := (1, 1, 1, 1), χ1 := (1, 1,−1, 1), χ2 := (−1, 1, 1, 1), χ3 := (−1, 1,−1, 1),

whereas the 12 elements of Â[2] \ imφ2 correspond to

ψ1 := (1, 1, 1,−1), ψ2 := (1, 1,−1,−1), ψ3 := (1,−1, 1, 1),
ψ4 := (1,−1, 1,−1), ψ5 := (1,−1,−1, 1), ψ6 := (1,−1,−1,−1),
ψ7 := (−1, 1, 1,−1), ψ8 := (−1, 1,−1,−1), ψ9 := (−1,−1, 1, 1),
ψ10 := (−1,−1, 1,−1), ψ11 := (−1,−1,−1, 1), ψ12 := (−1,−1,−1,−1).
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Now take M =
( α β
γ δ

)
∈ G∆, where

α =

(
a11 a12

2a21 a22

)
, β =

(
b11 2b12

2b21 2b22

)
, γ =

(
c11 c12

c21
c22

2

)
, δ =

(
d11 2d12

d21 d22

)

and ai j , bi j , ci j , di j ∈ Z. By [BL04, proof of Proposition 8.1.3], the monodromy

action of M on Λ is given by the matrix
(

I2 0
0 ∆

)−1t M
(

I2 0
0 ∆

)
, so the induced action

over a character χ is as follows:

(M · χ)(λ1) = χ(λ1)a11χ(λ2)a12χ(µ1)b11χ(µ2)b12 ,

(M · χ)(λ2) = χ(λ1)2a21χ(λ2)a22χ(µ1)2b21χ(µ2)b22 ,

(M · χ)(µ1) = χ(λ1)c11χ(λ2)c12χ(µ1)d11χ(µ2)d12 ,

(M · χ)(µ2) = χ(λ1)2c21χ(λ2)c22χ(µ1)2d21χ(µ2)d22 .

(A.2)

For instance, we have

M · χ1 =
(

(−1)b11 , 1, (−1)d11 , 1
)
, M · χ2 =

(
(−1)a11 , 1, (−1)c11 , 1

)
,

hence the set imφ×2 is G∆-invariant (and by using the matrices of type Mb one checks

that it is a single G∆-orbit, as expected).

Now we are ready to compute the monodromy action of G∆ on Â[2] \ imφ2 or,

equivalently, on the set {ψ1, . . . , ψ12}. By using (A.2), one shows that

• the monodromy permutation associated with a matrix of type Mb is

– (ψ2ψ8)(ψ5ψ11)(ψ6ψ12) if b11 is odd and b12, b22 are even;

– (ψ1ψ7)(ψ2ψ8)(ψ4ψ10)(ψ6ψ12) if b12 is odd and b11, b22 are even;

– (ψ1ψ4)(ψ2ψ6)(ψ7ψ10)(ψ8ψ12) if b22 is odd and b11, b12 are even;

• the monodromy permutation associated with a matrix of type Md is

– (ψ3ψ9)(ψ4ψ10)(ψ5ψ11)(ψ6ψ12) if d21 is odd and d12 is even;

– (ψ1ψ2)(ψ4ψ6)(ψ7ψ8)(ψ10ψ12) if d12 is odd and d21 is even;

• the monodromy permutation associated with the matrix M1,2 is

(ψ1ψ3)(ψ2ψ9)(ψ5ψ7)(ψ6ψ10)(ψ8ψ11).

Therefore, the subgroup of the symmetric group S12 corresponding to the mon-

odromy action of G∆ on {ψ1, . . . , ψ12} contains

T :=
〈

(2 8)(5 11)(6 12), (1 7)(2 8)(4 10)(6 12), (1 4)(2 6)(7 10)(8 12),

(3 9)(4 10)(5 11)(6 12), (1 2)(4 6)(7 8)(10 12), (1 3)(2 9)(5 7)(6 10)(8 11)
〉
.

A straightforward computation, for instance by using the Computer Algebra Sys-

tem GAP4 (see [GAP4]), shows that T is a transitive subgroup of S12; therefore,

{ψ1, . . . , ψ12} form a single orbit for the G∆-action. This completes the proof.
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Now let (A = C2/Λ,H) be a polarized abelian surface of type ∆. A symplectic

basis {λ1, λ2, µ1, µ2} of Λ for H determines the 15 non-trivial characters χ1, . . . , χ3,

ψ1, . . . , ψ12. Therefore we can consider the set of pairs

(Z, ρ), Z ∈ H2, ρ ∈ {χ1, . . . , χ3, ψ1, . . . , ψ12} ⊂ ÂZ[2],

which can be seen as a subscheme of the relative Picard scheme Pic0(X∆/H2).

The group G∆ acts on this set of pairs, the action being defined by (A.1) on the first

component and by the monodromy on the second one. The corresponding quotient

A∆[2] is a quasi-projective variety, and by construction we have a degree 15 cover

π : A∆[2] → A∆. We can identify A∆[2] with the set of pairs (A,Q), where A is

the isomorphism class of a (1, 2)-polarized abelian variety and Q is a non-trivial,

2-torsion line bundle on A; then the map π is just the forgetful map (A,Q) → A.

Proposition A.2 A∆[2] is the disjoint union of two connected components:

A
(a)
∆

[2] and A
(b)
∆

[2],

corresponding to Q /∈ imφ×2 and Q ∈ imφ×2 , respectively. The forgetful maps

π1 : A(a)
∆

[2] −→ A∆, π2 : A(b)
∆

[2] −→ A∆

are finite covers of degree 12 and 3. Finally, both A
(a)
∆

[2] and A
(b)
∆

[2] are irreducible and

generically smooth.

Proof The first part of the statement follows immediately, since the action of G∆

on the set of non-trivial characters Λ → {±1} has precisely two orbits, namely

{χ1, . . . χ3} and {ψ1, . . . , ψ12} (Proposition A.1). Moreover, π1 and π2 are étale

covers on a smooth Zariski open set A0
∆

⊂ A∆; then they are generically smooth.

Finally, by construction A
(a)
∆

[2] and A
(b)
∆

[2] are normal varieties, because they only

have quotient singularities. Then, since they are connected, they must be also irre-

ducible.

Similarly, there is an action of G∆ on the set of triplets (Z, χ, χ1/2), where Z ∈ H2,

χ ∈ {χ1, χ2, χ3} ⊂ ÂZ[2] and χ1/2 : ΛZ → C∗ is a character whose square is χ. The

corresponding quotient is a quasi-projective variety that can be identified with the

space A∆[2, 4] of triples (A,Q,Q1/2), where A is the isomorphism class of a (1, 2)-

polarized abelian surface, Q ∈ imφ2, and Q1/2 is a square root of Q. There is forgetful

map π : A∆[2, 4] → A∆, sending (A,Q,Q1/2) to A; it is a finite cover of degree 48.

Proposition A.3 A∆[2, 4] is irreducible and generically smooth.
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Proof It is sufficient to check that the monodromy action of G∆ is transitive on the

set

{(Q,Q1/2) | Q ∈ imφ×2 , (Q
1/2)2

= Q}.

This is a straightforward computation that can be carried out as the one in the proof

of Proposition A.1, so it is left to the reader.
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