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Abstract. This work presents a model for improving transparency dur-
ing robot learning tasks in Human-Robot Interaction scenarios. Our
model puts the human in the learning loop by using two categories of
robot’s emotional/behavioural reactions, one associated with the learn-
ing process of the robot and another elicited as a response to the feedback
provided by the user. Preliminary results from a between-subjects study
show that people empathized more with a robot expressing its emotions
in both the above categories. We noticed a slight increase in the trans-
parency of the robot while it expressed emotions during the learning
process and as a response to the user. These findings highlight the im-
portance of emotional behaviours for improving the transparency in the
learning systems, which are fundamental for social learning scenarios in
future humanoid robotic applications.
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1 Introduction

The ability of people who lack programming skills (children, older adults, and
other non-expert users) to easily teach robots new tasks is becoming critical in
domains that involve closer user interactions. As a result, robots need to develop
task-related skills with humans as tutors, in similar ways children do, as this will
improve the robot’s performance and acceptance.

One way for roboticists to provide a robot with learning capabilities is by
applying an Interactive Reinforcement Learning (IntRL) algorithm where the
human can provide corrections or preferable constraints to enhance the robot’s
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learning [16,17]. Furthermore, robots are built with anthropomorphic features
to allow them to engage people in an interactive learning style that is socially
accepted. If a robot’s learning behaviour is familiar to people, they will find it
more natural to teach it [3].

In this respect, the careful management of robots’ behaviour during learning
is paramount; when done correctly, people’s natural tendencies to anthropomor-
phize can facilitate and enhance their interaction with robots. However, to better
understand how to design the robots’ behaviours appropriately, we should un-
derstand how human teachers teach their pupils, and how this knowledge can
be used to teach robots. In a natural Human-Human environment, a classroom
is an emotional place where students frequently express their emotions. For ex-
ample, students can be excited during studying, hope for success, feel pride
in their accomplishments, be surprised at discovering a new solution, or expe-
rience anxiety about failing examinations [13]. Another fundamental attribute
in educational milieus seems to be teacher’s empathy [12]. Arghode et al. [1]
showed the significant role of empathy in facilitating the academic development
of teachers and students. Baron-Cohen [2] defined empathy as the drive to iden-
tify another person’s emotions and thoughts. Consequently, just as most adults
and children elicit a response to nurture, care, and tutor, robots should elicit
a similar response. Indeed, Broekens and Chetouani [4] affirm that the lack of
robot transparency has a direct impact on learning. In addition, they highlight
the vital link between emotion and expression of the internal state, suggesting
that the expression of emotion is a valuable and universal tool, independent of
language and species, to transmit one’s internal state.

The present work designs, tests, and compares emotional expression mecha-
nisms as a solution for a transparent learning system. In particular, the study
explores emotional responses during a robot’s learning task based on the progress
of the learning and on the certainty of the subsequent actions. We also explore
the feedback/reward of humans, and how these behaviours affect their responses.
By increasing robots’ behaviour transparency, we can design more effective and
social robots that are perceived as more acceptable and trustworthy in human-
centred environments [14].

2 Related Work

Despite the increasing deployment of humanoid robots in our everyday life, de-
veloping transparent interactive learning methods in HRI has just very recently
received attention. In particular, robots rarely use emotions to express trans-
parency while learning new tasks from a human teacher.

In a recent study, Hindemith et al. [7] investigated the influence of the feed-
back type on the user experience of interacting with the different interfaces and
the performance of the learning systems. Specifically, they investigated using ei-
ther absolute scale (e.g., 5-point Likert-scales) or preference-based user feedback
(e.g., the participant was shown two movements of the robot and could select
which one was better) for an interface to teach a robot a new skill of the game
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cup-and-ball. While there is no significant difference in the subjective user ex-
perience between the conditions, they discovered a significant difference in the
learning performance.

Lin et al. [9] proposed an IntRL method to allow a virtual agent to learn
from human feedback, such as facial feedback via an ordinary camera and ges-
tural feedback via a leap motion sensor. Their experiments showed that human
social signals can effectively improve the learning efficiency of virtual agents.
Furthermore, facial feedback recognition error had a larger effect on the agent
performance in the beginning training process than in the later training stage.

Suay et al. [16] explored an interactive reinforcement learning approach that
enables humans to advise a robot via multiple modalities, such as speech and ges-
tures. Their experimental evaluations in a simulated grid world scenario showed
that their method is more robust and converges significantly faster than standard
Q-learning algorithms.

Most approaches in the literature generally investigated different feedback
types that people use to the virtual learning agent, and they are not focused
on how the robot should behave during learning tasks, resulting in a black-box
learning system for the users. Therefore, there is still a need for natural and effi-
cient behaviours implemented into humanoid robots during the learning process.
Matarese et al. [11] proposed a model to improve the robot’s transparency during
reinforcement learning tasks by designing non-verbal emotional /behavioural cues
into a humanoid robot. Their model considered human feedback as the reward
of the RL algorithm, and the robot presented emotional/behavioural responses
based on the learning progress. Their results highlighted that people preferred
to interact with an expressive robot over a mechanical one. Nevertheless, their
model resulted in a misinterpretation when the robot was expressing doubt or un-
certainty, and, as a consequence, it negatively affected the robot’s transparency.
Moreover, the robot’s facial expressions were interpreted as a reaction to the
user feedback while they were also linked to the learning (certainty /uncertainty)
process. Starting from this work, here we present a different model that takes
into account also reactions to users’ feedback independently of the status of the
learning progress and different emotional behaviours. The user perception of
every single individual behaviour was previously validated in [15].

3 Methods

During the learning, one of the main challenges is to make the whole process
transparent to users, experts or not. This study presents a method where emo-
tions can be used as an effective and transparent solution for communicating
the state of the learning process to users. The robot can express emotions that
intrinsically represent the current state.

The proposed emotional model relies on the use of four emotions: fear, hope,
sadness, and joy. Here, fear and hope are associated with the learning process of
the robot, and, therefore, they are elicited during the execution of the robot’s
actions (e.g., the pointing actions in our application). In this paper, we refer to
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them as pointing emotions. Sadness and joy are, instead, elicited as a response
to the feedback provided by the user. In the paper, they are called feedback
emotions. It is essential to underline that, unlike the approach of Broekens and
Chetouani [4], we do not use the pointing emotions as a manifestation of antic-
ipation of a negative or positive adjustment but as the degree of uncertainty in
the execution of a specific action a, in a specific state s. Therefore, the pointing
emotions represent the robot’s degree of certainty about the task execution.

These emotions are expressed based on the CMS model (Color, Motion,
Sound) [10]. Following the results of our previous work [15], the robot expresses
its emotions through movement and sound, the colour of the LEDs, and also
uses its tablet on its chest to make them more recognizable.

3.1 Elicitation of Pointing Emotions

Pointing emotions, E,, can vary based on intensity. In detail, they fluctuate in
a range from maximum fear to maximum hope:

Ep = [fearhighv fear, fearlowa hopelowv hOpe, hopehigh] (1>

Where fearp;iqn determines the maximum negative uncertainty, and hopepign
determines the maximum positive uncertainty. The stimulation of pointing emo-
tions considers the temporal difference error T'D (the assessment of how much
better or worse a situation just became) and the variation of the temporal dif-
ference error Arp.

The value of the temporal difference error (initially set at —oo) determines
the value of the emotion. When the temporal difference error T'D decreases,
the valence increases. This behaviour defines the uncertainty of the pointing
emotions while executing a specific action a in a state s. The negative uncertainty
of an action is mapped as fear, while positive uncertainty as hope. When the TD
of a state s converges to 0, the knowledge for the specific state is maximum; in
this case, the emotion expressed is hopenign, and over time, the agent’s emotions
converge to this emotion.

The intensity of emotions is determined by the variation of the temporal
difference error Arp (initially set at —oo as the temporal difference error T'D).
A significant variation in the temporal difference error Arp determines a greater
intensity in fear and lower intensity in hope. In contrast, a slight variation in the
temporal difference error Arp determines a lower intensity in fear and a greater
intensity in hope. These emotions were selected based on the work of Tiedens
and Linton [18].

In details, let s be a generic non-terminal state, a the action that the agent
has chosen to perform; if the absolute value of the relative difference between
the new Q’(s,a) and the old Q(s,a), Dy, is less than or equal to 0.1 (so the
difference between the two values is at most 10%) to avoid steep changes, then
the pointing emotion has a positive value; otherwise negative.

positive, if D, =
valence =
negative, otherwise

Q(s,0)—Q(s.0)
Q(s,a) S 0.1

(2)
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Table 1: Selection of pointing emotions.

A Emotions
o Positive Valence Negative Valence
< 0.25 hopenigh feariow
>0.25 A < 0.50 hope fear
> 0.50 hopeiow fearnign

Once the valence has been established, the absolute value of the relative dif-
ference between the new T'D’ and the old T'D, called the Arp value, is calculated
to determine the specific emotion.

P TD'(s,a) — TD(s,a)
= |TD(s,a)]|

3)

Having determined the value and the absolute value of the relative difference
between the new and the old T'D, App value, it is possible to identify the
corresponding emotion from Table 1.

3.2 Elicitation of Feedback Emotions

Feedback emotions, Ey, just like pointing emotions, can vary based on their
intensity; they fluctuate in an interval that goes from maximum sadness to max-
imum joy:

E; = [sadnesspign, sadness, sadnessiow, joUiow JjOY, joYnhigh) (4)

Unlike pointing emotions, feedback emotions do not express information; in
fact, they are used only as a direct response to the feedback provided by the
user. Furthermore, they are also subject to convergence to an emotion; however,
the latter depends on the user’s evaluation method. The elicitation of these
emotions is based on the feedback provided by the user and on its variation. The
feedback value of the user determines the value of the emotion. Negative feedback
corresponds to a negative valence, zero feedback corresponds to indifference,
while positive feedback corresponds to a positive valence. Once the valence has
been established, the specific emotion is determined based on the absolute value
of the relative difference between the new R’ and old feedback R provided by
the user, called Ag. In the absence of emotion, the variation of the feedback is
indifferent.

()

/7
AR’R R’

|R|
Having determined the absolute value of Ag, it is possible to identify the

corresponding emotion from Table 2. Finally, Table 3 presents the adopted CMS
model.



6 G. Angelopoulos et al.

Table 2: Selection of feedback emotions

A Emotions
R Positive Valence Negative Valence
< 0.25 J0Ylow sadnessiow
> 0.25 A < 0.50 joy sadness
> 0.50 JOYnigh sadnesshigh

Table 3: Expression of emotions.

Emotions Led Movement Sound

fear low Indecisive aiming. Not Applicable.
fear Indecisive aiming and gaze distortion. ~ Not Applicable.
fear high - Indecisive pointing. Not Applicable.
hope low Fast and decisive aiming. Not Applicable.
hope Strong and fast aiming. Not Applicable.
hope high - Strong and very fast aiming. Not Applicable.
sadness low Slightly hunched forward posture. Discouraged.
sadness Posture hunched forward. Discouraged.
sadness high - Very hunched forward posture. Discouraged.
joy low Slightly open posture. Joyful.

joy Open posture. Joyful.

joy high Very open posture. Joyful.

3.3 The Teaching Scenario

In the proposed study, we use a simple interactive scenario based on the board
game Mastermind, invented by Mordecai Meirowitz [5] in which a player, called
a decoder, must guess a secret code composed by the opposing player, called the
encoder. In our scenario, the robot takes the role of the decoder, and the user is
the encoder. The secret code consists of a multi-set of two elements, where each
element is a ball of three possible colours. The user’s task is limited to choosing
the secret code and teaching the robot by evaluating each attempt of the robot
to guess the code using feedback r : r € [—3,3] C N from a user interface.

The robot’s task is to guess the secret code by learning from the ratings
provided by the user. Its actions are limited to the choice, and consequent the
pointing, of a coloured ball. Based on that, we engineered two behavioural con-
ditions for the robot. Specifically, the conditions are:

— Condition 1 (C1): The robot provides emotional behaviour based on the
user reward only (feedback emotions).

— Condition 2 (C2): The robot’s behaviour is composed of emotional re-
sponses based on the users’ rewards (feedback emotion) and emotional be-
haviour based on the uncertainty of the action (pointing emotion).
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We expect that when the emotional expressions of the pointing actions are
present in the learning process (C2) will make the robot’s behaviours more trans-
parent to the human (Hypothesis 1).

In addition, previous studies showed that humans’ empathy increases when
the robot expresses emotions related to its internal state [8]. Therefore, we expect
people to empathize more with the robot in C2 and consequently receive more
favourable reward values than in C1 (Hypothesis 2).

3.4 Learning Architecture

Considering the interactive scenario described previously, we arrange the coloured
balls on the table and enumerate them from 0 to 2; it is possible to formalize the
robot’s action a as the pointing of the a-th ball. Therefore, the available actions
are three (one for each coloured ball available).The state is made up of the set
of balls pointed to by the robot, up to that moment, which cannot be greater
than the number of balls of the secret code (i.e., 2), and each possible state is a
combination of balls with possible repetitions.

The update phase requires a generic sequence of states seq (e.g. seq = (sp =
{@},81 = {1},s2 = {1,2})) and a feedback r provided by the user for the
sequence of states seq. The Q value of state s is propagated by updating the
Q value of all states that can reach s. This set of states is called coverage C/(s)
(e.g., the coverage of state {z,y} is C({z,y}) = {2, {z},{y},{z,y}}. For every
coverage state s. the Q (s¢,a) values: s. U {a} € C(s) are updated using the
classic update equation of the Q-Learning algorithm, with the only particularity
that the feedback r is always equal to 0, since the feedback is “assignable” only
to the terminal states:

Temporal Difference error
Q(sc:a) = Q(s¢,a) + a - (v max@Q (sc U{a},d') — Q(sc, a)) (6)

The Q value of the reached terminal state s, is updated using the following
expression:

Temporal Difference error
——
Q(s2,0") = Q(s2,0') + - (r—Q(s2,0a")) (7)

It is important to note that Va : a € [0,2] = v-mazQ (s. U {a},a’) = 0 since
there are no states subsequent to the terminal one. This approach allows the
agent to correctly guess the code in a few attempts. Discovering the sequence
quickly is essential to avoid participants facing repetitive and potentially dull
tests.

4 User Study

A user study was conducted to assess whether the robot’s learning process was
more transparent to the human teachers when the robot expressed emotions as
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a reaction to the user feedback or taking into account also the certainty in its
action. We designed a between-participant study in a designated environment
at the University of Naples Federico II.

4.1 Procedure

Upon arrival, participants were asked to read and sign an informed consent form
about the experiment’s aims and procedure. Then, the robot and the experimen-
tal environment were introduced. Each participant was randomly assigned to one
of the conditions. Furthermore, they were told to select a secret code represented
by a multi-set of two elements (where each element is a ball of three possible
colours) and that they had to evaluate each attempt of the robot to guess the
code by providing feedback. Participants were left free to choose their two ele-
ments and what feedback to give to the robot. The feedback was provided using
the graphical interface by selecting values between -3 and 3.The experimental
trial lasted approximately 10-15 minutes.

4.2 Measurement

At the beginning of the study and before the interaction with the robot, partici-
pants were asked to complete a questionnaire containing demographic questions
(i.e., age, gender, education), their previous experience with robots, and their
perception of robots. We also wanted to evaluate the possible negative bias of
participants toward robots, so we asked them to answer the following question
on a 5-point Likert Scale: “To what extent do you fear that machines will become
out of control?”.

To understand and measure the individual differences in empathy,
we adopted IRI (Interpersonal Reactivity Index) [6], a well-established and val-
idated questionnaire in the social psychology literature, applying it before the
experiment. In particular, the participants rated the “Empathic Concern” (EC)
subscale, which assesses the feelings of sympathy and concern for unfortunate
others, using seven questions on a 5-point Likert Scale.

At the end of the experiment, a questionnaire was administered to the partic-
ipants to measure the transparency of the learning process. We collected
their responses on whether they believed that the robot learned through them
(“Do you think the robot learned from your feedback?”), and their expectations
(“What was your expectation of the robot after your feedback?”). Finally, we
used a 5-point Likert Scale to evaluate to what extent the robot met participants’
expectations (“How well does the robot meet your expectations?”). The afore-
mentioned questions evaluate transparency by considering the robot’s legibility
and predictability attributes.

5 Preliminary Results

We recruited 28 participants (equally distributed in the two conditions) between
the University’s community, 19 males and 9 females. Their age ranges from 18



Transparent Interactive RL using Emotional Behaviours 9

to 60 (Mean=28, Std. Deviation=9), and they were not familiar with the setup
of the study. The majority of the participants (75%) already had previous ex-
perience with robots, while 25% of the participants stated that they had never
interacted with robots before. Furthermore, we observed that they had no neg-
ative bias towards robots (Max. Value=3, Mean=1.5, Std. Deviation=0.6). For
this reason, we did not exclude any participants who successfully participated in
the study. Nevertheless, while the limited number of participants in our study
makes it difficult to draw definite conclusions, our results, however, indicate some
interesting preliminary directions to further investigate.

A Cronbach’s « test assessed the internal reliability of the Empathic Concern
subscale of the IRI questionnaire, where we found an acceptable value of agc =
0.72. Afterwards, we investigated the mean scores of the EC per each condition,
revealing similar mean scores. In particular, in C1, the mean score of Empathic
concern was 3.2 + 0.4, while in C2, we found a mean score of 3.1 +0.4.

5.1 System’s Transparency

In order to investigate the legibility of the learning system, we analysed partici-
pants’ responses about their belief that the robot learned from their evaluation.
Figure 1 shows that 75% of the respondents in C2 believed that their evaluation
helped the learning process of the robot, while there has been a slight decrease
of 25% in the number of participants answering positively in C1. In addition,
we can also observe a 21% difference between the participants’ uncertainty; in
C1, half of them stated that they were unsure or replied negatively. However, an
Independent Samples T-test did not observe a statistically significant difference,
t(22.414) = -1.375, p = 0.18.
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Fig. 1: Humans’ confidence about robot’s learning per each condition.

Then, we analysed participants’ expectations after providing feedback to the
robot. Figure 2a shows a slight difference in the participants’ answers between
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the two conditions. Specifically, 64% of the participants in C1 and 78% in C2
believed that it understood what to do in its next move, thanks to their feedback.
Nevertheless, we did not observe a statistically significant difference between the
two conditions, t(25.194) = -0.460, p = 0.65

In a secondary exploratory analysis, we examined the participants’ responses
to the question, “How well the robot met your expectations?”. Participants in
C1 replied with a mean score of 3.3 and a standard deviation of 0.9, while in
C2, we had a mean score of 3.9 with a standard deviation of 0.8. Furthermore,
as depicted in Figure 2b the robot in C1 did not fully meet the participants’
expectations. In addition, the Independent Samples T-test comparing the two
conditions was not statistically significant, t(25.181) = -1.858, p = 0.07.
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Fig. 2: Participants’ expectations. (a) What was your expectation of the robot
after your feedback? (b) How well does the robot meet your expectations?

5.2 Participants’ Feedback

In terms of the participants’ rewards, our study showed that human tutors had
a positive bias toward the robot. Our results showed that they opted to reward
rather than punish the robot. We can also observe that the robot in C2 received
a more favourable reward than in C1 since we have a higher mean value in C2
(Mean= 0.93) than in C1 (Mean = 0.09). Moreover, Figure 3 shows that partici-
pants empathized more with the robot in C2 and gave a more favourable reward
than in C1. An Independent Samples T-test observed a tendency (p<0.1) be-
tween the two conditions, t(22.907) = -1.847, p = 0.07. Therefore, Hypothesis 2
was confirmed. We also noticed that even though we told participants that their
feedback could vary between -3 to 3, the participants tended to avoid extreme
positive or negative rewards in both conditions. However, participants told the
experimenter that they wanted to reward the robot with the most positive feed-
back (4+3) when it learned the sequence. Unfortunately, we did not include a
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final reward at the end of the learning process. In future works, we would also
like to refine our model to consider rewards after learning the sequence.

Humans' Reward

Condition 1 Condition 2

Fig. 3: Humans’ reward per each condition.

Observing the participants’ behaviours, we noticed that a participant (who
was assigned to C2) started with a series of high positive rewards in the first five
trials (Mean=2.4) and then continued with a series of smaller rewards (Mean=-
0.8). The participant said, “between humans, positive reinforcement works, but
not with robots”. We assume that this change in participants’ strategy is due to
the transparency of the learning system. This phenomenon (the alter in partic-
ipants’ approach) occurred in the 14% and 43% of participants in C1 and C2,
respectively, (t(23.400) = -1.700, p = 0.1).

6 Conclusions

The work presented in this paper aimed at integrating emotional behaviours into
the robot’s social learning to improve the transparency of the learning process
for human tutors. We compared a robot showing only emotional/behavioural
responses based on the user feedback (C1) and a robot expressing emotional/
behavioural responses based on the user feedback and emotional expressions
based on the certainty of the action (C2). From the experimental results, we
observed the transparent effects of the designed human-robot learning system in
C2. Furthermore, C2 received more favourable rewards confirming our hypoth-
esis. These findings imply that emotional expressiveness is essential for social
robots to interact with people transparently while learning. However, we aim
at recruiting a larger and more variate group of participants to confirm the
applicability of the phenomenon on a larger scale.

We conclude that our preliminary study offers a starting point for a broader
experiment on emotional behaviours during learning with human tutors to achieve
transparency and overcome the limitation of previous works. In the future, we
will also consider different types of human rewards beyond a user interface that
may impact the interaction and the learning process.



12 G. Angelopoulos et al.
References
1. Arghode, V., Yalvac, B., Liew, J.: Teacher empathy and science education: A col-

10.

11.

12.

13.

14.

15.

16.

17.

18.

lective case study. Eurasia Journal of Mathematics, Science and Technology Edu-
cation 9(2), 89-99 (2013)

Baron-Cohen, S.: The essential difference: The male and female brain. In: Phi
Kappa Phi Forum. vol. 85, pp. 23-26 (2005)

Breazeal, C.: Designing sociable machines. In: Socially intelligent agents, pp. 149—
156. Springer (2002)

Broekens, J., Chetouani, M.: Towards transparent robot learning through tdrl-
based emotional expressions. IEEE Transactions on Affective Computing 12(2),
352-362 (2019)

Chvétal, V.: Mastermind. Combinatorica 3(3), 325-329 (1983)

Davis, M.H.: Measuring individual differences in empathy: evidence for a multi-
dimensional approach. Journal of personality and social psychology 44(1), 113
(1983)

Hindemith, L., Bruns, O., Noller, A.M., Hemion, N., Schneider, S., Vollmer, A.L.:
Interactive robot task learning: Human teaching proficiency with different feedback
approaches. IEEE Transactions on Cognitive and Developmental Systems (2022)

Kwak, S.S., Kim, Y., Kim, E.; Shin, C., Cho, K.: What makes people empathize
with an emotional robot?: The impact of agency and physical embodiment on
human empathy for a robot. In: 2013 IEEE RO-MAN. pp. 180-185. IEEE (2013)
Lin, J., Zhang, Q., Gomez, R., Nakamura, K., He, B., Li, G.: Human social feedback
for efficient interactive reinforcement agent learning. In: 2020 29th IEEE Interna-
tional Conference on Robot and Human Interactive Communication (RO-MAN).
pp. 706-712. IEEE (2020)

Loffler, D., Schmidt, N., Tscharn, R.: Multimodal expression of artificial emotion
in social robots using color, motion and sound. In: 2018 13th ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI). pp. 334-343. IEEE (2018)
Matarese, M., Sciutti, A., Rea, F., Rossi, S.: Toward robots’ behavioral trans-
parency of temporal difference reinforcement learning with a human teacher. IEEE
Transactions on Human-Machine Systems 51(6), 578-589 (2021)

McAllister, G., Irvine, J.J.: The role of empathy in teaching culturally diverse
students: A qualitative study of teachers’ beliefs. Journal of teacher education
53(5), 433-443 (2002)

Pekrun, R.: Emotions and learning. Educational practices series 24(1), 1-31 (2014)
Rossi, A., Dautenhahn, K., Lee Koay, K., Walters, M.L.: How social robots influ-
ence people’s trust in critical situations. In: RO-MAN 2020. pp. 1020-1025 (2020)
Rossi, A., Scheunemann, M.M., L’Arco, G., Rossi, S.: Evaluation of a humanoid
robot’s emotional gestures for transparent interaction. In: International Conference
on Social Robotics. pp. 397-407. Springer (2021)

Suay, H.B., Chernova, S.: Effect of human guidance and state space size on inter-
active reinforcement learning. In: 2011 Ro-Man. pp. 1-6. IEEE (2011)

Thomaz, A.L., Hoffman, G., Breazeal, C.: Real-time interactive reinforcement
learning for robots. In: AAAT 2005 workshop on human comprehensible machine
learning. pp. 9-13 (2005)

Tiedens, L.Z., Linton, S.: Judgment under emotional certainty and uncertainty:
the effects of specific emotions on information processing. Journal of personality
and social psychology 81(6), 973 (2001)



