
1.  Introduction
Water flow through porous formations plays a crucial role in the propagation of solutes (Dagan, 1989). Gener-
ally, such a phenomenon evolves very slowly, therefore making hard (sometimes prohibitive) ex post procedures. 
Thus, especially in the case of contaminant transport, predicting models become of paramount importance in 
order to assess (and concurrently to prevent) possible pollution-situations. While transport in uniform mean flow 
has received a huge amount of theoretical/experimental investigations (see, e.g., Rubin, 2003, and references 
therein), transport in a doublet-type flow through heterogeneous porous media has attracted lesser attention, its 
importance in the applications, notwithstanding (Di Dato et al., 2018).

Typically, transport in a dipole flow is used as a diagnostic tool to identify the aquifer's hydraulic parameters. 
Specifically, a passive scalar is injected through the well, and the breakthrough curve (BTC) is recovered at the 
pumping well. Then, the matching between experimental data and theoretical BTC leads to the identification of 
the formation's properties (see Zech et al., 2018, for an updated overview on the topic). This setup is in principle 
the easiest and fastest tool to identify the formation's properties. However, the limitation of its adoption is due to 
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field with anisotropic two-point autocorrelation. The latter is characterized by a vertical integral scale, that is, 
Iv, smaller than the horizontal one, that is, I. A solute, either passive or reactive, is injected in the medium, and 
we aim at computing the breakthrough curve (BTC) and its moments not only at the recovery (pumping) well, 
but also at any location between the two wells. The strong coupling between K and the nonuniformity of the 
flow renders the problem very difficult. Nevertheless, a simple (analytical) solution is obtained by adopting a 
few assumptions: (a) wells are replaced by lines of singularity, (b) a perturbation solution which regards the 
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 of the log-conductivity Y = ln K as a perturbation parameter is employed, (c) the study is limited 

to strongly anisotropic heterogeneous formations (for which the anisotropy ratio λ = Iv/I is much smaller than 
one), and (d) the impact of pore-scale dispersion is neglected. Central for the computation of the BTC is the 
statistics of the travel time of a fluid particle released at the injecting well and reaching a control plane located 
at any position x1 along the distance connecting the two wells. It is shown that the spatial variability of Y acts 
de facto like a dispersion mechanism: it enhances spreading, especially in the early arrivals. Useful closed form 
expressions for moments of the travel time along the central trajectory are also obtained. Finally, the theoretical 
framework presented in this study is applied to two transport experiments in order to compute the second-order 
(temporal) moment as function of x1, and therefore to quantify dispersion occurring in the zone delimited by the 
two wells.

Plain Language Summary  Transport takes place between an injecting well and a pumping one 
through to a porous formation. The controlling parameter is the conductivity which, unlike the classical 
approach, here is regarded, in line with field findings, as spatially variable. This renders the problem at stake 
extremely difficult to solve. However, a simple solution is achieved by adopting a few simplifying assumptions, 
which nevertheless resemble most of the existing aquifers, and therefore it is applicable to numerous real-world 
situations. It is shown that the proposed solution finds application in the identification of the aquifer's 
parameters as well as the quantification of efficiency of decontamination procedures. Finally, the theoretical 
framework is applied to a couple of transport experiments, in order to illustrate (and to quantify) how dispersion 
process develops in the zone delimited by the two wells.
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complexity of the flow and (more important) transport patterns which, in the case of heterogeneous formations, 
are not fully understood. As a consequence, it is not surprising that a limited number of experimental studies of 
this type is available in the literature. Not disregarded, transport in a doublet flow is employed to design efficient 
strategies of cleaning up portions of polluted groundwaters (Di Dato et al., 2018; Severino, 2022). However, the 
doublet does not account for the entire history of the dispersion between the solute's release and its recovery. This 
may affect also the identification of the heterogeneity's structure of the formation. In fact, dispersion in the central 
zone encompasses all the impact of the heterogeneity, and concurrently the match between theoretical BTC and/
or moments with their experimental counterparts leads to an identification of the aquifer's parameters more robust 
than that achieved by means of the recovered BTC, solely. Besides improving the efficiency of the doublet tests, 
quantification of the dispersion in the strip delimited by the two wells is also useful when one has to select the 
working flow rate and the distance of the doublet to design remediation strategies (Di Dato et al., 2018).

Classically, transport in a doublet-flow configuration has been studied by regarding the formation as homogeneous 
(an exhaustive overview of the existing analytical solutions can be found in Bruggeman (1999)). In this case, flow 
is characterized by streamlines that are portions of circles lying within the horizontal plane (Severino, 2022). The 
overall resulting effect is a huge difference in the arrival times along different streamlines (Koplik et al., 1994; 
Kurowski et al., 1994).

Natural porous formations are as a rule heterogeneous, with the log-conductivity Y varying in the space by 
several orders of magnitude (Rubin, 2003). This spatial variability causes enhanced dispersion due to shortcuts 
through highly conducting inclusions (Fernández-Garcia et al., 2004; Ptak et al., 2004), leading ultimately to 
earlier (as compared with a homogeneous medium) mass arrivals (Dagan & Indelman, 1999; Koplik et al., 1994; 
Zech et al., 2018). In order to account for its erratic variations and the associated uncertainty, it is customary to 
model Y as a stationary, normal, random field, defined completely by the geometric mean KG = exp(〈Y〉) (hereaf-
ter, the symbol 〈〉 will denote the ensemble average operator), variance 𝐴𝐴 𝐴𝐴
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latter is anisotropic, with the horizontal integral scale larger than the vertical one.

Transport in heterogeneous porous media is in general determined by the spatial variations of the advective 
flow-velocity (Dagan, 1989). This is particularly so in radial-type flows (Indelman & Dagan, 1999). In the pres-
ent study, modeling of transport is carried out in two steps consisting of: (a) deriving the statistics of the travel 
time for the specific problem and (b) computing the BTC as well as moments. Thus, we consider a system of 
injecting/pumping wells (of radius rw) operating at a constant, specific (per unit depth) discharge Qw within an 
unbounded porous medium (Figure 1). The wells' axes are at (−ℓ/2, 0, x3) (injecting), and at (ℓ/2, 0, x3) (pump-
ing). A solute is injected, and a body of many particles (plume), migrating toward the pumping well, develops 
(Figure 1). We aim at characterizing the plume's migration not only at the recovery (pumping) well, but also in the 
intermediate zone 𝐴𝐴 𝐴𝐴1 ∈] − 𝓁𝓁∕2,+𝓁𝓁∕2 [. Unlike transport in uniform mean flows (a comprehensive review can be 
found in Dagan (1989) and Rubin (2003)), much less has been done for transport in a doublet-type flow config-
uration. In fact, with the exception of the works of Dagan and Indelman (1999) and Zech et al. (2018), which 
nevertheless limit to the computation of the BTC at the pumping well, we are not aware of any theoretical study 
aiming at quantifying simultaneously the BTC at the recovery well as well as dispersion in the zone delimited by 
the two wells. The difficulty is due to the strong coupling between the spatially variable hydraulic conductivity, 
and the nonuniformity of the flow. In a recent study, Severino (2022) has derived a closed form expression for the 
second-order (longitudinal) moment in the strip 𝐴𝐴 𝐴𝐴1 ∈] − 𝓁𝓁∕2,+𝓁𝓁∕2 [. In particular, he has shown that dispersion 
in a doublet-type configuration is larger than that in a single well-type flow. This effect is due to the flux which, 
unlike that in a well-type flow, is rapidly increasing even at the recovery, owing to the presence there of another 
singularity. However, the above study deals only with a passive scalar, and (more important) it can only account 
for the dispersion within the strip delimited by the two wells.

Before proceeding further, it is worth mentioning that another viable option is by means of Monte Carlo simula-
tions. However, such an avenue is prone of inaccuracies. In fact, in order to account for the strong nonuniformity 
of the flow field, very dense grids, especially in the tiny region surrounding the wells, are required. This implies 
a very large number of nodal equations which prevents de facto achieving accurate results (an extended overview 
can be found in Bianchi et al. (2011), and references therein). On the contrary, analytical solutions provide direct 
relationships between the controlling parameters and the model output, therefore giving a straightforward phys-
ical insight.



Water Resources Research

SEVERINO AND DE PAOLA

10.1029/2022WR032168

3 of 14

In the present study, we aim at investigating transport in a dipole-flow configuration by means of tempo-
ral moments. The main novelty of the approach is that it allows computing not only the BTC at any location 

𝐴𝐴 𝐴𝐴1 ∈] − 𝓁𝓁∕2,+𝓁𝓁∕2 [ (thus generalizing the study from Dagan and Indelman (1999)), but it also allows quantifying 
dispersion within the intermediate zone. The paper is organized as follows: we formulate the transport problem in 
terms of statistics of the travel time (by following the general approach of Cvetkovic and Dagan (1994)); subse-
quently we derive an approximate (valid for largely anisotropic porous formations) solution for the flow field, that 
ultimately leads to a simple expression for the BTC, and the associated moments at any x1. Finally, theoretical 
results are applied to a couple of field-scale transport experiments in order to provide a quantitative assessment of 
the dispersion process taking place between the pumping and injecting well. We end up with concluding remarks.

2.  Problem Statement
The geometrical set up is that of Figure 1, where we have introduced the spatial coordinate x ≡ (xr, x3), being 
xr ≡ (x1, x2) the coordinate in the horizontal plane. The log-conductivity Y ≡ ln K is modeled as a stationary, 
random field, whose autocorrelation function ρY ≡ ρY(R) has an axisymmetric structure, i.e., R ≡ (xr, x3/λ)/I. The 
hydraulic head H ≡ H(x) satisfies a stochastic Poisson equation

−∇2
𝐻𝐻(𝒙𝒙) = ∇𝑌𝑌 ′(𝒙𝒙) ⋅ ∇𝐻𝐻(𝒙𝒙)� (1)

where 𝐴𝐴 𝐴𝐴
′ = ln (𝐾𝐾∕𝐾𝐾𝐺𝐺) is the fluctuation of the log-conductivity. The inner boundary conditions are those prevailing in 

the practice, i.e., constant heads at the boreholes, whereas the external boundary condition reads as: 𝐴𝐴 lim
𝑥𝑥→∞

|𝐻𝐻(𝒙𝒙)| < ∞ .

Central for quantifying transport are: (a) the mean, i.e., 〈u〉 ≡ 〈u(x)〉, of the (Darcy) velocity u(x) = −(K/n)∇H(x) 
(being n the porosity, regarded herein as a given constant) and (b) the two-point velocity covariance, i.e., 

𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚(𝒙𝒙, 𝒚𝒚) = ⟨𝑢𝑢
(1)

𝑚𝑚 (𝒙𝒙) 𝑢𝑢
(1)

𝑛𝑛 (𝒚𝒚)⟩ . In particular, the computation of the latter is not straightforward, owing to the 
complex dependence of the fluctuation u (1) = u − 〈u〉 upon the flow configuration.

Figure 1.  Sketch of a path of a fluid particle starting at the injecting well over a small area dσ0 (with velocity ur), and 
reaching (with velocity u1) a control plane (CP) between the two wells.
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2.1.  Transport

Our approach follows the one developed by Cvetkovic and Dagan (1994) for transport in mean uniform flows, and 
subsequently adapted to radial-type flows (Dagan & Indelman, 1999; Severino et al., 2012). In line with these stud-
ies, pore-scale dispersion is neglected. In fact, it is known from experimental studies (see, e.g., Fernández-Garcia 
et al., 2004) pertaining to transport in radial flow configurations that pore-scale dispersion has a negligible impact 
on dispersion as compared to advection for the large Peclet numbers encountered in hydrological applications 
(Severino et al., 2011, 2012). In contrast, local dispersion plays an essential role in dilution, and it affects the 
concentration variance (Bellin et al., 2011; Fiori & Dagan, 2000). This study is limited, however, to  investigating 
the BTCs as well as its moments, and therefore we shall neglect the effects of pore-scale dispersion.

1. Eulerian picture: For simplicity, we consider transport of two species, the liquid concentration (dissolved mass 
per liquid volume) C ≡ C(x, t) and the sorbed one (sorbed mass per liquid volume) N ≡ N(x, t). For these two 
species, advective transport is modeled by

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐶𝐶 +𝑁𝑁) + 𝒖𝒖 ⋅ ∇𝐶𝐶 = 0� (2)

The transport Equation 2 is supplemented with another function which mimics physical/chemical interaction 
between C and N. Equation 2 is solved for a medium which is initially solute free, and it is fed at x0 with a given 
concentration C0 ≡ C0(t), i.e., 

𝐶𝐶(𝒙𝒙, 0) = 𝑁𝑁(𝒙𝒙, 0) = 0, 𝐶𝐶 (𝒙𝒙0, 𝑡𝑡) = 𝐶𝐶0(𝑡𝑡)� (3)

Our aim is the computation of the BTC as function of the formation's parameters as well as reaction coefficients. 
Toward this aim, it is advantageous to cast the above transport problem within a Lagrangian framework.

2. Lagrangian picture: Assume that, for t  =  0, a solute (either passive or reactive) is injected, and let 
𝐴𝐴 𝑿𝑿 (𝑡𝑡;𝒙𝒙0) ≡ (𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3) be its trajectory, which satisfies the first-order equation

d

d𝑡𝑡
𝑿𝑿 = 𝒖𝒖 (𝑿𝑿) , 𝑿𝑿 (0;𝒙𝒙0) = 𝒙𝒙0 ≡ (𝑟𝑟𝑤𝑤, 𝜃𝜃𝜃 𝜃𝜃3)� (4)

In order to write Equation 2 within a Lagrangian framework, we replace the position x ≡ (x1, x2, x3) with ξ ≡ (ξ1, 
ξ2, ξ3), the latter being defined as

𝜉𝜉1 = 𝜏𝜏 (𝑥𝑥1;𝒙𝒙0) , 𝜉𝜉2 = 𝑥𝑥2 − 𝜂𝜂 (𝑥𝑥1;𝒙𝒙0) , 𝜉𝜉3 = 𝑥𝑥3 − 𝜁𝜁 (𝑥𝑥1;𝒙𝒙0)� (5)

In Equation 5, τ is the travel time of a fluid particle released at the injecting well, and reaching a control plane (CP) 
placed perpendicularly to the horizontal segment connecting the two wells. Coordinates 𝐴𝐴 𝐴𝐴 (𝑥𝑥1;𝒙𝒙0) = 𝑋𝑋2 (𝜏𝜏;𝒙𝒙0) 
and 𝐴𝐴 𝐴𝐴 (𝑥𝑥1;𝒙𝒙0) = 𝑋𝑋3 (𝜏𝜏;𝒙𝒙0) are such to determine the intersection on the CP at t = τ of the streamline originating 
at the injecting well (Figure 1). The relationship of the Lagrangian coordinates (τ, η, ζ) with the velocity field is 
determined by adapting to the present flow field the procedure of Cvetkovic and Dagan (1994), which was devel-
oped for mean uniform flows. By skipping the straightforward algebraic derivations (Equation 16 in Severino 
et al. (2005)), the final result is

𝜏𝜏 =
∫

𝑥𝑥1

−𝓁𝓁

d𝑠𝑠

𝑢𝑢1(𝑠𝑠)
, 𝜂𝜂 =

∫

𝑥𝑥1

−𝓁𝓁

d𝑠𝑠
𝑢𝑢2(𝑠𝑠)

𝑢𝑢1(𝑠𝑠)
, 𝜁𝜁 =

∫

𝑥𝑥1

−𝓁𝓁

d𝑠𝑠
𝑢𝑢3(𝑠𝑠)

𝑢𝑢1(𝑠𝑠)
, 𝑥𝑥1 ∈

]
−𝓁𝓁,𝓁𝓁

[
� (6)

(hereafter we deal with 𝐴𝐴 𝓁𝓁 ≡ 𝓁𝓁∕2 ). It is seen from Equation 6 that the pair (η, ζ) ∈ CP depends upon the veloc-
ity field, solely (irrespective of τ). By employing the chain-rule of derivation (details can be found in Severino 
et al. (2005, Equation 17)), the transport Equation 2 is rewritten in terms of the ξ ≡ (ξ1, ξ2, ξ3)-coordinate Equa-
tion 5 as follows:

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐶𝐶 +𝑁𝑁) +

𝑢𝑢1(𝒙𝒙)

𝑢𝑢1(𝝃𝝃)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕1
+

[

𝑢𝑢𝑚𝑚(𝒙𝒙) − 𝑢𝑢𝑚𝑚(𝝃𝝃)
𝑢𝑢1(𝒙𝒙)

𝑢𝑢1(𝝃𝝃)

]
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑚𝑚
= 0� (7)

where Einstein's summation-convention over m = 2, 3 has been employed. Hence, taking ξ1 = τ and ξ2 = ξ3 = 0, 
on the CP it results x ≡ ξ, and concurrently the transport Equation 7 becomes
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𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐶𝐶 +𝑁𝑁) +

𝜕𝜕

𝜕𝜕𝜕𝜕
𝐶𝐶 = 0� (8)

The Lagrangian concentrations C–N (for simplicity, we have maintained the same notation as in Equation 2) are 
function of t and τ solely, being the original three-dimensional nature of the problem now encapsulated in that 
of the travel time τ (see, also Dagan & Indelman, 1999; Severino et al., 2012). The solution C ≡ C(τ, t) of Equa-
tion 8 for a given set of initial/boundary conditions, is the same as that of one-dimensional transport advected by 
a unit velocity, and it shall be denoted hereafter as γ ≡ γ(τ, t). This latter can be determined for a large variety of 
reactions. In the sequel, we shall consider a fairly general linear nonequilibrium model, i.e., 

1

𝜅𝜅

𝜕𝜕

𝜕𝜕𝜕𝜕
𝑁𝑁 = 𝐾𝐾𝑑𝑑 𝐶𝐶 −𝑁𝑁� (9)

being 𝐴𝐴 𝐴𝐴
(
𝚃𝚃
−1
)
 and Kd (−) the desorption rate and the linear equilibrium partitioning coefficient, respectively. 

It is worth noting that the reaction Equation 9 contains the case of linear equilibrium model, i.e., N = Kd C, in 
the limit κ → ∞. This is always true, except for a tiny (boundary layer) region where 𝐴𝐴 𝐴𝐴

−1 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑁𝑁 ∼ (1) (Severino 

et al., 2006).

2.2.  BTC at Any CP Between the Two Wells

We aim at computing the mean flux concentration at any distance x1 laying between the injecting/pumping wells 
(Figure 1). Thus, we consider a plume generated by injection of solute and reaching the CP at x1. The element 𝐴𝐴 d of 
solute flux through a small surface dσ belonging to the CP is given by 𝐴𝐴 d = 𝑛𝑛 d𝝈𝝈 𝑢𝑢1(𝝈𝝈)𝛾𝛾(𝜏𝜏𝜏 𝜏𝜏) = 𝑛𝑛 d𝝈𝝈0 𝑢𝑢𝑟𝑟 (𝝈𝝈0) 𝛾𝛾(𝜏𝜏𝜏 𝜏𝜏) 
(where the last equality stems from the continuity equation). As a consequence, the total solute flux 𝐴𝐴  ≡  (𝑡𝑡; 𝑥𝑥1) 
through the CP is computed by means of convolution as

 (𝑡𝑡; 𝑥𝑥1) = 𝑛𝑛
∫
Σ
∫

𝑡𝑡

0

d𝝈𝝈0 d𝑡𝑡 𝑡𝑡0

(
𝑡𝑡
)
𝑢𝑢𝑟𝑟 (𝝈𝝈0) 𝛾𝛾

(
𝜏𝜏𝜏 𝜏𝜏 − 𝑡𝑡

)
� (10)

where Σ denotes the envelope of the injecting well. It is worth noting that 𝐴𝐴  is clearly a function of the position 
x1 due to the dependence of τ upon it (see the first of Equation 6). It represents the concentration in the fluid that 
is extracted (after complete mixing) over a large area of the CP. A similar token is applied to compute the fluid 
flux Qf, the final result being Qf = n∫Σdσ0 ur(σ0). Due to the random nature of ur and γ, both 𝐴𝐴  and Qf are random 
fields, and we are interested in the computation of their spatial averages 𝐴𝐴 ̃ and 𝐴𝐴 𝑄̃𝑄𝑓𝑓 . Under ergodic conditions, 
that are assumed to apply (details upon such a requirement can be found in Dagan and Indelman (1999)), spatial 
averages  are replaced by their ensemble counterparts, i.e., 

̃ (𝑡𝑡; 𝑥𝑥1) ≃ ⟨ (𝑡𝑡; 𝑥𝑥1)⟩ = 𝑛𝑛
∫
Σ
∫

𝑡𝑡

0

d𝝈𝝈0 d𝑡𝑡 𝑡𝑡0

(
𝑡𝑡
) ⟨

𝑢𝑢𝑟𝑟 (𝝈𝝈0) 𝛾𝛾
(
𝜏𝜏𝜏 𝜏𝜏 − 𝑡𝑡

)⟩
, 𝑄̃𝑄𝑓𝑓 ≃ ⟨𝑄𝑄𝑓𝑓 ⟩� (11)

The ensemble average 〈urγ〉 has been computed into a general manner by Severino et  al.  (2012) (see Equa-
tions 12–14), and we limit in the sequel to quote the final result:

⟨𝑢𝑢𝑟𝑟 (𝝈𝝈0) 𝛾𝛾(𝜏𝜏𝜏 𝜏𝜏)⟩ = ⟨𝑢𝑢𝑟𝑟⟩
∫

∞

0

d𝜏𝜏 𝜏𝜏 (𝜏𝜏𝜏𝝈𝝈0) 𝛾𝛾 (𝜏𝜏𝜏 𝜏𝜏)� (12)

where g ≡ g(τ, σ0) is the probability density function (PDF) of the travel time of a fluid particle released at the 
injecting well and reaching the CP at t = τ. Into deriving Equation 12, it is assumed that the velocity ur along 
the injecting well is a stationary, random field (which implies that 〈Qf〉 = n〈ur〉Σ). Hence, the BTC 𝐴𝐴 𝐶̃𝐶

𝑓𝑓
≡ ̃∕𝑄̃𝑄𝑓𝑓 

writes as

�̃� (�; �1) ≃
1
Σ ∫Σ ∫

∞

0 ∫

�

0
d�0 d� d�̄ �0

(

�̄
)

�
(

�, � − �̄
)

� (�,�0)

= ⨏

�

0 ∫

∞

0
d� d� � (�, �; �1)∫

�

0
d�̄ �0

(

�̄
)

�
(

�, � − �̄
)

, ⨏ ≡ 1
� ∫

� (13)
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where switching from σ0 to θ is achieved by noting that, for 𝐴𝐴 𝐴𝐴1 = −𝓁𝓁  , θ is the angle of attack of the streamline 
intersecting the CP at x1. Thus, the BTC (Equation 13) is expressed via multiple quadratures whose physical inter-
pretation is straightforward: it is the outcome of ensemble averaging along noninteracting stream tubes pertaining 
to those fluid particles which have reached (for fixed t) the CP. Due to the neglect of pore-scale dispersion, within 
each stream tube the dispersion mechanism is addressed only to the chemical nature of the solute, whereas the 
BTC is influenced by the stochastic variability of the velocity. Since the characteristic scale of this latter mech-
anism is the prevailing one, it is clear that most of the dispersion detected in the BTC (e.g., early tailing, etc.) 
is addressed to the heterogeneity of the porous formation. The computation of g is a formidable task, and some 
simplifying assumptions will be adopted in the sequel in order to achieve simple (i.e., analytical) results.

3.  Approximate Solution to the Flow Field and Statistics of the Travel Time
The general problem stated so far is very hard to solve. As already mentioned, the difficulty is mainly due to the 
strong coupling between the spatially variable log-conductivity and the nonuniformity of the flow field. A rela-
tively simple solution for the flow field can be achieved by adopting some approximations, which nevertheless 
keep the main features of the problem at stake. These assumptions, that were already employed in the past to 
solve similar problems (see e.g., Dagan & Indelman, 1999; Indelman et al., 2006; Severino, 2022), are briefly 
exploited in the sequel.

3.1.  Simplifying Assumptions

1.	 �The flow domain is large enough so that it can be regarded as unbounded, and concurrently ergodicity can 
be invoked. Generally, ergodicity is met when the aquifer's thickness D is much larger than the vertical 
integral scale Iv (Zech et al., 2018). Since 𝐴𝐴 𝐴𝐴 ∼ (10m) and 𝐴𝐴 𝐴𝐴𝑣𝑣 ∼ (10 cm) (see, e.g., Tables 2.1 and 2.2 in 
Rubin, 2003), it is seen that ergodicity applies to the majority of the real settings.

2.	 �We adopt a first-order approximation in the fluctuation 𝐴𝐴 𝐴𝐴
′ , that is we deal with a weakly heterogeneous 

formation (Dagan & Indelman, 1999). As a consequence, we can expand the head H and the velocity u in 
asymptotic series

𝐻𝐻(𝒙𝒙) =

∑

𝑛𝑛

𝐻𝐻
(𝑛𝑛)
(𝒙𝒙), 𝒖𝒖(𝒙𝒙) =

∑

𝑛𝑛

𝒖𝒖
(𝑛𝑛)
(𝒙𝒙)� (14)

�where 𝐴𝐴 |(𝑛𝑛)| ∼  (𝑌𝑌 ′ 𝑛𝑛) . In particular, the leading order terms H (0) and u (0) pertain to the solution for a homo-
geneous medium of conductivity KG.

3.	 �We focus on anisotropic formations (λ < 1). In this case, accurate solutions for transport can be obtained by 
considering the following approximation for the first order (i.e., fluctuation) of the velocity

𝒖𝒖
(1)(𝒙𝒙) ≃ −𝑌𝑌 ′ (𝒙𝒙)

𝐾𝐾𝐺𝐺

𝑛𝑛
∇𝐻𝐻 (0) (𝒙𝒙) ≃ 𝑌𝑌

′ (𝒙𝒙) 𝒖𝒖(0)(𝒙𝒙)� (15)

�(Indelman & Dagan,  1999). It is emphasized that, in the limit λ  →  0 (stratified formation), Equation  15 
becomes an exact first-order result. The approximation (Equation 15) was found to yield accurate results for 
transport already when λ ≤ 0.2 (Dagan & Indelman, 1999). Since sedimentary formations are as a rule aniso-
tropic, such an approximation is relevant for the applications.

4.	 �Injecting and pumping wells are replaced by a system of source and sink. This is valid for rw ≪ ℓ. Since 
𝐴𝐴 𝐴𝐴𝑤𝑤 ∼ (10÷50 cm) whereas 𝐴𝐴 𝓁𝓁 ∼ (10÷50m) , it results a reasonable approximation for most of the real cases. 

Thus, at the leading order the longitudinal velocity u1 is

�(0)1 (�, �) = ��

2��
Re

{

d
d�

[

exp (� ) − 1
exp (� ) + 1

]}

= ��

2���̄
(1 + cos �cosh�)� (16)

�(Dagan & Indelman, 1999), where f = ϕ +  ȷ(θ − π) is the complex velocity potential (Bruggeman, 1999). 
Likewise, the horizontal coordinate xr ≡ (x1, x2) writes as

�1

�̄
≡ Re

[

exp (� ) + 1
exp (� ) − 1

]

=
sinh�

cosh� + cos �
, �2

�̄
≡ Im

[

exp (� ) + 1
exp (� ) − 1

]

= sin �
cosh� + cos �� (17)
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�with 𝐴𝐴 𝐴𝐴 ∈ ℝ and 𝐴𝐴 𝐴𝐴 ∈ [0, 𝜋𝜋 [. Note that, in the (ϕ, θ)-framework, the locations of the source and the sink corre-
spond to ϕ → −∞ and to ϕ → +∞, respectively.

3.2.  Travel Time Statistics

The travel time τ is obtained from the first of Equation 6, and therefore it is determined by the curvilinear coordi-
nate s along a random streamline originating at the source and reaching the CP with velocity u1 (Figure 1). As a 
consequence, τ is also a random field, and we aim at computing its first-order and second-order moment. Based 
on the above simplifying assumptions, up to the first-order we may write (see Equation 15)

𝒖𝒖 (𝒙𝒙) ≃ 𝒖𝒖
(0)(𝒙𝒙) + 𝒖𝒖

(1)(𝒙𝒙) = 𝒖𝒖
(0)(𝒙𝒙)

[
1 + 𝑌𝑌

′ (𝒙𝒙)
]

� (18)

Thus, switching to the variables (ϕ, θ, x3) in the first of Equation 6 and accounting for Equation 18, one has

𝜏𝜏 (𝜙𝜙1, 𝜃𝜃𝜃 𝜃𝜃3) =
∫

𝜙𝜙1

−∞

d𝜔𝜔 (d𝑥̄𝑥1∕d𝜔𝜔)

𝑢𝑢1 (𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔  3)
≃
∫

𝜙𝜙1

−∞

d𝜔𝜔 (d𝑥̄𝑥1∕d𝜔𝜔)

𝑢𝑢
(0)

1
(𝜔𝜔𝜔𝜔𝜔 ) [1 + 𝑌𝑌 ′ (𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔  3)]

� (19)

being the pair (ϕ, θ) uniquely determined by Equation 17 for each xr ≡ (x1, x2). In particular, the upper bound in 
the integrals (Equation 19) is 𝐴𝐴 𝐴𝐴1 → ln

[(
𝓁𝓁 + 𝑥𝑥1

)
∕
(
𝓁𝓁 − 𝑥𝑥1

)]
 . Then, by accounting for Equation 16, and comput-

ing the derivative 𝐴𝐴 d𝑥̄𝑥1∕d𝜔𝜔 by means of the first of Equation 17, it yields

𝜏𝜏 (𝜙𝜙1, 𝜃𝜃𝜃 𝜃𝜃3) = 2 𝜏𝜏𝑐𝑐
∫

𝜙𝜙1

−∞

d𝜔𝜔

[
1 + 𝑌𝑌

′ (𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔  3)
]−1

(cosh𝜔𝜔 + cos𝜃𝜃)2
, 𝜏𝜏𝑐𝑐 =

𝑛𝑛𝑛𝑛

𝑄𝑄𝑤𝑤

𝓁𝓁
2� (20)

The travel time needed to reach the source is obtained by taking the limit ϕ1 → +∞ into Equation 20 (which 
coincides with Equation 28 in Dagan and Indelman (1999)). In order to compute the first two moments of τ, we 
expand, in the spirit of the perturbation approximation discussed in (ii), the term 𝐴𝐴 (1 + 𝑌𝑌

′)−1 , thus obtaining

� (0) (�1, �) = 2 �� ∫

�1

−∞

d�
(cosh� + cos �)2

, � (1) (�1, �, �3) = −2 �� ∫

�1

−∞

d�� ′ (�, �, �3)
(cosh� + cos �)2

� (21)

At the zero-order, the mean travel time is the leading order term, i.e., 𝐴𝐴 ⟨𝜏𝜏⟩ ≃ 𝜏𝜏
(0) (𝜙𝜙1, 𝜃𝜃) , and it is derived analyti-

cally (by converting the hyperbolic function into its exponential form, and employing integration by substitution) 
as follows:

⟨� (�1, �)⟩ = 2 �� ∫

�1

−∞

d�
(cosh� + cos �)2

= 8�� ∫

�1

−∞

exp� d (exp�)
(exp 2� + 2exp� cos � + 1)2

= 8�� ∫

exp�1

0

� d�
(�2 + 2�cos � + 1)2

= −4��
�
�� ∫

exp�1

0

d�
�2 + 2 � � + 1

|

|

|

|

|�≡cos�

= 2 ��
sin2�

{

cos � + exp �1

cos � + cosh�1
− 2cos �

sin �

[

arctan
(

cos � + exp�1

sin �

)

− arctan
( cos �
sin �

)

]}

� (22)

whereas the variance �2
� (�1, �) ≡

⟨

[

� (1) (�1, �, �3)
]2
⟩

 reads as

�2
� (�1, �) = 4(�� �� )2 ∫

�1

−∞ ∫

�1

−∞

d�′ d�′′ ��
[

�� (�′, �) − �� (�′′, �)
]

[(cosh�′ + cos �) (cosh�′′ + cos �)]2
� (23)

As it will be clearer later on, the cross-variance σYτ is also required to solve transport. It is obtained by averaging 
τ (1) multiplied by 𝐴𝐴 𝐴𝐴

′ , the final result being

�� � (�1, �) = −2���2
� ∫

�1

−∞
d�

�� [�� (�1, �) − �� (�, �)]
(cosh� + cos �)2

� (24)
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Unlike the fluctuation τ (1) (which has a three-dimensional structure), the 
(cross)-variances (Equations 23 and 24) depend only upon the coordinates 
(ϕ, θ). This is due to the fact that, at the leading order, the flow field does not 
depend upon x3. By taking ϕ1 → +∞ in Equation 22, it yields

⟨𝜏𝜏 (∞, 𝜃𝜃)⟩ = 4 𝜏𝜏𝑐𝑐
1 − 𝜃𝜃cot 𝜃𝜃

sin2𝜃𝜃
� (25)

in agreement with Koplik et al. (1994). The mean travel time (Equation 22), 
together with Equation 25, allows to write \beginAlign

⟨𝜏𝜏 (𝜙𝜙1, 𝜃𝜃)⟩ = ⟨𝜏𝜏 (∞, 𝜃𝜃)⟩ [1 − Λ (𝜙𝜙1, 𝜃𝜃)]� (26)

Λ(�, �) = 1
1 − �cot �

{

1 −
cos � + exp�

2 (cos � + cosh�)
− cos �

sin �
[

�
2
− arctan

(

cos � + exp�
sin �

)]}� (27)

The representation (Equations 26 and 27) enables one to regard the mean 
travel time 〈τ〉 as product between 𝐴𝐴 ⟨𝜏𝜏 (∞, 𝜃𝜃)⟩ (accounting for the mean 
travel time from the sink, i.e., ϕ → −∞, to the source, i.e., ϕ → +∞) and 
a function 1  −  Λ, which adjusts 〈τ(∞, θ)〉 in order to provide the mean 
travel time at any CP.  It is seen that the following bounds 0  =  Λ(+∞, 

θ) ≤ Λ(ϕ1, θ) ≤ Λ(−∞, θ) = 1 hold. In Figure 2, we have depicted Λ as function of the dimensionless distance 
𝐴𝐴 𝐴𝐴𝐴1 ≡ 𝑥𝑥1∕𝓁𝓁 = (exp𝜙𝜙1 − 1) ∕ (exp𝜙𝜙1 + 1) ∈ [−1,+1 ] , for several values of the attack-angle θ. It is seen that the 

various Λ-functions slightly differ with θ (a similar behavior was highlighted by Indelman et al. (2006), although 
in a different flow configuration). For θ → π − (red dashed line), one has Λ → h(π − θ), being h the Heaviside step 
function defined as: h(x) = 1 for x > 0, h(0) = 1/2, and h(x) = 0 for x < 0. As a consequence, θ → π − corresponds 
to 〈τ〉 = 0 (stagnation point). By noting that

𝜋𝜋

2
− arctan

(
1 + cos𝜃𝜃

sin𝜃𝜃

)

= arctan
(

sin𝜃𝜃

1 + cos𝜃𝜃

)

= arctan
(

tan
𝜃𝜃

2

)

=
𝜃𝜃

2
, ∀𝜃𝜃 ∈ [0, 𝜋𝜋[� (28)

and accounting for Equation 27, it yields Λ(0, θ) = 1/2 (Figure 2). In the relationships (Equation 28) we have made 
use of the identity π/2 = arctan x + arctan(1/x) (valid for any x > 0), and employed the parametric representation 

of circular functions. Hence, the mean travel time required to cover the distance 
from the sink 𝐴𝐴

(
𝑥𝑥1 = −𝓁𝓁

)
 to x1 = 0 is the half of 〈τ(∞, θ)〉, irrespective of the 

trajectory (any θ). From a mechanical point of view, this is explained by noting 
that: (a) the distance from the source 𝐴𝐴

(
𝑥𝑥1 = −𝓁𝓁

)
 to x1 = 0 (corresponding to 

ϕ = 0) is the half of that between the system of source/sink, and that (b) the 
flow is steady. To discuss the behavior of Λ with the different attack-angles, 
we remind that u1 ∼ 1 + cos θ cosh ϕ1 (see Equation 16), and therefore the 
mean travel time τ (0) (which goes like 𝐴𝐴 𝐴𝐴

−1
1

 ) is larger for the lowest cos θ when 
ϕ1 < 0, and vice versa. Note that the above results are easily extended to the 𝐴𝐴 𝐴𝐴

2

𝑌𝑌

-order approximation of the mean travel time 〈τ〉 = τ (0) + 〈τ (2)〉. In fact, from 

Equation 20, one has 𝐴𝐴 𝐴𝐴
(2) (𝜙𝜙1, 𝜃𝜃𝜃 𝜃𝜃3) = 2 𝜏𝜏𝑐𝑐 ∫

𝜙𝜙1

−∞

d𝜔𝜔𝜔𝜔
′ 2(𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔3)

(cosh𝜔𝜔+cos𝜃𝜃)2
 , and concurrently 

the previous discussion is valid even at the 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
-order, provided that one replaces 

𝐴𝐴 𝐴𝐴
(0)

→

(
1 + 𝜎𝜎

2

𝑌𝑌

)
𝜏𝜏
(0) (where we have made use of the stationarity of Y).

The cross-variance σYτ is always negative (Figure  3), since an increase in 
𝐴𝐴 𝐴𝐴

′ corresponds to an increase in the velocity's fluctuation (Equation  15), 
and concurrently to a reduction of τ. The cross-variance σYτ is evaluated for 

𝐴𝐴 𝓁𝓁 = 𝐼𝐼 , and by carrying out numerically the single quadrature in Equation 24. 
In particular, this has been done by adopting exponential model for the auto-
correlation (the same insights are drawn by dealing with a Gaussian ρY as 
well as the power law, provided that the anisotropy ratio is much lesser than 

Figure 2.  Dependence of the Λ-function (Equation 27) upon the scaled 
distance 𝐴𝐴 𝐴𝐴𝐴1 ≡ 𝑥𝑥1∕𝓁𝓁  , and several values of the attack-angle θ. The red, dashed, 
thick line corresponds to θ → π −.

Figure 3.  Dependence of the cross-variance σYτ ≡ σYτ(θ, ϕ) relative to 
𝐴𝐴 𝐴𝐴𝑐𝑐𝜎𝜎

2

𝑌𝑌
 upon the dimensionless distance 𝐴𝐴 𝐴𝐴𝐴1 ≡ 𝑥𝑥1∕𝓁𝓁  , and several values of the 

attack-angle θ 𝐴𝐴
(
𝓁𝓁 = 𝐼𝐼

)
 . Curves refer to the exponential model of ρY.



Water Resources Research

SEVERINO AND DE PAOLA

10.1029/2022WR032168

9 of 14

one). A closed form is obtained for θ = 0 (i.e., along the central stream line), 
for which in Equation 24 one has

𝜌𝜌𝑌𝑌 ≡ exp |𝑥𝑥1 (𝜙𝜙1, 0) − 𝑥𝑥1 (𝜔𝜔𝜔 0) |, 𝑥𝑥1(𝑎𝑎𝑎 0) =
sinh𝑎𝑎

cosh𝑎𝑎 + 1
=

exp 𝑎𝑎 − 1

exp 𝑎𝑎 + 1
� (29)

By omitting the algebraic derivations (that are very similar to those which 
have led to Equation 22), the final result reads as follows:

�� � (�̄1) = −�� �2
� �̄

[

1 − �̄2 −
(

�̄1 − �̄
)2 + 2 �̄

(

1 + �̄
)

exp
(

−1 + �̄1

�̄

)]

,

�̄ ≡ �
�̄

� (30)

To illustrate the dependence of the variance (Equation 23) upon the position of 
the CP, in Figure 4, we have depicted the ratio 𝐴𝐴 𝐴𝐴𝜏𝜏 (𝜃𝜃𝜃 𝜃𝜃𝜃1) = 𝜎𝜎

2
𝜏𝜏 (𝜃𝜃𝜃 𝜃𝜃𝜃1) ∕𝜎𝜎

2
𝜏𝜏 (𝜃𝜃𝜃 1) 

between the variance (Equation 23) and its value at the sink 𝐴𝐴 (𝑥̄𝑥1 = 1) as func-
tion of 𝐴𝐴 𝐴𝐴𝐴1 ≡ 𝑥𝑥1∕𝓁𝓁  , and a few values of the attack-angle θ. It is seen that the 
variance 𝐴𝐴 𝐴𝐴

2

𝜏𝜏 at any x1 is always lesser that its asymptotic. This is understand-
able in view of the fact that, in order to reach the sink, any fluid particle 

covers the longest pathway (irrespective of θ), therefore increasing its travel time (and concurrently the variance). 
Likewise the case of the cross-variance (30), for the central streamline, an analytical solution can be derived by 
dealing with the exponential model of the autocorrelation. The final result reads as 𝐴𝐴 𝐴𝐴

2

𝜏𝜏 (𝑥̄𝑥1) = 8(𝜏𝜏𝑐𝑐 𝜎𝜎𝑌𝑌 )
2
𝐼𝐼 𝐼𝐼𝐼

2

𝜏𝜏 (𝑥̄𝑥1) , 
being the scaled variance 𝐴𝐴 𝐴𝐴𝐴

2

𝜏𝜏 given by

�̄2
� (�) = �̄ 3

(

1 − �̄ 2
)

+ �̄ 2

6
(

�3 − 3� − 2
)

− �̄
8
(

1 − �2
)2 + 1

60
(

3�2 − 9� + 8
)

(1 + �)3+

�̄ 2
(

1 + �̄
)

[

�̄
(

�̄ + �
)

− 1
2
(

1 − �2
)

]

exp
(

−1 + �
�̄

)� (31)

Now, we wish to discuss two asymptotics. The first one corresponds to 𝐴𝐴 𝓁𝓁 ≪ 𝐼𝐼 (near field). In this case, flow can 

be investigated by taking ρY ≃ 1. Thus, substitution of the latter into (Equation 23) leads to 𝐴𝐴 𝐴𝐴
2

𝜏𝜏 = (𝜎𝜎𝑌𝑌 ⟨𝜏𝜏⟩)
2 . As a 

consequence, the ratio ξτ behaves like (1 − Λ) 2, with the Λ-function given by Equation 27. The other extreme 
of 𝐴𝐴 𝓁𝓁 ≫ 𝐼𝐼 (far field) refers to a flow that behaves like a mean uniform one 
(see discussion in Severino (2011)). In this case, the variance (Equation 23) 
is studied straightforwardly by considering that, for fixed 𝐴𝐴 𝓁𝓁  , the condition 

𝐴𝐴 𝓁𝓁 ≫ 𝐼𝐼 corresponds to I  →  0, and concurrently in the expression (Equa-
tion 23) one can replace the autocorrelation of Y with a white noise signal 
(i.e., ρY ≡ δ). By skipping the cumbersome algebraic derivations, one has

𝜎𝜎
2
𝜏𝜏 (𝑥𝑥1, 𝜃𝜃) = 16

(𝜏𝜏𝑐𝑐𝜎𝜎𝑌𝑌 )
2

sin4𝜃𝜃
𝐼𝐼

[

Υ

(
𝓁𝓁 + 𝑥𝑥1

𝓁𝓁 − 𝑥𝑥1

, cos𝜃𝜃

)

− Υ (0, cos𝜃𝜃)

]

� (32)

where we have set

Υ (�, �) = �
√

1 − �2

[

|�|
4
ln

|

|

|

|

� − �+

� − �−

|

|

|

|

− arctan

(

� + �
√

1 − �2

)]

− �� + 1
2 (�2 + 2�� + 1)

, (|�| < 1)
� (33)

with 𝐴𝐴 𝐴𝐴
± = −1∕𝑏𝑏 ±

√
1∕𝑏𝑏2 − 1 . To compute the BTC (Equation 13), the PDF 

of a fluid particle released at the pumping well and reaching the CP at t = τ 
is required. At the 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
-order, it is given by

Figure 4.  Dependence of 𝐴𝐴 𝐴𝐴𝜏𝜏 ≡ 𝜉𝜉𝜏𝜏 (𝜃𝜃𝜃 𝜃𝜃𝜃1) upon 𝐴𝐴 𝐴𝐴𝐴1 , and several values of the 
attack-angle θ. Other parameters are the same of Figure 3.

Figure 5.  Scaled probability density function (PDF) (Equation 34) of the 
travel time of a fluid particle released at the injecting well with an attack-angle 
equal to θ = 0, and reaching a control plane (CP) at 𝐴𝐴 𝐴𝐴1 = −𝓁𝓁∕2; 0;𝓁𝓁∕2 . Other 
parameters: 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 0.1 and 𝐴𝐴 𝐴𝐴 = 𝓁𝓁  . The PDF at the recovery well (i.e., 𝐴𝐴 𝐴𝐴1 = 𝓁𝓁  ) is 

also depicted (thick red dashed line).
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� (�, �; �1) =
⟨�⟩∕�
√

2� ��

[

1 + ⟨�⟩�� �

�2
�
ln
(

�
⟨�⟩

)]

exp

{

−1
2

[

⟨�⟩
��

ln
(

�
⟨�⟩

)]2
}� (34)

(for details, see Appendix B in Dagan and Indelman (1999)), with 〈τ〉, 𝐴𝐴 𝐴𝐴
2

𝜏𝜏 , 
and σYτ, due to their dependence upon the position of the CP, given by Equa-
tions 22–24. In Figure 5, we have depicted the scaled (multiplied by τc) PDF 
(Equation 34) as function of the nondimensional travel time τ/τc, for θ = 0 
and several values of x1. Results are shown for exponential autocorrelation 
ρY. For comparison purposes, we have also depicted (Equation  34) at the 
sink (red dashed line) corresponding to the PDF considered by Dagan and 
Indelman (1999). The most evident feature is that the higher is x1 the larger 
is the dispersion. In fact, for increasing x1 the portion of the domain which is 
sampled by fluid particles released at the source is larger, and concurrently 
the amount of sampled heterogeneity is increasing, ultimately causing an 
augmented dispersion.

4.  Discussion
We now wish to assess the impact of the reaction parameters upon the shape 

of the BTC at any CP 𝐴𝐴 𝐴𝐴1 ∈] − 𝓁𝓁,𝓁𝓁  [, within a given formation. Toward this aim, we consider a pulse-like (i.e., 
C0 ≡ δ) injection of a specific (divided by the well's envelope and by the flux at the injecting well) solute mass 
m0. In this case, Equation 13 writes as

𝐶̃𝐶
𝑓𝑓 (𝑡𝑡; 𝑥𝑥1) = 𝑚𝑚0

⨏

𝜋𝜋

0
∫

∞

0

d𝜃𝜃 d𝜏𝜏 𝜏𝜏 (𝜏𝜏𝜏 𝜏𝜏) 𝑔𝑔 (𝜏𝜏𝜏 𝜏𝜏; 𝑥𝑥1)� (35)

(that generalizes the result of Severino et al. (2012)). The BTC (Equation 35) is sought as ensemble average over 
the attack-angle θ, which is reasonable to regard as a random variable uncorrelated with the travel time τ, and 
uniformly distributed within the interval ]0, π[ (see also Zech et al., 2018). The characteristic function γ ≡ γ(τ, t) 
for the advective/reaction model (Equations 8 and 9) is

𝛾𝛾(𝜏𝜏𝜏 𝜏𝜏) = exp (−𝜅𝜅𝜅𝜅𝑑𝑑𝑡𝑡) 𝛿𝛿 (𝑡𝑡 − 𝜏𝜏) +𝐾𝐾𝑑𝑑𝜅𝜅
2
𝜏𝜏exp [−𝜅𝜅 (𝐾𝐾𝑑𝑑𝜏𝜏 + 𝑡𝑡 − 𝜏𝜏)] Ĩ1

[
𝐾𝐾𝑑𝑑𝜅𝜅

2
𝜏𝜏 (𝑡𝑡 − 𝜏𝜏)

]
ℎ (𝑡𝑡 − 𝜏𝜏)� (36)

(see, e.g., Severino & Indelman, 2004), where 𝐴𝐴 Ĩ1(𝑍𝑍) ≡ I1(2
√
𝑍𝑍)∕

√
𝑍𝑍 and In is the n-order modified Bessel func-

tion of the first kind. The function (Equation 36) results made up by: (a) a propagating pulse that decays expo-
nentially with the time and (b) a continuous distribution determined by the reaction's parameters. Substitution of 
Equation 36 into Equation 35 and scaling the concentration and the time by m0/τc and τc, respectively (although, 
for simplicity, we retain the same notations), lead to

�̃� (�; �1) = �� Da2 ⨏

�

0 ∫

�

0
d� d� �exp [−Da (�� � + � − �)] Ĩ1

[

�� Da2� (� − �)
]

� (�, �; �1)

+ exp (−�� Da �) �̃� (�; �1)
� (37)

where the Damköhler number Da  ≡  κτc is the ratio between the characteristic flow time τc and the reaction 
time κ −1. In addition, 𝐴𝐴 𝐶̃𝐶𝑝𝑝 (𝑡𝑡; 𝑥𝑥1) ≡ ⨏

𝜋𝜋

0
d𝜃𝜃 𝜃𝜃 (𝑡𝑡𝑡 𝑡𝑡; 𝑥𝑥1) represents the normalized BTC that one would recover if the 

injected solute were a passive one (Da → 0). The BTC in Equation 37 can be thought of as a superposition of 
two transport mechanisms. The first term represents the contribution along those trajectories of solute particles 
which, at time t, have not yet reached the CP (i.e., τ < t). The second term in Equation 37 is the contribution of 
the streamlines along which solute particles have already reached the CP at the time t.

Figure 6.  Normalized breakthrough curve (BTC) (Equation 37) versus 
the scaled time t, and several values of the Damköhler number Da. Other 
parameters: 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 0.1 , 𝐴𝐴 𝐴𝐴 = 𝓁𝓁  , 𝐴𝐴 𝐴𝐴1 = 𝓁𝓁∕2 , and Kd = 2.
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In Figure 6, we have shown the BTC (Equation 37) versus t for some values 
of the Damköhler number, at 𝐴𝐴 𝐴𝐴1 = 𝓁𝓁∕2 (Kd = 2 and 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 0.1 ). For a very slow 

reaction (Da → 0), the sorbed concentration N is completely blocked off, and 
the solute behaves like a conservative one. To the contrary, a very fast reac-
tion (Da → ∞) implies that the two concentrations mix instantaneously, and 
the BTC behaves as that obtained by dealing with a linear equilibrium model, 
i.e., N = KdC. This is also confirmed by the fact that the center of gravity of 
red BTC (corresponding to that pertaining to the linear equilibrium model) 
is R = 1 + Kd = 3 times head that (blue line) attached to a passive scalar. At 
intermediate values of the Damköhler number Da, the BTC clearly exhibits a 
tail due to the delay caused by the ongoing mass transfer between the sorbed 
and liquid phase.

4.1.  Application to Field Experiments

It is interesting to illustrate the theoretical model to real data. In particular, 
we consider a tracer transport in a dipole flow, and we wish to show how 
dispersion between the sink/source can be quantified once the BTC at the 
recovery well is monitored. Toward this aim, we deal with two experiments 
where the BTC, monitored at the sink, is used to calibrate the heterogeneity 
structure of the hosting formations (in close analogy to Zech et al. (2018)). 
Dispersion is quantified by means of the second-order temporal moment

2 (�1) =
2 (�1)
0 (�1)

−
[

1 (�1)
0 (�1)

]2

, � (�1) = ∫

∞

0
d� ���̃� (�; �1) (� ∈ ℕ)� (38)

where, due to the nature (passive) of the solute, the flux concentration 𝐴𝐴 𝐶̃𝐶
𝑓𝑓 coincides with Equation  34, and 

concurrently one has (we omit the derivations)

2 (𝑥𝑥1) =
∫

𝜋𝜋

0

d𝜃𝜃⟨𝜏𝜏⟩
2

{(

1 + 2
𝜎𝜎𝑌𝑌 𝑌𝑌

⟨𝜏𝜏⟩

)

exp

[

2

(
𝜎𝜎𝜏𝜏

⟨𝜏𝜏⟩

)2
]

−

(

1 +
𝜎𝜎𝑌𝑌 𝑌𝑌

⟨𝜏𝜏⟩

)2

exp

[(
𝜎𝜎𝜏𝜏

⟨𝜏𝜏⟩

)2
]}

� (39)

being the mean 〈τ〉 ≡ 〈τ(x1, θ)〉 and the two (cross)variances, i.e., 𝐴𝐴 𝐴𝐴
2

𝜏𝜏 ≡ 𝜎𝜎
2

𝜏𝜏 (𝑥𝑥1, 𝜃𝜃) and σYτ ≡ σYτ(x1, θ), given by 
Equations 22–24. Thus, unlike previous studies of Dagan and Indelman (1999) and Zech et al. (2018), our model 
also provides a simple expression to quantify dispersion in the strip 𝐴𝐴 𝐴𝐴1 ∈] − 𝓁𝓁,𝓁𝓁  [. The experiments are fully 
described in Molz et al. (1986) and Robson (1974). For the purposes of the present study, they are summarized 
in the sequel.

4.1.1.  Experiment at the Mobile's Aquifer

The aquifer consists of interbedded sands and clays, as a result of subsequent depositions by the Mobile River. The 
formation is mildly heterogeneous 𝐴𝐴

(
𝜎𝜎
2

𝑌𝑌
= 0.24

)
 with porosity n equal to 0.35. The aquifer's thickness is 21.6 m, 

and roughly located between 40-m and 60-m depth. Two fully penetrating wells (2ℓ = 38.3 m) were used for the 
purposes of the tracer test, with a forcing volumetric flow rate Q = 0.946 m 3/min. A pulse-like of tracer (bromide), 
with concentration C0 = 169 mg/ℓ, was injected (for 76.6 hr) at the source, and it was recovered at the sink over 
32.5 days. The unknown horizontal integral scale I has been identified by a best fitting between the measured and 
the theoretical BTC at the sink. The matching lead to 𝐴𝐴 𝐼𝐼 ≡ 2𝐼𝐼∕𝓁𝓁 ≃ 0.4 (and concurrently I ≃ 3.8 m). Thus, with 

𝐴𝐴 𝐴𝐴
2

𝑌𝑌
 taken from the measurements and 𝐴𝐴 𝐼𝐼 determined by a fitting, we have depicted (continuous line) the theoretical 

BTC (Equation 35) at the sink (Figure 7), along with the experimental data (symbols) from Molz et al. (1986).

4.1.2.  Experiment at the Barstow's Aquifer

The aquifer, whose thickness is 27.45 m, exhibits a moderate degree of heterogeneity 𝐴𝐴
(
𝜎𝜎
2

𝑌𝑌
= 0.5

)
 with poros-

ity equal to 0.30. The doublet, working at Q = 0.208 m 3/min, was such that 2ℓ = 6.4 m. The tracer (chloride) 
was constantly injected for 84 hr, and it was recovered at the sink during the same period. As such, unlike the 
Mobile-experiment, here the recovered BTC is the cumulative distribution function, i.e., 

Figure 7.  Comparison between experimental data (symbols) of the dipole 
tracer test at the Mobile's aquifer (Molz et al., 1986) and the analytical solution 
(line) 𝐴𝐴 𝐶̃𝐶𝑝𝑝 ≡ 𝐶̃𝐶𝑝𝑝

(
𝑡𝑡;𝓁𝓁

)
 , as function of the nondimensional time t/τc. Parameters: 

𝐴𝐴 𝐴𝐴
2

𝑌𝑌
= 0.24 (measured) and I = 3.8 m (fitted).
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)
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being 𝐴𝐴 𝐴𝐴 ≡ (⟨𝜏𝜏⟩∕𝜎𝜎𝜏𝜏 ) ln(𝑡𝑡∕⟨𝜏𝜏⟩) and b ≡ σYτ/στ. Owing to the lack of information 
about the geostatistics of Y, the horizontal integral scale has been identi-
fied, similarly to the previous case, i.e., by means of a best fitting procedure 
leading to 𝐴𝐴 𝐼𝐼 = 0.6 (I = 1.9 m). In Figure 8, we have depicted the BTC at the 
sink, together with the experimental BTC from Robson (1974).

To conclude the analysis of the two experiments, it is worth noting that, 
although no information is available about the vertical integral scale Iv, this 
latter, being generally 𝐴𝐴 (1÷10 cm) (see Tables 2.1 and 2.2 in Rubin, 2003), is 
such that 𝐴𝐴 𝐴𝐴 ∼ 

(
10−2÷10−1

)
 , in reasonable agreement with the assumption 

(iii) underlying the present study. Now, we wish to discuss the dispersion 
mechanism that is expected to occur in the zone between the two wells in 
the experiments at stake. This can be done by evaluating the second-order 
moment (Equation 39). In particular, we focus on the central trajectory, since 
most of the dispersion takes place along it (Severino, 2022). In Figure 9, we 
have depicted the scaled (by 𝐴𝐴 𝐴𝐴

2

𝑐𝑐  ) second-order moment 𝐴𝐴 2 at both the Mobile 
(black line) and Barstow (blue) aquifer. Overall, 𝐴𝐴 2 is monotonously increasing with the distance 𝐴𝐴 𝐴𝐴𝐴1 ∈] − 1,+1 [, 
therefore reaching the maximum at the recovery (pumping) well. From one side, this is due to the fact that 
the released solute experiences an increasing portion of the medium (and concurrently of heterogeneity), with 
increasing x1. From the other, the advective velocity becomes unbounded at the sink, and therefore dispersion 
there increases. As expected, dispersion at the Barstow aquifer is larger (for fixed 𝐴𝐴 𝐴𝐴𝐴1 ) than that at the Mobile 
aquifer due to the bigger (in practice two times) 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 (and given the fact that the parameter 𝐴𝐴 𝐼𝐼 is almost the same for 

the two experiments).

While this example shows how the information acquired at the sink can be readily used to quantify the disper-
sion mechanism occurring in the intermediate zone between the two wells, there are other practical applications 
which may benefit from the theoretical results developed within the present study. (a) For example, one can select 

the proper strength Qw and the distance ℓ of the doublet in order to design 
in situ remediation strategies (Severino,  2022). (b) The knowledge of the 
dispersion-pattern in the strip ]𝐴𝐴 − 𝓁𝓁,+𝓁𝓁  [ is also crucial for the use of chem-
icals to neutralize dissolved pollutants (Di Dato et  al.,  2018). (c) Another 
possible application pertains the identification of the aquifer as well as reac-
tive parameters by field tests, by means of an inverse procedure. This can be 
achieved by injecting two solutes, a conservative and a reactive one, in the 
recharging well. Subsequently, the different BTCs in the pumping well may 
be analyzed with the aid of the present solutions.

To conclude, we wish to discuss briefly whether one can use a homogeneous 
transport equation with fictitious advection-dispersion coefficients resem-
bling the effects of the real (i.e., heterogeneous) setting. One way to achieve 
such an upscaling is dealing with effective dispersion/advection coefficients, 
defined as those that, in the transport equation, lead to the mean concentra-
tion. For transport in nonuniform mean flows (like the one considered in the 
present study), it is known that an effective dispersion coefficient cannot be 
defined in the above (i.e., classical) sense (Indelman & Dagan, 1999). Alter-
natively, one could define an equivalent dispersion coefficient such that the 
rate of change of the second-order spatial moment of the plume is equal to 
that observed in the heterogeneous formation. However, such an avenue is 
matter of debate for, at least, two reasons: (a) there is no experimental and/

Figure 8.  Comparison between experimental data (symbols) of the dipole 
tracer test at the Barstow's aquifer (Robson, 1974) and the analytical solution 
(Equation 40) evaluated at the pumping well 𝐴𝐴 (𝑥̄𝑥1 = 1) . Parameters: 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 0.50 

(measured) and I = 1.9 m (fitted).

Figure 9.  Dependence upon the dimensionless distance 𝐴𝐴 𝐴𝐴𝐴1 = 𝑥𝑥1∕𝓁𝓁  of the 
nondimensional moment 𝐴𝐴 2∕𝜏𝜏

2
𝑐𝑐  quantifying the dispersion mechanism along 

the central trajectory between the injecting 𝐴𝐴 (𝑥̄𝑥1 = −1) and at the pumping 
𝐴𝐴 (𝑥̄𝑥1 = 1) well in the transport experiments at the Mobile's (black line) and 

Barstow's (blue line) aquifer.
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or numerical proof of its feasibility and (b) it should depend only upon quantities which can be easily measured 
in the field (typically the hydraulic head and mobile concentration). Another possibility is to regard the effective 
dispersion coefficient like that which, in a coarse grid simulation, provides the same solution of the heterogene-
ous setup. These are opened questions calling for future studies.

5.  Conclusions
We have considered transport in a doublet-type configuration through a heterogeneous porous formation. Unlike 
previous (both analytical and numerical) studies, we have developed a model accounting for transport even in the 
intermediate zone between the injecting and the pumping well. In this way, one can follow the behavior of the 
solute propagation, besides monitoring the BTC at the recovery (pumping) well.

The huge difficulty of this problem is the strong coupling of the nonuniformity of the flow with the spatial 
variability of the log-conductivity Y, an issue which limits enormously adoption of numerical methods. That is 
why simple (analytical) solutions, although mathematically cumbersome, are to be preferred. We have adopted 
a stochastic Lagrangian framework, based upon the travel time-formulation, to replace a three-dimensional reac-
tive transport equation with a one-dimensional equation. To contain the mathematical burden (while retaining 
the most relevant features of the problem at stake), a few simplifying assumptions have been adopted: (a) the 
log-conductivity Y is modeled as a Gaussian, stationary, random field of axisymmetric anisotropy; (b) an asymp-
totic expansion, accurate at the first order in the variance 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 and in the anisotropy ratio λ, of the velocity field is 

employed; (c) wells are fully penetrating with length much larger than the vertical integral scale in order to fulfill 
ergodicity; (d) pore-scale dispersion is neglected. For illustration purposes, a fairly general solution for a solute 
undergoing a first-order kinetics is considered.

Central for the present study is the computation of the PDF (Equation 34) of the travel time, which is derived 
similarly to Severino et  al.  (2012). In particular, it requires the computation of the mean (Equation 22), and 
(cross)-variances (Equations 23 and 24) along different streamlines delivered at the injecting well, and intersect-
ing a CP at any position x1 perpendicular to the distance 2ℓ between the two wells. In particular, moments of 
the travel time coincide with the expressions obtained by Koplik et al. (1994) and Dagan and Indelman (1999) 
when the CP is placed right at the pumping well. Hence, one can compute the flux-averaged concentration (BTC) 
both at the pumping well (similarly to Dagan and Indelman (1999) and Zech et al. (2018)) as well as at any CP 
in the intermediate zone between the two wells. Overall, the effect of sorption upon the BTC is manifested in the 
existence of a wake of solute trailing behind the propagating pulse. This wake is represented by the second term 
of Equation 36. At aquifer scale, the heterogeneity in the convective mechanism produces a further separation 
into parcels that move quicker than the mean through zones of higher permeability, with the opposite occurring 
in low-conductivity regions. Finally, the model is applied to a couple of field-scale transport experiments. In 
particular, they are used to identify the horizontal integral scale of the hosting formations. With such a parameter, 
and the knowledge of the variance 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 , we elucidate the main features of the transport developing in the inter-

mediate zone delimited by the two wells. Other potential applications of the developed model are also outlined.

The present study can be generalized along several directions. Accounting for a formation with a high degree 
(i.e., large 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 ) of heterogeneity is by far the most important of them, due to its relevance toward the analysis of 

field-scale transport experiments (see, e.g., Bianchi et al., 2011).
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