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ARTICLE INFO ABSTRACT

Keywords: This paper describes a study on log mining in the domain of microservices technologies. We focus on the

Log mining detection of anomalies from logs, i.e., events requiring deeper inspection by analysts. Log mining is challenging

A‘}O"‘aly ‘?Etecnon in microservices systems due to the high number of heterogeneous logs. We present Micro2vec, a novel

xlcrise':mce approach to mine numeric representations of computer logs without making assumptions on the format of
onitoring

underlying data and requiring no application knowledge; representations computed by Micro2vec are suited
for anomaly detection. To cope with the lack of publicly-available datasets of labeled logs from production
systems, we validate our approach by means of a mixture of direct measurements from logs, one-class
classification experiments and generation of log variants. The study has been conducted in the context of a
Clearwater IP Multimedia Subsystem setup consisting of microservices deployed in Docker containers, and on a
real-world critical information system from the Air Traffic Control domain, which implements a communication

model typically used with microservices.

1. Introduction

Microservices represent an evolution of the service-oriented archi-
tecture (SOA) paradigm (Wolff, 2016). They put forth reduced size,
independency, flexibility and modularity principles, which well cope
with ever-changing business environments; as such, they are strongly
intertwined with the current industry mainstream in Agile and De-
vOps (Bass et al., 2015). We observe that architectural advantages
brought by microservices pose novel challenges to log analysis, which
has been extensively used over the past decades to evaluate production
systems (Oliner et al., 2012; Cinque et al., 2016, 2020b). A log is a
sequence of text lines stored in a file, reporting information on the
runtime behavior of a computer system.

Microservice systems’ deployments tend to create a distinct log
per-microservice, which causes substantial cognitive work by human
experts in traversing the logs in order to pinpoint and correlate relevant
lines for forensics and troubleshooting. Moreover, current trends put
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lines in the log(s) of the system.

https://doi.org/10.1016/j.jnca.2022.103515

forth the composition of microservices by different vendors — and thus
differently skilled development teams — that exacerbates format and
semantic heterogeneity of logs. In consequence, it becomes hard for
practitioners to maintain exhaustive catalogues of keywords, regular
expressions or correlation rules, which are typically used to monitor
runtime logs in many state-of-art log management and SIEM? tools,
such as Logstash® or Splunk.* Microservices “bring heterogeneity of
distributed systems to its maximum expression” (Dragoni et al., 2017):
a real-world deployment can easily reach tens of microservices and - in
turn - log files.

This paper describes our study on log mining in microservice sys-
tems. We take a different perspective from current research trends
in microservices, which leverage OS metrics, e.g., CPU usage and free
memory, as opposite to text logs (Fadda et al., 2016; Thalheim et al.,
2017). We claim that microservices exacerbate the role of event logs:
their analysis is extremely relevant to practitioners since they provide
more fine-grained data with respect to OS metrics. To the best of our
knowledge there is a lack of approaches that leverage logs in this

macinque@unina.it (M. Cinque), raffaele.dellacorte2@unina.it (R. Della Corte), antonio.pecchia@unisannio.it (A. Pecchia).

Security Information and Event Management (Kavanagh et al., 2016; Cardenas et al., 2013).

The label - also known as ground truth — pertains to the knowledge of the events occurred in a certain system when the logs were collected.
We denote by event an operating condition, i.e., either normal or anomalous, of a given system; the occurrence of an event may be reported by one or more
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domain. More importantly, no publicly-available datasets of labeled® logs
are available in this context. The label is particularly important, as
it is typically used to train/test classifiers for anomaly detection. We
present a specific application in this context, related to the detection
of anomalies (or anomalous events) from logs, i.e., events® requiring
deeper inspection by analysts (D’Amico and Whitley, 2008; Cinque
et al., 2020a), such as failures and misuse. According to D’Amico and
Whitley (2008), the detection of anomalies is one of the first steps
foreseen in computer security defense analysis. The automatic detection
of these events allows reducing the manual work required to dig into
logs, in case of incidents. The proposed approach has been applied
in a Clearwater IP Multimedia Subsystem (IMS) setup consisting of
microservices deployed in Docker containers, which well-represents
a typical microservices setup. Further, to address threats to validity
concerns, the proposal has been applied in the context of a critical
information system from the Air Traffic Control (ATC) domain, which
implements a communication model typically used with microservices.

The contribution of the paper is twofold. First, we propose Mi-
cro2vec, a novel log mining approach that embeds no application
knowledge, makes no assumptions on the format/semantics of logs, and
requires no a-priori catalogues of anomalies’ symptoms/patterns to cope
with the challenges mentioned above. This is pursued by computing nu-
meric representations of heterogeneous computer logs, which allows
inferring “actionable” relationships for anomaly detection. Second, we
aim to overcome the scarceness of publicly available labeled logs in
this context, which is a long-standing research challenge in many field
data studies. In this respect, we address the validation of the proposed
approach through a mixture of experiments that involve both (i) direct
collection of logs related to normal and anomalous events in a controlled
testbed, and (ii) the synthesis of log variants by means of perturbation
of the content of the normal logs. Log variants are generated by
solely looking at normal logs, with no knowledge on anomalies. Most
notably, we generated a comprehensive sample of labeled logs, which
we made publicly available for research purposes. We mitigate the
threats to validity of our detection approach by analyzing the data with
different techniques, including multi-class and one-class classification,
and classification done on the top of log variants. The key outcomes
and findings of our study — with respect to the data and systems in
hand - are:

» Micro2vec, a novel mining approach that is able to capitalize on the
availability of multiple — potentially distributed — logs. At the time
being, microservices are often designed to trust each other; once
gained access to one microservice, an attacker might bring down
an entire application (Dragoni et al., 2017). Nevertheless, real-
life anomalies will likely involve many microservices within an
application (e.g., the Netflix compromise described in Sun et al.
(2015)). As such, we claim that the ability to read “across the
lines” of multiple logs is a crucial feature in this context as well
as in any distributed system.

Anomalies do reflect into the relationships of the metrics across differ-
ent logs. As a confirmation of the first finding, we discovered that
different events are characterized by precise signatures, which
reflect into complex patterns across microservices’ logs. We pave
the way for discovery approaches in inferring explicable detection
rules that cannot be caught by human experts.

Variants obtained from normal logs can be used to detect real anoma-
lies. Differently from some recent contributions in this area (Cao
et al.,, 2016; Xie et al., 2018), we generate log variants with no
knowledge of anomalies, which makes our approach potentially
independent from the availability of labeled logs. Moreover, the
obtained results suggest that the usage of log variants provides an
advantage with respect to one-class approaches in detecting real
anomalies.
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The rest of the paper is organized as follows. Section 2 covers
the related work in the area. Section 3 discusses Micro2vec, while
Section 4 introduces the Clearwater case study. Section 5 describes
the datasets collected in Clearwater, and the procedure to generate
log variants. Section 6 presents a discussion of the implications of the
approach, while Section 7 describes the results obtained in the context
of Clearwater. Section 8 describes the ATC case study and related
results. Section 9 discusses the threats to validity, while Section 10
concludes the work.

2. Related work

This section summarizes the related work in the area of microser-
vices monitoring, mining metrics for event detection and security ap-
plications.

2.1. Microservices monitoring

Commercial and open-source tools are available for microservices
monitoring. For example, Dynatrace, AppDynamics, CA and New Relic
are commercial Application Performance Management (APM) tools
that leverage source code instrumentation to monitor microservices.
Instana is a commercial APM solution that leverages the span data
model (Benjamin et al., 2010) to trace all the requests generated by
properly instrumented microservices.

A similar approach is used in Zipkin (2022), the open-source dis-
tributed tracer for microservices developed by Twitter. Sysdig (Sysdig,
2022) is a container-native monitoring solution, which allows collect-
ing resource usage, network statistics, as well as tracing applications
running inside containers. Netflix Hystrix (Netflix Hystrix, 2022) is a
latency and fault tolerance Java library designed to prevent cascading
failures in distributed systems.

A transparent tracing for microservice-based applications is pre-
sented in Santana et al. (2019), which leverages proxies for relieving
the burden of tracing activities from applications. The work Noor et al.
(2019) presents a generic monitoring framework for applications based
on multi-virtualization (e.g., containers/VMs). The framework includes
agents, collecting system-level statistics, and a manager that retrieves
and analyzes the collected data.

A microservices monitoring tool, named MetroFunnel, is presented
in Cinque et al. (2022). The tool aims to accompany microservices logs
with passive tracing in order to support informed decisions by practi-
tioners. In Brandon et al. (2020) a root cause analysis framework for
microservice architectures is presented. It performs anomaly detection
leveraging a graph representation of the system architecture, obtained
by different data sources, e.g., network activity and resource usage.

MicroRCA detects performance issue and locates their root causes in
microservices using application and system level metrics, e.g., resource
usage and response time (Wu et al., 2020). Sage (Gan et al., 2020)
performs root cause analysis for cloud microservices, leveraging Causal
Bayesian Networks and Graphical Variational Auto-Encoder to model
dependencies between microservices, latency propagation, and detect
QoS violations. In Srirama et al. (2020) a microservices scheduling
strategy for cloud environments is proposed. The approach leverages
a monitoring mechanism based on system-level metrics (i.e., CPU and
memory usage) to monitor the resources used by microservices (on both
physical and virtual machines) for resource scaling.

2.2. Mining numeric metrics for anomaly detection

Extracting OS, middleware and application metrics from logs and
other monitoring tools is valuable for many applications. In Farshchi
et al. (2018) is presented an anomaly detection technique for sporadic
cloud operation. The technique correlates event logs and cloud metrics
to detect anomalies during operation. An anomaly detection technique
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leveraging Natural Language Processing is proposed in Bertero et al.
(2017); analysis is performed through the Google word2vec algorithm.

An approach for mining console logs to detect runtime problems
in large-scale systems is presented by Xu et al. (2008). The approach
extracts structured information from console logs and constructs vec-
tors of features. In Campos et al. (2018) a study on the use of machine
learning for supporting failure prediction is presented. The study uses
datasets containing failure and non-failure data, which consist of nu-
meric features representing the system behavior. Zoppi et al. (2016)
presents an anomaly detection approach for Service-Oriented Architec-
tures (SOAs), which copes with SOAs dynamicity, by collecting metrics
at different system layers.

In Ahuja et al. (2021) a number of metrics (e.g., per flow packet
count, packet rate) are extracted from network flows, which are then
used to detect DDoS attacks in software defined networks by using
machine learning models. The work in Behal et al. (2018) proposes a
DDoS attack detection approach that leverages the generalized entropy
metric. Network flows collected at different points of an Internet Ser-
vice Provider network are translated in entropy observations, which are
then combined to detect DDoS attacks.

2.3. Security applications

Several approaches have been proposed for retaining relevant se-
curity data by means of feature extraction, attribute enrichment and
various classifiers. For example, the filtering technique in Spathoulas
and Katsikas (2010) makes use of a statistical approach to combine dif-
ferent features, such as number of occurrences, frequency of signatures,
and prior knowledge regarding the alerts. Alerts are filtered using a
threshold-based approach. The work (Bakar et al., 2005) proposes an
attribute enrichment approach. It leverages a set of quality parameters
among traditional features, which are used to compute a score for
classifying alerts.

The outlier detection algorithm in Fu et al. (2010) addresses filter-
ing through the use of weights, which highlight the importance of the
attributes of alerts, e.g., the destination port or type. Frequent pairs
of attribute-value are used as features to discriminate false positives.
Differently from this literature, Julisch and Dacier (2002) puts forth the
idea that alerts belong to a limited number of clusters, which are in-
ferred through a generalization hierarchy. Work by Valeur et al. (2004)
discards irrelevant events based on active monitoring; every time an
alert is triggered, it is analyzed to identify potential vulnerabilities the
attacker is trying to exploit.

In Cinque et al. (2017) is presented an entropy-based security ana-
lytics approach, which aims to measure the occurrence of interesting
activities. A hierarchical approach to mine high threat alarms from
logs generated by Intrusion Prevention System is presented in Meng
et al. (2018). The approach in Du et al. (2017), named DeepLog, uses
a deep neural network to model a system log as a natural language
sequence. Deeplog learns patterns from normal executions in order
to detect anomalies. In Yang et al. (2019) is proposed nLSALog, an
anomaly detection framework that leverages log files as data source.
The framework models the log as a natural language sequence and uses
Long Short-Term Memory (LSTM), built using nominal training data, to
detect security anomalies.

The work in Liu et al. (2019) presents a heterogeneous graph
embedding based approach for cyber threats detection, named log2vec.
The approach converts log entries into a heterogeneous graph, which is
used to detect malicious log entries. OmegaLog (Hassan et al., 2020) is
a tracker that merges application and system logs to build a Universal
Provenance Graph (UPG). The UPG combines the causal reasoning
strengths of whole-system logging with the rich semantic context of
application logs to improve the reasoning of investigators about the
nature of attacks.

ADA (Adaptive Deep Log Anomaly Detection) (Yuan et al., 2020)
allows the detection of security-related anomalies in system logs, lever-
aging LSTM and dynamic adaptive thresholds. ReLog (Luo et al., 2020)

Journal of Network and Computer Applications 208 (2022) 103515

leverages reinforcement learning techniques to perform the analysis
of MPI logs for anomalous user detection. The Authors also present
a synthetic data generation method based on Generative Adversarial
Networks (GAN) to face the lack of anomalous data for training. Simi-
larly, in Cao et al. (2016) is presented a framework for the generation
of attack variants. An attack is represented by an event sequence.
Given a sequence of events in an attack, these events are replaced with
interchangeable events to generate new sequences, which represent
attack variants.

A similar method is introduced in Xie et al. (2018), using an existing
attack dataset for training a GAN, which is then used for the attack
variants generation. It is important to note that, differently from our
log variants generation method, Luo et al. (2020) generates variants in
terms of feature vectors instead of log entries, Cao et al. (2016) requires
a detailed analysis of past observed attacks, while Cao et al. (2016) and
Xie et al. (2018) generate variants from existing attack data instead of
using normal data.

2.4. Our contribution

Notwithstanding the amount of work and tools for microservices
monitoring, to the best of our knowledge there is a lack of approaches
that leverage logs in this domain. Recent work started to address
monitoring challenges in deploying Virtual Machines (VMs), which —
similarly to containers — can be used to host microservices. Given the
large availability of Cloud providers, Authors in Fadda et al. (2016)
propose a multi-objective mixed integer linear optimization approach
to maximize the quality of monitoring, addressing the collection of met-
rics, such as CPU usage, free memory and power consumption. Similarly,
in Thalheim et al. (2017) is presented Sieve, i.e., a platform to analyze
the communication between containers hosting microservices. Sieve
capitalizes on OS metrics and sysdig, which requires a kernel module
to observe the system calls used by microservices. While metrics are
widely-used in networked systems for anomaly detection (Ibidunmoye
et al., 2018), we take a different perspective by analyzing text logs. In
this respect, most microservices monitoring approaches require service
instrumentation to pinpoint anomalies. On the other hand, logs are a
by-product of the system’s execution and are ubiquitously emitted by
almost any software components, such as microservices. For example,
the framework in Zuo et al. (2020) uses system logs to detect anomalies
in microservice architectures, but it also needs the collection of query
traces, which requires instrumentation or placement of a collector
inside each microservice. Our contribution, instead, is a non intrusive
approach, based on the use of unmodified logs.

3. Proposed approach

Our approach, named Micro2vec,” consists in transforming dis-
tributed microservices logs into numeric representations. This is
done with no application knowledge, no assumptions on the for-
mat/semantics of logs, and no a-priori catalogues of anomalies.

Let us consider a system composed by the microservices M; (1 <j <
S), such as shown by Fig. 1. Overall the microservices generate a given
number of logs denoted by L; (1 <i < N). Logs are seen as streams of
text lines and undergo three tasks, i.e., sampling, scoring and detection.

Sampling is a periodic task where logs are continuously sampled at
regular intervals. Given a log L;, every T time units the task acquires
the new lines in L; generated by the microservice during the past T,
creating a chunk. The specific choice of T for our study is discussed in
Section 4. Sampling is done individually for each L;: therefore, the task

7 The 2vec suffix is used since the proposal leverages vector representation
as done by other existing *2vec approaches (Mikolov et al., 2013; De Koninck
et al., 2018).
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generates a new set of chunks — chunk set hereinafter — at every T,
encompassing chunks C; corresponding to the logs L;.

The scoring task computes a quantitative metric - score
hereinafter — for each chunk in the chunk set. There exist many meth-
ods for extracting metrics from logs, such as (Farshchi et al., 2018;
Bertero et al., 2017; Xu et al., 2008; Cinque et al., 2017; Stearley and
Oliner, 2008). After having reviewed the methods, we selected the
log.entropy, i.e., the term weighting technique used in Cinque et al.
(2017) and Stearley and Oliner (2008), which was demonstrated to be
effective for handling text logs. Although other methods might have
been adopted for scoring, digging into these methods is not the purpose
of our study; rather we focus on the use of log-driven numeric metrics
in a novel application domain.

Fig. 2 details the scoring task of Micro2vec. For each chunk C;, the
scoring task (i) performs a data preparation (which consists of parsing
the logs and clearing special characters, as described in Section 3.1),
(ii) extracts all the terms — a term is a sequence of characters separated
by whitespace(s) — from the chunk, (iii) counts the occurrences of each
term within the chunk, and (iv) computes a numeric score, i.e., the
log.entropy.

The output of the scoring task is a vector of scores S; (1 < i
< N), i.e., one score per chunk in the chunk set; a new vector is
generated at every T. Each score of the vector summarizes the past
T time unit of one log. The vector organizes the scores computed
during the same sampling round, which gives Micro2vec the ability
to read ‘across’ the logs. The use of vectors allows leveraging the
relationships across the logs to detect anomalies. The detection task is
continuously fed with vectors of scores, with each vector representing
a chunk set; it determines whether a chunk set represents normal or
anomalous events based on the values of the scores. The proposal is not
tailored to a specific detection algorithm. There exist many methods for
detecting anomalies from scores, e.g., threshold-based approaches, use
of classifiers. We discuss the detection approach in Section 6.

3.1. Data preparation

The data preparation step aims to mitigate the inherent variability
of log lines, which are fraught with very infrequent terms (often oc-
curring just once), such as timestamps, value of variables, and process
identifiers.

A typical log line contains both invariant and variable fields, as can
be seen in the following example:

16:29:39 Status sip_connect: Recycle TCP connection slot 14

16:29:43 Status sip_connect: Recycle TCP connection slot 2

It can be noted that the log lines share a common pattern, which can
be inferred by removing the variable fields, i.e., the timestamp and the
slot number in the example:
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Fig. 2. Scoring task details.

* Status sip_connect: Recycle TCP connection slot *

The presence of variable fields might distort the scoring task, which
aims to assign larger scores to infrequent terms. Data preparation is
a core component and a well-consolidated practice in log analysis.
For instance, in the scoring approach proposed in Stearley and Oliner
(2008) all terms that occur once are discarded; similar considerations
are in Lim et al. (2008) and Kobayashi et al. (2018).

The scoring task (i) removes special non-alphanumeric characters
(e.g., #, ?, ;, and %) from the logs and (ii) implements a stop-word
list to avoid conventional terms, such as names of days/months. More
important, the scoring task replaces each line with the corresponding
pattern, leveraging a replacements base, which is populated offline
(offline tuning in Fig. 2) with the patterns automatically inferred from
the logs generated by the system under normal activity.® Each line
is replaced with the corresponding pattern, if available in the base;
otherwise it is left unchanged.

3.2. Computation of the score

Each chunk C; sampled from L; is “prepared” as described above.
We then extract the pairs terms-counts, i.e., the number of occurrences
of each distinct term in the chunk after preparation. Let x, denote the
count of the term ¢ in the chunk C;, with 1 <t < W and W the total
number of distinct terms in C,. We obtain the log.entropy of C; as

log.entropy = \/Zzl(e[ -logy(1 + x,))?, where log.entropy > 0. Please
note that e, is the entropy of the term 7 over a set of M prepared chunks
(term-by-chunk matrix in Fig. 2), i.e., C; plus (M-1) baseline chunks
stored in a database of normal logs produced offline by microservices
under normal operations. In detail, let x, , denote the count of the term
t in the chunk &, with 1 <k <M and x, 5, = x, (i.e., the count extracted
from C,). The entropy is computed as follows:

M
1
e,=1+—— ) p,log,(p, ;) (@]
t logz(M)Z{ 1,k 1082Dy
Xtk
Pk = S @
Zk:1 Xtk

where p, , represents the probability to have the term ¢ in the chunk .
As it can be inferred from Egs. (1) and (2), terms that occur regularly
across the M chunks have a low score. The result of the scoring task for
a given log C; is a new observation of the score S;, which is forwarded
to the detection task along with the scores computed for all the logs.

8 Patterns are automatically obtained through log parsing. We implement
an iterative token-sanitization algorithm consistent with state-of-the-art ap-
proaches (Vaarandi, 2008), which leverages a clustering-based approach to
identify variable fields and infer patterns.
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Fig. 3. Experimental setup of Clearwater.

The value of (M-1), i.e., the number of baseline chunks, has been
sized in such a way that the normal chunks’ log.entropy mean can
be characterized with 10% accuracy at 90% confidence, according to
procedures in Jain (1991).

4. Experimental setup

We use a Clearwater IMS setup as main case study. Clearwater
implements the standard IMS architecture, which is adopted by large
telcos for IP-based voice, video and messaging services (Clearwater,
2022). Clearwater and IMS-related technologies have been also used
in research studies, such as Cotroneo et al. (2017), Di Mauro and
Liotta (2019) and Nguyen et al. (2018). We use a version of Clearwater
composed by 11 microservices deployed in as many Docker containers
on the same virtual machine. We describe some of the microservices
referenced by this paper, while a comprehensive architectural view of
Clearwater can be found at Clearwater (2022):

+ bono is the Session Initiation Protocol (SIP) edge proxy providing
a WebRTC interface to clients;

« sprout is the SIP router that handles client authentication;

» cassandra is the database of profile data;

+ homestead is a RESTful CRUD server that allows retrieving authen-
tication credentials and users profile;

+ homer is a standard XDMS (XML Document Management Server)
used to store MMTEL (MultiMedia TELephony) service settings
documents;

« ellis represents the provisioning portal.

We use Clearwater-live-test (Clearwater test, 2022) to generate a
representative load for exercising Clearwater. Clearwater-live-test is a
well-consolidated suite of Ruby test programs. The tests used for our
experiments consist in: (i) test setup, i.e., registering a certain number
of telephone accounts; (ii) issuing the actual sequence of service invo-
cations to Clearwater (the number and type of invocations vary across
the tests); (iii) test finalization, which deletes the telephone accounts.

The experimental setup is shown in Fig. 3. Clearwater’s Docker
microservices are hosted by an Ubuntu 16.04.03 LTS OS, Intel Xeon
E5-2630L v3 2.9 GHz, 4 Gb RAM server. Microservices are connected
through the docker LAN 172.18.0. *, which is bridged with the phys-
ical LAN 10.0.30. *. As such, clients hosted on a different machine,
which run instances of the above-mentioned Clearwater-live-test, are
allowed to reach the microservices.

Overall 13 log files by Clearwater’s microservices are considered
in this setup, as listed in Table 1 by microservice generating at least
one log. Each log contains a variety of lines, which encompass received
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Table 1
Clearwater’s log files by microservice.

Microservice Log sources Microservice Log sources
astaire astaire.txt bono bono.txt
cassandra system.log chronos chronos.txt
ellis ellis.txt homer homer. txt
Microservice Log sources

homestead-prov homesteadprov.txt

homestead homestead.txt, homesteadaccess.txt
ralf ralf.txt, ralfaccess.txt

sprout sprout.txt, sproutaccess.txt

requests, status messages, errors and exceptions occurred at runtime,
and so forth. Examples of collected normal and anomalous log lines are
shown in Fig. 4. It is important to note that the anomalous log lines,
i.e., the ones from bono.txt (lines 6-7) and sprout.txt (lines 9-
11), have been collected during anomalous events settings (which will
be detailed in Section 5), and report occurred error/failure. Logs are pe-
riodically sampled to generate the chunk sets for our scoring/detection
approach as described in Section 3. In our study, the sampling period
is set to T = 30 s, which represents a tradeoff between the latency of
the detection and the need for ensuring a reasonable number of lines
per chunk, while the sample size is set to (M-1) = 120.

5. Data collection

Our datasets encompass (i) logs collected by means of direct obser-
vations of Clearwater during normal and anomalous events, and (ii) log
variants that we synthesize by perturbing the content of normal logs for
validation purposes.

Please note that — although the experiments are conducted in a
controlled environment — we reproduce a mixture of realistic operating
scenarios by means of a well-consolidated test suite, i.e., Clearwater-live-
test. This is done to overcome the lack of publicly-available datasets for
the system in-hand as mentioned above.

5.1. Normal events and anomalies

Normal logs are obtained by exercising Clearwater with the live-
test suite. All the collected chunk sets are labeled as normal, and used
to build the replacements base. Fig. 5 shows the scores of 4 out of
13 Clearwater’s logs — for the sake of better readability — over around
one hour of normal operations; the x-axis is the progressive id of the
chunk set since the beginning of the collection. It can be noted that the
mixture of test cases within Clearwater-live-test exposes various normal
combinations of the scores. For example, homesteadprov is reasonably
stable through all the execution if not for few sporadic spikes; ellis can
be either or not close to homesteadprov, as shown in between the chunk
sets 30 and 70; finally, the score of homer appears generally higher than
ellis. We capitalize on modeling these relationships across the logs for
anomaly detection.

Other than normal operations, we also collect logs during further
five settings, where each collection setting reproduces an anomaly,
such as a bruteforce authentication, misuse of Clearwater’s functions or
tampering with OS processes and resources. All the chunk sets collected
during a setting are labeled with the related anomaly. Overall, we col-
lected around 387 Mb of data, which account for more than 2 millions
of log entries. We reproduce the anomalies during the execution of
Clearwater-live-test (configured using default values for its parameters
in both normal and anomalous events settings), so that these events
are overlapped with regular operations as it would occur in production.
The choice of the events is inspired by previous studies, such as the
security attack phases in Ruiu (1999) and Sharma et al. (2011). Table 2
summarizes anomalies; each anomaly is mapped to the attack phase
and it is accompanied by a description that explains how the anomaly
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Table 2
Anomalous events settings in Clearwater.
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Anomaly

Phase as in Ruiu (1999) and Sharma et al. (2011)

Bruteforce authentication (AUTH) Penetration

Description: The attacker attempts to gain unauthorized access to the system; this is emulated through bruteforce login attempts.

Log deletion (DEL) Control

Description: The attacker attempts to cover his/her traces by deleting logs; this is emulated by removing the log of homer.

Registration (REG) Embedding/Attack relay

Description: The attacker attempts ensuring that he/she can retain control of the system even if him/her actions are discovered; this is emulated by registering multiple

accounts in the system - a new account is registered every 5 s.

Denial of service (DoS) Attack relay

Description: The attacker overloads the system in order to slow down the performance; the system is exercised with 10 concurrent clients, with each client running an

instance of Clearwater-live-test.

Kill container (KILL) Attack relay

Description: The attacker attempts to block the system operation by killing some services; this is emulated through the kill of the bono container, which is the anchor

point for the client’s connection to the Clearwater system.

simservs.xml

identifier failed to correlate

[
QOO U R WN -

*** NORMAL log line from "homer.txt" ***
05—10—2018 07:36:54.357 UTC INFO base.py:259: Received request from
localhost — PUT http://http_homer/users/sip3A650555003440example.com/

*** ANOMALOUS log line from "bono.txt" ***
6—11—-2018 14:18:32.644 UTC Error bono.cpp:1337: Route header flow

*** ANOMALOUS log line from "sprout.txt" ***

11 10-10-2018 15:44:26.725 UTC Warning httpclient.cpp:620: reg—data failed

12 at server 172.18.0.6

Timeout was reached (28)

fatal

Fig. 4. Example of normal and anomalous log lines.
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Fig. 5. Scores of four logs over around one hour of normal operations (a chunk
corresponds to 30 s).

is accomplished. These settings are not meant to be exhaustive for all “real-
life” anomalies that may occur in practice. However, they aim to resemble
the stages of potential security attacks and to show how system misuses
may generate suspicious log entries, which can be caught through the
proposal. While we use them in some of the experiments hereinafter,
the key findings of our paper are supported by a model consisting of
log variants, as follows.

5.2. Log variants

Log variants are perturbations of normal logs. The idea of using
such variants arises from the consideration that it is hard to foresee
how real-life events will practically reflect across the logs. Overall,
the inherent uncertainty of real operational logs in reporting anomalies
is a threat for obtaining accurate detectors. In fact, poor training logs
(i.e., logs that fail in covering an exhaustive number of real operating
conditions) will likely return an ineffective detector. As such, we are
aware that the sole settings shown in Table 2 — although useful for
some of the considerations later on in this study - cannot provide
a comprehensive picture on the accuracy that can be expected with
our approach. Please note that the lack of data points from real-life
anomalies is a challenge in many domains. For example, in Sharma
et al. (2011) is shown that many security incident classes, e.g., spam and
infected hosts, had very few occurrences over a very long time frame.

We propose a systematic procedure to model the effects that
anomalies may have in the logs through log variants. This is done by
means of an experimental design and controllable factors (Jain, 1991).
Let us introduce the procedure for generating one variant, beforehand;
we then discuss the generation of the dataset of variants for our
experiments.

A log variant is generated by randomly selecting a normal chunk
set, at first. Within the chunk set, we then randomly select a number
of chunks n (1<n<N) to perturb. For each selected chunk, perturbation
consists in: (i) modifying the size, i.e., the number of lines, of the chunk
by either clearing the chunk, or leaving the size unchanged, or doubling
it by duplicating each line of the chunk; (ii) appending a certain amount
(i.e., 1%, 5% or 10% of the size of the chunk) of anomalous lines to the
chunk. An anomalous line is a sequence of unknown terms, i.e., terms
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IMPACT

Q@0 -
rl=SIZE - al

1 al=(SNR/100)-SIZE

Fig. 6. Representation of the factors.

Table 3
Factors and levels used for log variants.
Factor Level
LOW MEDIUM HIGH
IMPACT 1 3 6
SIZE x0 x1 X2

(chunk cleared) (size doubled)
SNR 1% 5% 10%

(size unchanged)

that never occur in the database of normal logs; each unknown term is
obtained by concatenating a random string to a given normal term.

More formally, let C; with 1 <i < N denote the chunks in a chunk
set. The factors accounted for generating the variants are indicated in
the following and depicted in Fig. 6:

impact (/ M PACT): number of chunks — out of total N — that are
targeted by the perturbation;

size (S1ZE): number of lines of the chunk;
signal-to-noise-ratio (SN R): percentage of anomalous lines (al)
with respect to the size of the chunk.

Given the value of SIZE and SNR, the number of anomalous
lines is al = ((SIZE/100) - SN R), while the number of regular lines
(r]) is (SIZE — al) as shown in Fig. 6. As usually done in empirical
assessments, we categorize the factors through a smaller number of
levels (Jain, 1991), e.g., LOW, MEDIUM, HIGH. Table 3 summarizes the
value of the levels in our study. We generate log variants for all the
combinations of values in IMPACT x SIZE x SNR; the only exception
occurs with SIZE = x0, where SNR does not apply because the variant
is obtained by clearing a number of chunks equal to IMPACT. As
such, we obtain total 21 rather than 27 combinations of the levels.
Given that random choices are performed in constructing the variants,
we generate around 120 variants (which account for one hour of
anomalous operations) for each combination of the levels. It is worth to
note that the proposed procedure does not aim to produce log variants
that resemble the logs generated during anomalies; rather, it aims to
mimic the effects that anomalies may have on the logs.

5.3. Avadilable datasets

We collect total 5 datasets of logs — and thus scores — which are
summarized in Table 4. Each dataset is assigned an ID that will be used
through the rest of the paper for the sake of clarity. DI and D2 contain
NORMAL vectors of scores, which are collected by means of independent
runs of Clearwater-live-test; on the other hand, D3 contains ANOMALQUS
scores obtained by emulating the settings in Table 2, which are emu-
lated in independent experiments. Noteworthy, scores in D1, D2 and D3
are computed from logs obtained by direct observations of Clearwater —
i.e., real, in the “Nature” column of Table 4 — while D4 and D5 contain
vectors of ANOMALQUS scores obtained with log variants. Therefore,
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Table 4

Summary of the datasets from Clearwater.
Dataset ID Events type Nature # Chunk sets
D1 NORMAL Real 2757
D2 NORMAL Real 127
D3 ANOMALQUS Real 81
D4 ANOMALQOUS Synthetic 2632
D5 ANOMALQOUS Synthetic 129

Table 5

Metrics obtained with the test set (FNN denotes a feedforward neural network).

Precision Recall F-measure Accuracy

AdaBoost.M1 0.974 0.973 0.973 97.3%
Random tree 0.973 0.973 0.973 97.3%
Autoencoder 0.969 0.953 0.961 96.1%
Decision tree 0.960 0.957 0.957 95.7%
FNN (4 hidden layers) 0.947 0.961 0.954 95.3%
FNN (1 hidden layer) 0.935 0.934 0.934 93.4%
Bayesian network 0.915 0.906 0.906 90.6%

they are synthetic. We made a comprehensive sample of logs collected
during normal and anomalous events publicly available.’

6. Micro2vec: Validation and practical implications

Numeric representations produced by Micro2vec can be conve-
niently used to infer models to discriminate normal from anomalous
events. Models can be obtained through well-consolidated machine and
deep learning techniques by the data mining community. It is worth
noting that Micro2vec does not mandate a specific mining technique to
handle the representations: in order to demonstrate the validity of our
approach we use a variety of techniques ranging from decision trees to
deep neural networks. For each technique assessed — given the datasets
in Table 4 — DI U D4 serves as training set, while D2 u D5 is the test set;
a subset of 20% data points of the training set serves as validation set,
which is used to select and tune the hyperparameters of the techniques
in hand. For the assessment of the techniques we refrain from using
D3 (i.e., the dataset of real anomalies) to avoid any bias that could be
caused by the settings in Table 2.

The results are presented in Table 5; the leftmost column shows
the techniques assessed. We compute the typical metrics of precision,
recall, F-measure and accuracy (Makhoul et al., 1999) to quantify the
effectiveness of the models at discriminating normal from anomalous
events. Results are based on WEKA' and Keras!' implementations of
the autoencoder and the multilayer feedforward neural network (FNN).
It can be noted that all the techniques achieve remarkable classifica-
tion figures, which means the numeric representations generated by
Micro2vec can be used in conjunction with different techniques. Most
notably, the results indicate that deep learning models can be used
to handle the scores. For example, in case of the autoencoder we
use a semi-supervised approach to learn a model of the normal data
points, beforehand; given the points of the test set, anomaly detection is
pursued by measuring the distance — also known as reconstruction error
— of the points with respect to the model. The autoencoder achieves
0.969 precision and 0.953 recall, which are among the top performing.
As for the FNN with 4 hidden layers, we obtain 0.947 precision and
0.961 recall. As a further remark, in order to check if our data are
affected by class imbalance issues, we used the AdaBoost. M1 (Freund
and Schapire, 1997) classifier. It is important to note that AdaBoost.M1
is not a mean to check if a dataset is imbalanced or not, but is usually
adopted to classify imbalanced datasets (Yuan and Abouelenien, 2015).

9 www.dessert.unina.it/JNCA2022EventLogs.zip.

10 https://www.cs.waikato.ac.nz/ml/weka/.
11 https://keras.io/.
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Table 6
Results of ANOVA (SST = 0.0107; R-square = 0.97; imp = importance).
SS imp F-stat p-value

IMPACT 0.0098 91.6% 86.85 0.0005
SIZE ~0 0.0% 0.36 0.5822
SNR 0.0003 2.8% 2.99 0.1622
IMPACT-SIZE ~0 0.0% 0.17 0.8470
IMPACT-SNR 0.0003 2.8% 1.45 0.3644
SIZE-SNR ~0 0.0% 0.24 0.7940
Total 0.0104 97.2% - -

Therefore, since AdaBoost.M1 performance is comparable with the best
performing classifier, i.e., random tree, it can be reasonably stated that
our data are not affected by the class imbalance issue.

Without loss of generality, we will focus on the decision tree:
(i) it performs reasonably well in our context, as shown in Table 5,
and (ii) much more important, it produces an output that is compact,
comprehensible and useful to practitioners, which is crucial to the
objective of automating the generation of detection rules that can com-
plement existing SIEM tools. Even if decision trees can be affected by
the instability issue (Li and Belford, 2002), this does not happen in our
settings as we achieve similar results with both original and perturbed
datasets, i.e., considering log variants as it will be shown later on in
the paper. We aim to assess how the availability of measurements from
different logs is beneficial to the detection of anomalies by means of the
decision tree. The key advantage in having log variants obtained under
controllable factors consists in the possibility to conduct an ANalysis
Of VAriance (ANOVA) (Jain, 1991) to gain insights into the statistical
significance of factors — and their interactions — on a response variable.
In this study we use the F-measure as response variable because
precision and recall of the classifiers are reasonably close.

ANOVA is done as follows. We split the variants into disjoint groups
based on the levels of the factors that were used to obtain them'?;
for each group of variants we compute the F-measure obtained by the
decision tree at classifying the variants belonging to a certain group
with respect to the normal logs. Results are summarized in Table 6.
The total variability of the F-measure across the groups of variants,
i.e., sum of squares total (SST) in ANOVA, is 0.0107. For each factor and
interaction, Table 6 shows the sum of squares (SS), i.e., the portion of
SST explained by the factor/interaction. We observe that IMPACT is the
most important: it explains 91.6% of the variability and it is statistically
significant (i.e., p-value < 0.05).

Practical implications. Based on the results of ANOVA, the de-
tector is sensitive to small percentages of anomalous lines. In fact,
having more than 1% anomalous lines — e.g., 5%, 10% SNR - does not
necessarily reflect into higher F-measure, such as shown in Fig. 7(a).
This means that the detector does not depend on the verbosity of
anomalous events in the logs, which is strongly desirable in practice.
More important, the observation that IMPACT explains most of the
variability, indicates that the detector is able to capitalize on the
availability of multiple measurements from different microservices;
we also note that, differently from the SNR, F-measure improves as
IMPACT increases (Fig. 7(b)). This is another important outcome, given
the distributed nature of microservice systems and related security
implications. Having diverse points of observation, i.e., log sources, is
beneficial for automated anomaly detection and reflects into higher
F-measure.

12 We exclude from this analysis the variants obtained with SIZE = x0
because the SNR does not apply, such as explained in Section 5.1.
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Fig. 7. Profiler for SNR and IMPACT by SIZE.

Table 7
Usage of the datasets.
Section Training set Test set Notes
7.1 Not applicable D2 v D3 K-fold cross validation
7.2 D1 D2 u D3 One-class model
7.3 D1 v D4 D2 v D3 Variant-based model
7. Results

We present the results concerning anomaly detection. Our aim is to
investigate both (i) the relationships across microservices’ logs for the
system in hand, and (ii) the effectiveness of our variant-based approach
as a workaround to learn a model in those datasets that lack real-life
anomalous data points, which is increasingly common in practice. Our
analysis is supplemented by a comparison with one-class classifiers,
which can be conveniently used in those settings where only one class
can be learned accurately.

For the sake of clarity, Table 7 indicates how the datasets described
in Section 5.3 have been used to obtain the results presented through
the following subsections. For all the cases, the test set consists of
normal/anomalous scores computed from the logs obtained by means
of direct collections from Clearwater, i.e., D2 U D3.

7.1. Relationships across the logs

Our proposal develops around the intuition that relationships across
microservices’ logs can be leveraged for detection purposes. In this
experiment we use a decision tree and a K-fold cross validation approach
to model the scores from both normal and anomalous events, i.e., D2 U
D3. In this case D2 U D3 is split into 10 disjoint folds F (with 1 <F < 10).
For each fold f, we train a decision tree with 9 folds (f # F) and test it
with the held-out fold (f==F); thus, “training set”, is not applicable —
as stated in Table 7 — because training/test are inherently intertwined.
In this first experiment we use a K-fold approach in order to leverage
all the vectors in D2 U D3: in fact, we aim to compute an upper bound
for the recall and precision metrics that will serve as reference to assess
the one-class and variant-based models.

Fig. 8 shows the relationships by means of the obtained decision tree
(please refer to Table 2 for the acronyms of the events); bold characters
highlight the path that catches the vast majority of normal vectors of
scores (line 12). Regarding anomalous events, we found out that around
82% vectors from the AUTH setting reflect into abnormal activity by
ellis (line 17 in Fig. 8); similarly, 90% vectors obtained during the DoS
setting are characterized by abnormal activity in homesteadaccess (line
18). The reader might further inspect Fig. 8 to see other interesting
correlations.

These correlations across the logs are hard to be caught by human
experts, who are typically responsible for manually crafting security
compromise indicators, e.g., the correlation rules of up-to-date SIEM
tools (Bhatt et al., 2014). This practice closely resembles traditional
business intelligence, where humans must know what they wish to
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1 homer <= 0

2 | chronos <= 0.054403: KILL (90%)
3| chronos > 0.054403: DEL (93%)
4 homer > 0
5 | homesteadaccess <= 0.836042
6 | | ellis <= 4.256036
7 | | homesteadprov <= 0.918568
8 | | \ | sproutaccess <= 2.480235
9 | | | | | homestead <= 7.301185
10 | | \ | | | bono <= 0.589198: AUTH (18%)
11 | | | | | \ bono > 0.589198: NORM (1%)
12 | | | | | homestead > 7.301185: NORM (99%)
13 | | \ | sproutaccess > 2.480235
14 | | | | | bono <= 0.649348: DoS (6%)
15 | | \ | | bono > 0.649348: REG (25%)
16 | | \ homesteadprov > 0.918568: REG (75%)
17 | | ellis > 4.256036: AUTH (82%)
18 | homesteadaccess > 0.836042: DoS (90%)
Fig. 8. Decision tree model and relationships among the scores of normal (NORM) and anomalous events.
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Fig. 9. Worst three ROC curves for decision tree.
Table 8 Table 9
Metrics of the classifier trained with real logs. Metrics of the one-class classifiers.
Precision Recall F-measure ROC area Accuracy Precision Recall F-measure Accuracy
0.948 0.942 0.944 0.965 94.2% Approach in Hempstalk et al. (2008)
Recall/ROC area by anomaly Random tree 0.553 0.953 0.699 54.8%
DoS KILL DEL REG AUTH Decision tree 0.552 1.000 0.711 55.2%
0.90/0.98 0.90/0.95 0.93/0.94 0.94/0.95 0.82/0.99 Bayesian net. 0.897 0.890 0.893 88.3%
Multilayer perc. 0.724 0.929 0.814 76.5%
AdaBoost.M1 0.552 0.949 0.696 64.9%
Approach in Scholkopf et al. (2000)
look for, beforehand. Differently, our work puts forth the concept of One-class SVM 0.750 0.520 0.614 63.9%

data discovery to complement the task of finding effective compromise
detection rules.

We note that both normal and anomalous events are characterized
by a precise signature in the relationships of the scores. Table 8 provides
overall precision and recall of the decision tree, both higher than 0.94.
Moreover, the bottom row of the table also shows the breakdown of
the recall and ROC area by anomaly, which are in the range 0.82
(AUTH) - 0.94 (REG) and 0.94 (DEL) - 0.99 (AUTH), respectively—
thus reasonably high. The good results are also highlighted by the ROC
curves depicted in Fig. 9, which are reasonably near to the optimal
curve (as suggested by the ROC area values in Table 8), albeit they are
the worst three obtained ones. These figures are used as a reference in
assessing the one-class and variant-based models.

7.2. Detection through one-class classification

One-class classifiers represent a viable solution to cope with the lack
of real anomalies. One-class approaches leverage the assumption that
only one class — named target class — is well characterized in a training
set. Any arbitrary data point that does not resemble the only class
learned during training is deemed as outlier. We explore two one-class
classification approaches: (i) the approach proposed in Hempstalk et al.

(2008) and (ii) the one-class Support Vector Machine (SVM) (Scholkopf
et al., 2000) implemented in Chang and Lin (2011). Both approaches
are reference work in one-class classification studies as they have been
largely used for comparison purposes (Anderka et al., 2012; Barbhuiya
et al., 2018).

In this study the scores computed from normal logs are the target
class: only vectors of scores representing normal events are used to
train the one-class classifiers. Anomalies are expected to be classified as
outlier. We use the dataset D1 to train the classifiers with real normal
scores, and test it against D2 U D3, as shown in Table 7. Table 9 shows
the obtained results. The approach in Hempstalk et al. (2008), after
having transformed the problem into a binary classification, can be
used in conjunction with any existing classifier: Table 9 presents the
results obtained with the most promising we found after sensitivity
analyses. Results indicate that the Bayesian network reaches the max-
imum overall metrics, with an F-measure of 0.893 and an accuracy of
88.3%. It can be noted that, in spite of the quite high recall for almost
all the classifiers, only the Bayesian one obtains acceptable precision
and recall, which are however lower if compared to the corresponding
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Fig. 10. Scores of four Clearwater’s logs and detector’s output in two anomalous events.
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Table 10
Metrics of Hempstalk et al. (2008) with the Bayesian network.
Precision Recall F-measure Accuracy
0.897 0.890 0.893 88.3%
Recall by anomaly
DoS KILL DEL REG AUTH
0.87 1.00 1.00 0.62 1.00
Table 11
Metrics of the classifier trained with log variants.
Precision Recall F-measure ROC area Accuracy
0.913 0.901 0.907 0.917 90.7%
Recall by anomaly
DoS KILL DEL REG AUTH
0.97 0.90 0.93 0.75 0.91

reference metrics in Table 8. This is explained by the breakdown of the
recall over the anomalies collected by direct observations of Clearwater
in Table 10. The one-class classifier achieves a recall of 1.00 for KILL,
DEL and AUTH; however, it drops sharply to 0.87 and 0.62 for DoS and
REG, respectively, which means that one-class classification is rather
ineffective in some anomalous scenarios.

7.3. Detection by means of the log variants

We aim to address the following question: can the variants be used
to train a model for detecting real anomalies? This is strongly relevant
because, as stated above, a training database of real logs will never
cover all the anomalies that can occur in production; on the contrary,
variants emulate a wide spectrum of settings by experimental design,
although they are not directly related to anomalies. To explore this
proposition we train a decision tree with DI U D4 and test it on D2
U D3, as shown in Table 7, i.e., we attempt to classify scores computed
from real normal/anomalous logs with a model learned from variants.

Results are shown in Table 11. Both recall and precision are higher
than 0.90, which is reasonably satisfactory. In Fig. 10 we plot the
output of the detector during the progression of two anomalous events,
i.e., registration and authentication, respectively. The detector is super-
imposed as a dotted line to the scores of four microservices’ logs, where
the transition low-high denotes that the anomalous event is detected; in
both cases the anomalous event starts around the chunk set id 20. For
example, in the registration setting the detector takes few cycles before
it stabilizes at high.

With respect to Table 8 - i.e., training done with real logs — we note
a loss in recall and precision, which drop roughly by 0.05. Such a drop
is expected because, differently from recent contributions in this area,
such as Cao et al. (2016) and Xie et al. (2018), our variants are not
generated by perturbing the anomalous events. This is done to avoid

10

biasing the results towards a specific anomalous setting and to inves-
tigate a more general research direction, which does not rely on the
availability of labeled data for generating the variants. Interestingly,
the loss is caused by only one anomalous event type (i.e., REG, as it
can be noted by comparing the bottom rows of Tables 8 and 11), which
means that — based on the findings of our study — variants obtained
with no knowledge of real anomalous events are potentially useful
to support the detection. More importantly, the variant-based model
improves over one-class classification, whose results were in Table 10.

We closely look into the models in order to interpret the improve-
ment obtained with variants over the one-class approach. Fig. 11 shows
the model obtained by means of Hempstalk et al. (2008) in conjunction
with a decision tree (we discuss the decision tree in lieu of the Bayesian
network for the sake of visual comparison); similarly, Fig. 12 shows the
path of the variant-based model catching the majority of normal vectors
of scores (line 18). Fig. 11 indicates that the model obtained with the
one-class approach leverages only 2 out of 13 log sources, i.e., logs
of cassandra and ralfaccess. Please note that negative scores in Fig. 11
result from the internal mathematical transformations of Hempstalk
et al. (2008), since — by construction — our log.entropy is always >0.
On the other hand, the model obtained with log variants capitalizes on
many more log sources, as shown in Fig. 12, which provides finer-grain
leaves to discriminate normal from anomalous events. Interestingly,
most of the logs used for the decision are the same as in Fig. 8, which
were obtained from real logs.

8. Application to the ATC case study

In order to assess the proposal with another case study, we apply
it to a real-world critical information system from the Air Traffic
Control (ATC) domain. The system installation has been made available
by a top-leading industrial company in electronic and information
technologies for defense and aerospace, in the context of an academia-
industry project. The system encompasses a number of nodes running
distributed applications, which cooperate to implement ATC-related
capabilities, such as aircraft trajectory monitoring and collision preven-
tion/detection. The cooperation is enabled by means of message pass-
ing between applications, according to the publish-subscribe paradigm,
widely adopted in microservice architectures. More important, the
system encompasses many heterogeneous log sources, with applications
generating multiple logs per node, similarly to the Clearwater case.
Overall, 16 log files sources are available, encompassing legacy logs
implemented by means of a variety of custom formats; the collected
log files are listed in Table 12 by originating node.

As done for Clearwater, we collect logs encompassing both normal
and anomalous events. Normal logs are collected by exercising the
system with test suites, which are used by the industry provider to
emulate the system usage by real ATC operators. The workload contains
several operations, ranging from Flight Data Plan creation/update,
which contains the data of a given flight (such as expected route,
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1 cassandra <=0

2| cassandra <= —0.013819: outlier (41%)
3| cassandra > -0.013819: NORM (96%)
4 cassandra > 0
5 | ralfaccess <= 0.477326: NORM (4%)
6 | ralfaccess > 0.477326: outlier (59%)
Fig. 11. Model obtained with Hempstalk et al. (2008) and the decision tree.
1 omitted

2 homestead <= 8.50964

| homesteadprov <= 0: ANOM (0.4%)
| ralfaccess <= 0: ANOM (0.3%)

| homesteadaccess <=0:ANOM(0.3%)
homesteadaccess > 0

ellis <= 0: ANOM (0.3%)
ellis > 0: NORM (94.4%)

3| homestead <= 0: ANOM (0.7%)

4| homestead > 0

5| | ralf <= 0: ANOM (0.8%)

6 | | ralf > 0

7| | | homer <= 0: ANOM (0.6%)
8 | | | homer > 0

9 | | | | sproutaccess <= 0: ANOM (0.5%)
10 | | | | sproutaccess > 0

11 | \ | |

12 | \ | | | homesteadprov > 0
13 | \ | | \

14 | | | | | | ralfaccess > 0
15 | \ | | \ |

16 | \ | | \ | |

17 | \ | | \ | | \

18 | \ | | \ | | \

19 homestead > 8.50964: ANOM (1.7%)

20 omitted

Fig. 12. Extract of the decision tree model obtained from variants and relationships among the scores of normal (NORM) and anomalous events (ANOM).

Table 12 Table 13

Log files by ATC system node. Metrics of the decision tree trained with real logs from the ATC case study.
Node Name of the log file Precision Recall F-measure ROC area Accuracy
D02 DO2PAN, DO2msg 0.959 0.959 0.959 0.980 95.9%
DB1 DB1PAN, DBlmsg Recall/ROC area by anomaly
FP1 FP1PAN, FPINTN, FP1LNR, FP1AFS, FPimsg DoS KILL DEL RER AUTH
MN1 MN1PAN, MN1MNA, MN1msg 0.90/0.96 0.99/0.99 0.97/0.99 0.96/0.98 1.00/1.00
Ms1 MS1PAN, MSimsg
SFN SFNPAN, SFNmsg

trajectory), to Flight re-routing, which allows to modify the trajectory
of a flight. Normal logs are also used to build the replacements base'®
Anomalous events are collected by emulating different settings that
resemble operations occurring under different attack phases, as done
for Clearwater. We emulate 5 settings: (i) Denial of Service (DoS), where
the attacker starts misusing the system creating a new flight every sec-
ond to slow down the system response: (ii) Kill service (KILL), where the
attacker attempts to block the system operation by killing the database
service; (iii) Log Deletion (DEL), where some application logs are deleted
by an attacker with the aim to cover his/her traces, (iv) Flight re-
routing (RER), where the attacker modifies the data in the system by
re-routing a flight every five seconds towards the same destination; (v)
Brute-force authentication (AUTH), where an attacker attempts to gain
unauthorized access to the system through brute-force login attempts at
the D02 node, i.e., the front-end of the ATC system. We reproduce these
scenarios during the execution of the normal workload of the system,
so that anomalous events are overlapped with regular operations as it
would occur in production.

The collected logs are periodically sampled to generate the chunk
sets; the sampling period is set to T = 10 s, while the sample size is

13 Ppatterns included in the replacements base have been made publicly
available -www.dessert.unina.it/JNCA2022ATCLogs-Regex.zip.
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set to (M-1) = 120. We collect total 3 datasets, i.e., (i) DI-ATC and
(ii) D2-ATC, containing NORMAL scores, and (iii) D3-ATC, containing
ANOMALQUS scores. As done for the Clearwater case study, we present
the results concerning the detection of anomalous events with the ATC
system involving both multi-class and one-class classifiers.

Multi-class classification. We use a decision tree'* and a K-fold
cross validation approach (with K = 10) to model the scores from both
normal and anomalous events contained in the D2-ATC and D3-ATC,
respectively. As seen for the Clearwater case study, we note that both
normal and anomalous events are characterized by a precise signature
in the relationships of the scores. Fig. 13 shows the relationships by
means of the obtained decision tree. It can be noted that around 93%
vectors from the DEL setting reflect into abnormal activity by the
DO2PAN log (line 17), which also involves other log files, such as
DO02msg, FP1IPAN, MN1MNA, SFNPAN, FP1AFS, as indicated by the bold
characters. Similarly, we found out that around 99% vectors obtained
during the KILL setting are characterized by abnormal activity in
FPIPAN log files (line 2). It is important to note that in this case
the abnormal activity is represented by the absence of events in the
log, which is coherent with the emulated KILL scenario. Table 13
provides overall precision and recall of the decision tree, both higher
than 0.95, as well as the overall ROC area value, i.e., 0.980. The high

14 We use the same classifier of the first case study for comparison purposes.
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DO2PAN <= 12.828658: DEL (1%)

1D02msg <= 3.244645

2 | FP1PAN <= 0: KILL (99%)

3| FP1PAN >0

4 | |  MNIMNA <=0

5 | \ | SFNPAN <= 0.240435

6 | \ | | MS1PAN <= 0.216978

7 \ | | \ DO2PAN <= 0.595386: DoS (1%)

8| \ | | \ DO2PAN > 0.595386: NORM (4%)

9 | \ | | MS1PAN > 0.216978: DEL (1%)

10 | \ | SFNPAN > 0.240435

11 | \ | | FP1AFS <= 1.344

12 | \ | | |  SFNPAN <= 1.302572

13 | \ | | \ | FP1PAN <= 1.380284: DEL (7%)
14 | \ | | \ | FP1PAN > 1.380284: KILL (1%)
15 | | | | \ SFNPAN > 1.302572: NORM (3%)

16 | | | | FP1AFS > 1.344

17 | \ | | | DO2PAN <= 11.853783: DEL (93%)
18 | \ | | |  DO2PAN > 11.853783

L R

20 | | | | | | DO2PAN > 12.828658: DoS (1%)
21 omitted

Fig. 13. Extract of the decision tree model and relationships among the scores of normal (NORM) and anomalous events from the ATC system.
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Fig. 14. Worst three ROC curves for decision tree—ATC.
Table 14 metrics shown in Table 13. This is explained by the breakdown of the
Metrics of one-class SVM—ATC. recall over anomaly in Table 14.
Precision Recall F-measure Accuracy
0.925 0.408 0.566 85.8% . . ‘1.
> 9. Discussion and threats to validity
Recall by anomaly
DoS KILL DEL RER AUTH The detection figures that we obtain by mining the numeric repre-
0.99 0.93 0.90 1.00 1.00

ROC area value is explained by the ROC curves depicted in Fig. 14,
which are reasonably near to the optimal curve albeit they are the worst
three obtained ones, as suggested by the ROC area values in Table 13.
Interestingly, achieved results are in line with the ones obtained in the
Clearwater case. Let us add that also for this case study we evaluate
the AdaBoost.M1 performance, which performs similarly to the decision
tree, confirming that also the ATC dataset is not affected by the class
imbalance issue.

One-class classification. In order to apply one-class classification
approaches, the scores computed from normal logs are considered as
the target class and they are used for training, as done in the Clearwater
case study. We use the dataset DI-ATC to train each one-class classifier
used for Clearwater with real normal scores, and test it against D2-ATC
U D3-ATC. Results indicate that — with respect to our data — the one-class
SVM classifier reaches the maximum overall metrics, with an F-measure
of 0.566 and an accuracy of 85.8%. Moreover, differently from the
other classifiers, the one-class SVM classifier is the only one exhibiting
an acceptable precision. Table 14 summarizes the metrics of the one-
class SVM classifier. Overall, it achieves precision and recall of 0.925
and 0.408, which are lower if compared to the corresponding reference
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sentations produced by Micro2vec with commonly-used machine and
deep learning algorithms are up to 0.97 and 0.96 recall, precision
and F-measure, for the microservices and ATC case study, respectively.
The performance achieved is inline with existing work in the area.
For example, the Authors in Meng et al. (2019) propose a method,
LogAnomaly, based on template2Vec, i.e., a template representation
method to extract semantic and syntax information from log templates
inspired by word embedding. The F-measure of our technique is similar
to LogAnomaly applied to the BG/L log benchmark, i.e., 0.96. As for
other approaches that imply sequential embedding, the work Guo et al.
(2021) applies BERT, i.e., the Bidirectional Encoder Representations
from Transformers developed by Google, and achieves 0.92 recall and
0.89 precision with the BG/L log: both the figures are lower than
Micro2vec. As for other related approaches using BERT, it is worth
mentioning (Hirakawa et al., 2020), which achieves 0.89 F-measure
with BG/L, again lower than Micro2vec. SwissLog (Li et al., 2020),
which is applied in conjunction with Long short-term memory (LSTM),
Bidirectional LSTM (BiLSTM) and Attention-based BiLSTM, achieves
0.95, 0.96 and 0.99 F-measure in BG/L, respectively: the F-measure
of Micro2vec is in line with the first two SwissLog variants, although
lower than the latter. It should be noted that SwissLog is conceived for a
specific fault model of log sequence order changes and log time interval
changes: most notably, Micro2vec is not constrained by specific types
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of faults. Finally, the recall and precision of Micro2vec are in the range
of AutoLog (Catillo et al., 2022), which achieves a value of the recall
between 0.96 and 0.99, and precision within 0.93 and 0.98 applied to
the logs of four systems.

As for any measurement study, there may be concerns regarding
validity and generalizability of the proposal and results. We briefly
discuss them, based on the aspects in Wohlin et al. (2000).

Construct validity. Our work builds on the intuition that rela-
tionships across microservices’ logs can be leveraged for detection
purposes. This is pursued by instantiating our experiments in the con-
text of two systems, i.e., Clearwater IMS, which well represents an
important category of microservice systems, and the ATC critical infor-
mation system, which leverages microservices-related communication
technologies. We devoted special attention to exercise both systems
according to representative operations. Both systems are: (i) deployed
according to the settings provided by the developers, (ii) fed with
realistic input data, and (iii) exercised with the test suite used by
developers to emulate their nominal usage. Regarding the anomalies,
we rely on events that resemble the security attack phases in Ruiu
(1999) and Sharma et al. (2011). The considered events are not meant
to be exhaustive for all anomalies that may occur in practice. However,
although they cannot provide a comprehensive picture on the accuracy
that can be expected with our approach, the considered anomalies
allow pointing out the potential of the approach. Finally, we rely on
well-funded log analysis methods for extracting quantitative metrics
from logs; findings have been inferred with an approach encompassing
design of experiments and assessment of the measurement error.

Internal and conclusion validity. We use a mixture of datasets
consisting of real logs and variants to provide evidence of the actual
relationships across the metrics. Experiments include multi-class and
one-class classification, and classification done on the top of log vari-
ants. We assess different classifiers and generate the variants under
different configurations of the key factors. Metrics of precision, recall
and F-measure are computed with both real logs and variants with the
aim of avoiding any favorable setting to our proposal. Overall, this
mitigates internal validity threats and provides a reasonable level of
confidence on the conclusions.

External validity. Results observed on two case studies are not
statistically generalizable. However, the reported findings, which are
strongly supported by data, are still useful to get an overall un-
derstanding on the potential of the proposal. Our proposal should
be easily applicable to other similar systems. We require no mi-
croservices/applications modifications. Practitioners are not expected
to spend any effort in using our proposal since it is inherently non
intrusive; moreover, we do not embed knowledge of the application.
The details provided should reasonably support the replication of our
study by other researchers. Noteworthy, we made a comprehensive
sample of logs/scores publicly available for research purposes.

10. Conclusion

This paper presented our study on mining logs for anomaly detec-
tion in the context of systems leveraging microservices-related tech-
nologies. We propose Micro2vec, a novel approach to mine numeric
representations of computer logs, which allow inferring “actionable”
relationships for anomaly detection. The approach embeds no appli-
cation knowledge, makes no assumptions on the format/semantics of
underlying logs, and requires no catalogues of anomalies symptoms.
We conduct our experiments with a Clearwater IMS installation and
with a real-world ATC critical information system.

We believe that the obtained findings should be extremely useful to
practitioners and to drive future research directions. Results indicate
that analyzing metrics inferred by different logs facilitates the detection
of anomalies, which are characterized by signature involving multiple
logs; it also allows inferring explicable detection rules that are hard to
be caught by human experts. In addition, log variants obtained from
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normal logs can support detecting real anomalies, and they improve
over one-class classifiers.

In the future we aim to extend our experiments to production
systems and to different application domains. In fact, the proposal is not
tailored for a specific mining approach or system. In addition, future
work will also be devoted to inspect other methods for log variants.
Further, we will investigate the actions that malicious users might take
to evade detection as well as the use of retraining mechanisms to update
the normal model when the system changes. Finally, the impact of both
log quality and parsing on the proposal will be also assessed, since they
can potentially affect the effectiveness of the scoring task and then of
the anomaly detection.
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