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ABSTRACT

DNA methylation is an epigenetic mark implicated
in crucial biological processes. Most of the knowl-
edge about DNA methylation is based on bulk ex-
periments, in which DNA methylation of genomic
regions is reported as average methylation. How-
ever, average methylation does not inform on how
methylated cytosines are distributed in each single
DNA molecule. Here, we propose Methylation Class
(MC) profiling as a genome-wide approach to the
study of DNA methylation heterogeneity from bulk
bisulfite sequencing experiments. The proposed ap-
proach is built on the concept of MCs, groups of
DNA molecules sharing the same number of methy-
lated cytosines. The relative abundances of MCs
from sequencing reads incorporates the informa-
tion on the average methylation, and directly informs
on the methylation level of each molecule. By ap-
plying our approach to publicly available bisulfite-
sequencing datasets, we individuated cell-to-cell dif-
ferences as the prevalent contributor to methylation
heterogeneity. Moreover, we individuated signatures
of loci undergoing imprinting and X-inactivation, and
highlighted differences between the two processes.
When applying MC profiling to compare different
conditions, we identified methylation changes occur-
ring in regions with almost constant average methy-
lation. Altogether, our results indicate that MC pro-
filing can provide useful insights on the epigenetic
status and its evolution at multiple genomic regions.

INTRODUCTION

DNA methylation is a heritable epigenetic mark consist-
ing in the enzyme-mediated addition of a methyl-group to
deoxyribonucleotides (1–3). In mammals, DNA methyla-
tion mainly involves cytosines in CpG context (1–3). DNA
methylation has been shown to regulate gene expression and
genome stability, and has been implicated in crucial biolog-
ical processes, like genomic imprinting and X inactivation
(3–6). In cell differentiation, DNA methylation shapes fate
and engraves the identity of cells (1,7). Its dysregulation has
been linked to plenty of pathological conditions (8–11).

Several experimental techniques have been developed
to study DNA methylation (12). Among them, bisulfite
sequencing techniques are widely adopted to assess the
methylation status at single base resolution, either at tar-
geted regions or at genome-wide level (12–16).

Single base DNA methylation is usually reported as the
fraction of molecules in which a given cytosine is methy-
lated (17). Genome-wide methylation analysis have high-
lighted that most cytosines are not evenly methylated in dif-
ferent molecules (18). Cellular heterogeneity and allele spe-
cific methylation are potential sources of this molecular het-
erogeneity (19).

Evidence has been provided that DNA methylation is
regulated in larger genomic regions, with sets of neighbor-
ing cytosines working as functional units (20–23). DNA
methylation analysis has indeed turned to the study of
the average methylation of DNA regions (the fraction
of methylated cytosines in a given region), and on the
identification of regions with consistently different DNA
methylation levels between groups of samples (differen-
tially methylated regions, DMR) (17). Most of the cur-
rent knowledge on DNA methylation and its implication in
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health and disease status is founded on this latter approach
(24–26).

However, the overall average methylation of a region does
not inform on how this amount is contributed by the av-
erage methylation of single DNA molecules. As an exam-
ple, an average methylation value of 0.5 for a given locus
could result from a homogenous pool of half methylated
molecules, or from an heterogeneous, balanced set com-
posed of fully methylated and unmethylated molecules, or
even from more heterogeneous pools (Figure 1 of (27)).

Single-cell DNA methylation assays have highlighted ex-
tensive cell-to-cell differences in regional DNA methyla-
tion (28,29), and have demonstrated that cellular hetero-
geneity can have a functional impact. For example, epi-
genetic variability at regulatory elements has been linked
with gene expression variability (30,31). However, single-
cell DNA methylation assays are still limitedly adopted due
to the high cost and large sparsity of produced data (28,32).

Besides single cell techniques, analysis of DNA methy-
lation patterns in bisulfite sequencing reads has also been
adopted to analyze DNA methylation heterogeneity in
bulk samples (19,28,33–36). In this context, mathematical
modeling has been applied to estimate the distribution of
methylation levels from Whole Genome Bisulfite Sequenc-
ing (WGBS) data, giving insights on its disposition across
the genome, its evolution upon differentiation, aging and
cancer, and its relationship with the genetic background
(37–39).

In previous studies high-coverage amplicon bisulfite se-
quencing allowed us to directly estimate the distribution of
methylation levels from supporting sequencing reads at tar-
geted regions. Our approach, here referred as MC profiling,
was based on the concept of Methylation Classes (MCs),
i.e. groups of molecules holding the same amount of methy-
lated cytosines, and allowed us to gain insights on the regu-
latory mechanisms of DNA methylation (40,41).

In this study, we extended MC profiling to genome-wide
bisulfite sequencing data, with the aim to explore DNA
methylation heterogeneity at multiple target regions.

In this setting, MC profiling identified cell-to-cell differ-
ences as the prevalent contributor to DNA methylation het-
erogeneity, with allele differences emerging in a small frac-
tion of analyzed regions. Moreover, MC profiling led to the
identification of signatures of loci undergoing genomic im-
printing and X inactivation, and highlighted differences be-
tween the two processes. When applied to a dynamic sys-
tem, MC profiling identified DNA methylation changes in
regions with almost constant average methylation. Alto-
gether, our results indicate that MC profiling can provide
useful insights on the epigenetic status and its evolution at
multiple genomic regions.

MATERIALS AND METHODS

MC profiling

Epilocus definition and MC profiling. We analyzed the
methylation status of regions holding 4 CpG sites, with the
first and the fourth CpGs delimiting the region. We refer to
these regions as epiloci in the following text (Figure 1A).
For a certain epilocus, we analysed the abundance of each
possible MC class, i.e. groups of DNA molecules bearing

the same number of methylated cytosines. For a locus bear-
ing four CpG sites, the number of MC classes is equal to 5.
We depicted the DNA methylation status of a given epilo-
cus through its inherent MC profile, i.e. the set of the relative
abundances of the 5 MCs. To compute this MC profile, we
counted the different arrangements of methylated and un-
methylated cytosines found in sequencing reads spanning
the entire epilocus. We then grouped the observed arrange-
ments in five methylation classes (MCs) according to the
number of methylated cytosines they bear. Hence, we com-
puted the epilocus MC profile as the fraction of reads sup-
porting a given MC out of the total number of reads (Fig-
ure 1B).

Measure of dissimilarity. We adopted the Jensen-Shannon
Distance as a measure of dissimilarity between two MC pro-
files. The Jensen Shannon Distance (JSD) quantifies the de-
gree of dissimilarity between discrete distributions P1 and
P2(42), which in our case are represented by two sets of rel-
ative abundances, and is defined as

d =
√

D(P1,P̄) + D(P2,P̄)
2

In this formula, P̄ = P1+P2
2 represents the average distribu-

tion of two MC profiles,which is obtained by averaging the
relative abundance of each MC among the two samples.
D(P1,P̄) and D(P2,P̄) represent the Kullback-Leibler (KL)
divergence between the average profile P̄ and the profile P1
and P2, respectively. The KL divergence of two discrete dis-
tributions is computed as D(A, B) = A∗ log2( A

B )(43).

Establishment of MC profiling thresholds. We used deep
amplicon bisulfite sequencing (D-ABS) data to synthesize
4-CpG low coverage datasets, starting from an in-house
database of D-ABS amplicons produced in previously pub-
lished studies (27,44–46). Detailed descriptions of the em-
ployed amplicons can be found in Supplementary Table S1.

First, we split each amplicon into non-overlapping re-
gions made up of four CpGs, thus obtaining several 4-CpG
high-coverage datasets. Among these datasets, we selected
those with higher coverage (number of reads > 20 000).
Since we expect that fully methylated or unmethylated pro-
files would be better captured at low coverage than interme-
diately methylated ones, due to the higher number of methy-
lation classes with non-zero abundance, we selected 4-CpG
datasets with average methylation levels spanning the en-
tire range from 0 to 1 and enriched for datasets with in-
termediate average methylation. In this way, we selected 25
datasets, representative of five groups according to the av-
erage methylation level (Supplementary Tables S2 and S3).

To simulate low coverage datasets, we randomly sampled
a fixed number of reads from each 4-CpG dataset.

We adopted the low coverage datasets to address the fol-
lowing issues:

1) the minimum coverage to minimize the error between a
reference MC profile (i.e. the MC profile computed from
the high coverage dataset) and an estimated MC pro-
file (i.e. the MC profile computed from a low coverage
dataset)
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Figure 1. Schematic drawing of MC profiling. (A) Selection of epiloci eligible for MC profiling. An epilocus is defined as a genomic region holding 4 CpGs.
Non-overlapping epiloci with coverage higher than 50 reads were retained for MC profiling. (B) For a given epilocus, the MC profile is computed as the
fraction of reads supporting the possible MCs (i.e. groups of molecules bearing a given number of methylated cytosines, independently of the position)
out of the total number of reads. Only reads spanning the entire epilocus were considered in the computation of the MC profile. (C) The Jensen-Shannon
distance is used to quantify the degree of dissimilarity between MC profiles. Based on the results obtained from simulated data, we considered two MC
profiles to be different when observing a JSD above 0.26. The JSD can be used to assess the changes of MC profiles at a given epilocus in different conditions.
The JSD can be also compared to other metrics, such as the difference of average methylation (delta met), over the analyzed epiloci. (D) MC profiles were
assigned to 5 Methylation Patterns (MPs) according to the most similar among 5 archetypal profiles (here indicated in the upper panel, middle row). This
data compression procedure provided us with a signature of genome-wide MC profiles composition in a given condition. MPs enabled us to i) directly
compare the MP of different epiloci within the same sample/ or condition (within sample analysis) and ii) to compare the MP transitions occurring at a
given epilocus in different conditions (between conditions analysis).

To address this point, we synthesized 1000 low coverage
four CpG datasets for coverage values ranging from 20
to 200. From each dataset, we calculated the MC pro-
file, and computed the JSD from the MC profile of the
respective four CpG high-coverage dataset. As shown in
Supplementary Figure S1A, the JSD values decreased as
the coverage increased, as expected. In particular, JSD
values dropped between 25 and 50 reads (Supplemen-
tary Figure S1A). A similar gain in accuracy is achieved
by triplicating the coverage (i.e. achieving a read number
higher than 150). Based on these observations, we con-
sidered a region covered by at least 50 reads to be eligible
for MC profiling.

2) the minimum value of JSD to consider 2 MC profiles as
different.

To address this point, we simulated 1000 pairs of low-
coverage datasets with a fixed coverage of 50 reads. For
each dataset pair, we computed the JSD among the esti-
mated MC profiles. Ideally, two read groups sampled from
the same dataset should exhibit very similar, if not iden-
tical, profiles, with a JSD value approaching 0. In prac-
tice, however, the estimated profiles differed to a certain ex-
tent. As shown in Supplementary Figure S1B, at a coverage
of 50 reads, MC profiles exhibited a JSD lower than 0.26
(min = 0.22, max = 0.28) for 95% of the experiments. JSD
values observed for a wider range of coverage are reported
in Supplementary Table S4.

We concluded that MC profiles having a JSD higher than
0.26 could be defined as different with an error equal or
lower than 0.05. Hence, when comparing two MC profiles,
we considered them to be different when we observed a JSD
above 0.26.

Epilocus filtering and multiple samples handling. In indi-
vidual samples, epiloci with coverage lower than 50 reads
and higher than 99th percentile were filtered out. Overlap-
ping epiloci were also removed (Figure 1A).

To handle MC profiles observed in different samples at a
given epilocus, we first computed the JSD between the pos-
sible sample pairs and retained those epiloci with JSD be-
low 0.26 in all the pairs. For these epiloci, we computed the
average MC profile by averaging the relative abundance of
each MC among the samples.

In this way, we obtained a consensus MC profile repre-
sentative of all samples in a given condition. This enabled
us to directly compare consensus profiles of an epilocus in
two conditions through the JSD (Figure 1C).

MC profiles classification. To provide biological interpre-
tation of MC profiles, we adopted a data compression
scheme. We assigned each MC profile to one among 5
methylation patterns (MP) according to the most similar of
5 archetypal profiles (Figure 1D, see Materials and Meth-
ods). These reference profiles, named from D1 to D5, are
reminiscent of standard discrete distributions and were cho-
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sen because they reflect the reasonable profiles of an epilo-
cus expected at a given methylation amount. In particular,
D1 and D2 represent the two specular profiles for highly
methylated or unmethylated epiloci, in which we expect a
prevalence of fully unmethylated and methylated MCs, re-
spectively. D3, D4 and D5, instead, represent the hypothet-
ical profiles of intermediately methylated regions, that can
reflect: (i) the prevalence of both fully methylated and un-
methylated MCs (D3, bimodal profile), (ii) the prevalence of
intermediately methylated MCs (bell-shaped profile, D4) or
(iii) the presence of all possible MCs with the same relative
abundance (uniform profile, D5).

The data compression procedure provided us with a sig-
nature of MC profiles composition over all the analyzed epi-
loci of a sample. Importantly, this signature did not depend
on the specific experimental system. In this way, we were
able to (i) directly compare the MP of genome-wide epi-
loci within the same sample/condition and (ii) to compare
the MP transitions occurring at a given epilocus in different
conditions (Figure 1D).

To assign an MC profile to the nearest MP, we computed
its JSD from the five prototypes, and assigned it to the MP
corresponding to the prototype with minimum JSD (Fig-
ure 1D). To check the appropriateness of our classification
procedure, we compared the JSD of each MC profiles from
the two nearest MPs, with the lower JSD value representing
the distance from the membership pattern centroid (Within
Class Distance, WCD) and the second value representing
the distance from the nearest outer pattern centroid (Ex-
ternal Class Distance, ECD). We observed that the ECD-
WCD ratio exceeded 1.5 for 98% of MC profiles in Dataset
1 and 95% of MC profiles in Dataset 2 (Supplementary
Figure S2). Thus, we concluded that the proposed scheme
was roughly consistent and representative of the diverse MC
profiles observed in our datasets.

Dataset

We analyzed previously published RRBS data and en-
hanced RRBS data (47–50). The data were publicly
available in the GEO database (https://www.ncbi.nlm.
nih.gov/geo/) with the following accessions: GSE66121,
GSE130735, GSE53714, GSE72700. When a consistent dis-
crepancy existed for the number of epiloci covered by at
least 50 reads in different samples, we retained those sam-
ples providing the highest number of epiloci. A detailed de-
scription of the samples adopted from each dataset is in-
cluded in Supplementary Table S5.

Normalized FPKM expression values for human
CD19 + normal B-cells were obtained from GEO with the
accession GSE66121.

Data processing

RRBS raw data processing. Raw RRBS data were pro-
cessed using an in-house pipeline. Fastq files were first qual-
ity checked by using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Low-quality bases were
removed using Trim Galore v0.6.6 with parameters –
rrbs and –paired for paired end experiments (https://www.
bioinformatics.babraham.ac.uk/projects/trim galore/). The

obtained reads were aligned to the hg19 or mm10 reference
genomes by using Bismark v0.23.0 with default parameters
(51). The obtained BAM files were then sorted and indexed
using the SAMtoolsKit (http://www.htslib.org/).

Deep: amplicon bisulfite sequencing data processing. D-
ABS data were processed as previously described (27,44,45).
In brief, paired-end reads were merged in a single fastq
file by using PEAR (minimum overlapping residues equal
to 40) (https://cme.h-its.org/exelixis/web/software/pear/doc.
html). The fastq file was then converted to fasta by using
PRINSEQ (http://prinseq.sourceforge.net/).

Epiallele counts extraction. For RRBS data, epi-
allele counts were extracted from BAM files us-
ing the EpiStatProfiler R package ((52), https:
//github.com/BioinfoUninaScala/epistats). First, genomic
regions covered by at least 50 reads were individuated
through the filterByCoverage function. Target regions
holding 4 CpGs (the epiloci described in this manuscript),
stepping up to 1 CpG at time, were then defined by using
the makeBins function. The maximum length of the target
regions was set from 70 to 100 bp, depending on the specific
library design. Epiloci covered by at least 50 reads spanning
the entire region were retained. Finally, selected epiloci
were analyzed by using the epiStatAnalysis function with
default parameters. For each epilocus, the function returns
a table with summary statistics (including the average
methylation), and a file with epiallele counts. This latter
was then analyzed through in-house R scripts to compute
the epilocus MC profile, as described above.

For D-ABS data, epiallele counts were then extracted by
using the AmpliMethProfiler tool (53). The MC profile of
the amplicon was then computed following the same proce-
dure of RRBS epiloci.

Allele-specific alignment sorting. To perform allele specific
MC profiling, we applied the pipeline based on the SNPsplit
tool (54) on a dataset of crossed strain mice. First, the posi-
tions holding alternative sequences between the strains were
extracted from the VCF file downloaded from the Mouse
Genomes Project repository (ftp://ftp-mouse.sanger.ac.uk/
current snps/mgp.v5.merged.snps all.dbSNP142.vcf.gz),
and were masked from the reference mm10 genome by
using the SNPsplit genome preparation function in single
strain mode. Fastq files were then aligned to the masked
genome by using Bismark 0.23.0 with default parameters.
The reads aligned to polymorphic sites were assigned to
the respective allele by using the SNPsplit function. In
brief, the reads aligned to variant positions were tagged
(SNPsplit-tag internal function), assigned to the reference
or to the alternative allele (tag2sort internal function), and
written down in separate bam files. We ran the SNPsplit
function in –bisulfite mode to automatically discard the
reads aligned to C/T or T/C variants on the forward strand
and to G/A or A/G variants on the reverse strand, since
these variants cannot be distinguished from a methylation
status call. The bam files relative to the reference and the
alternative allele were processed independently with the
EpiStatProfiler tool to obtain the epiallele counts and to
compute the MC profile. At the end, we were able to profile
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2749, 460, 314 autosomal epiloci in three mice, with a
minimum coverage of 50 reads on both alleles.

Epiloci annotation. Epiloci were annotated by using the
annotatr R package against hg19 and mm10 CpG tracks and
hg19 and mm10 genes tracks.

Epiloci were associated with the nearest genes by using
the seq2pathway R package. To minimize the number of
genes associated with an epilocus, the ‘adjacent’ parameter
was adopted, thus enabling to assign each epilocus to the
closest genes only. For the association, the FullResult out-
put was considered, which also included non-coding genes.

To test the association between MC profiles and
chromatin marks changes, epiloci were annotated us-
ing the chromHMM segmentation tracks produced
for the GM12878 lymphoblastoid cell line from the
RoadMap Epigenomics project (https://egg2.wustl.edu/
roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/coreMarks/jointModel/final), whereas epi-
loci of Dataset 5 were annotated using the segmentation
tracks for mouse hindbrain (E10 and P0) downloaded
from UCSC (55). Each epilocus was annotated with the
label of the genomic segment with the highest overlap.
The E10 hindbrain track was used to annotate epiloci of
hippocampal precursors, whereas the P0 hindbrain track
was adopted to annotate epiloci in Granule cells and CA
neurons.

Association of MPs with expression level. We used the nor-
malized expression data (FPKM) available for 3 samples
from Dataset 2 to assign genes with expression categories.
For each gene, we computed the average value among the
samples. We then labeled as highly-expressed genes those
with expression value above the median, and labeled as
lowly expressed genes the ones below or equal to the me-
dian.

Epiloci were assigned to gene promoters, exonic or in-
tronic regions by using the annotatr R package against hg19
genes track.

The association between the number of epiloci assigned
to the different MPs and the expression status was tested
through chi-square test and post-hoc analysis of chi-square
residuals (see Statistical test).

Statistical analysis

Classification concordance of neighboring epiloci. To test
the classification concordance of neighboring epiloci, we
first binned the genome into 1 kb long regions. We then in-
tersected the bins’ coordinates with that of epiloci shared
by all the samples in the dataset (see Epilocus filtering and
multiple samples handling). We removed the bins harbor-
ing less than three epiloci and labeled the remaining ones as
concordant if they hold epiloci assigned to the same proto-
type class, and discordant otherwise. We tested the hypoth-
esis that the number of concordant bins was higher than
the one expected by chance by bootstrapping. In brief, we
scrambled the epiloci grouped in each bin, such that the
overall number of bins together with the number of epiloci
they hold reflected those observed in experimental data, but
the epiloci were no longer grouped in a bin based on their

proximity but were randomly sampled without replacement
from the dataset. We repeated this procedure 1000 times,
and each time we counted the number of scrambled bins
classified as concordant. We thus obtained the distribution
of the number of concordant bins expected by chance, that
we compared with the number of concordant bins observed
in experimental data.

MC profiles heterogeneity. For haploid models, we
adopted the epilocus MC counts, i.e. the number of MCs
with non-zero relative abundance, to estimate the degree
of cellular heterogeneity of DNA methylation. The MC
counts distribution of haploid epiloci was compared to
that of dyployd epiloci to estimate the contribution of
allelic heterogeneity to MC profiles. For male X epiloci,
autosomal epiloci in the same sample were used as dyployd
reference, whereas for polymorphic epiloci the joined
MC profiles were used. When directly comparing the MC
profiles of an epilocus on the two alleles in the second
model, we controlled for coverage differences. We found
no significant differences between the two alleles (paired
Wilcoxon test P-values < 0.01).

Statistical test. All the statistical analyses were performed
using R software (version 4.0) with an alpha value set for
P < 0.01.

Association between categorical variables was tested for
statistical significance through Fisher test (when both cat-
egorical variables were dichotomous). We applied it to test
whether MC profile changes more probably involved epiloci
that also underwent chromatin changes upon differentia-
tion, epiloci located in promoters or epiloci located in CpG
Islands.

Association between non-dichotomous categorical vari-
ables was tested for statistical significance through chi-
square test and post-hoc analysis of chi-square residuals
(chi.square.posthoc.test function from the homonymous R
package, adopting Bonferroni correction to control for al-
pha inflation). We applied chi-square to test whether epi-
loci exhibiting inter-individual variability were enriched in
peculiar genomic contexts (promoters, exons, introns, or in-
tergenic regions), or whether epiloci assigned to different
MPs were enriched in particular genomic regions (for exam-
ple, regions flanking imprinted genes or regions decorated
with different histone marks) or more probably changed
MC profiles upon differentiation.

Differences in average reciprocal distance among epiloci
in concordant and discordant bins was tested through the
Mann-Whitney test.

Enrichment analysis for 5129 epiloci with significant
changes in MC profiles and stable average methylation upon
differentiation was performed using GREAT version 4.0.4
(56), using default parameters and the coordinates of all the
analyzed epiloci (115 608) as background.

RESULTS

The MC profiling approach

Rationale of MC profiling. The rationale of MC profiling,
and the differences with epiallele-based approaches, is de-
picted in Figure 2.

https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final
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Figure 2. Rationale of MC profiling. (A) Example of a region of interest holding four CpGs (TSS = Transcription Starting Site) (B) Representation of
epiallele-based analysis. The DNA methylation heterogeneity for a certain locus is usually quantified through a numerical index (e.g. epipolymorphysm,
Shannon entropy, ..). This can be then adopted to compare the heterogeneity of pools of molecules (for example, to compare the heterogeneity of a certain
locus in different samples). (C) Representation of MC profiling analysis. The epialleles are first grouped in methylation classes (MCs) according to the
number of methylated cytosines. The relative abundances of the possible MCs (for a locus holding n CpGs there are n + 1 possible MCs), named MC
profile, summarize the molecular heterogeneity and the methylation levels of a given region. MC profiles can be directly adopted to perform differential
analysis.

Epiallele-based approaches are based on the direct anal-
ysis of the arrangements of methylated and unmethylated
cytosines (epialleles) in sequencing reads mapped to a re-
gion of interest (Figure 2A).

Considering each reads coming from a DNA molecule,
several scores have been developed to quantify the het-
erogeneity observed in a bulk sample, and to compare it
among different samples (Figure 2B) (19). This approach
has proved to be particularly suitable, for example, to indi-
viduate regions undergoing clonal selection and epigenetic
drift in tumors (33,34,57). In this setting, the composition
of individual epialleles is only indirectly accounted for. Sim-
ilar heterogeneity values could, indeed, come from different
epiallele compositions. Of note, the methylation level of epi-
alleles is usually not, or only partially, incorporated in these
heterogeneity scores, which makes difficult to interpret the
functional impact of heterogeneity shifts (33–36,57).

The underlying idea of our approach is that looking at the
distribution of epialleles grouped by their methylation levels
adds useful information for the functional interpretation of
DNA methylation heterogeneity in a sample. The proposed
approach, MC profiling, is indeed based on the empirical
estimate of the distribution of epialleles grouped by their
methylation levels (Figure 2C). We already applied the con-
cept of MCs in previous works with the aim to model DNA
methylation dynamics at targeted loci assayed through high-
coverage bisulfite sequencing (40,41). We here extended our
approach to enrichment-based genome-wide datasets, like

the ones from Reduced Representation Bisulfite Sequenc-
ing (RRBS) experiments, thus allowing for the simultane-
ous analysis of thousands of regions from the same sample.
In this context, we implemented a new analytical frame-
work to directly compare MC profiles across regions and
samples.

Instead of adopting a numerical index (as, for exam-
ple,the Shannon Index) to summarize the DNA methyla-
tion heterogeneity of a given region, we kept as much in-
formation as possible and described, for each DNA region,
the relative abundance of the possible MCs. In this setting,
we adopted the direct comparison of MC profiles to analyze
differential methylation of a given region among conditions,
or to examine the differences among regions in the same
condition (Figure 2C). It is important to point out that, in
this latter setting, direct comparison of epiallele composi-
tion would only be possible through MCs, being these se-
quence independent, and not through the epialleles them-
selves.

Comparing MC profiles allowed us indeed to compare
not only the heterogeneity but also the different methylation
levels of DNA molecules.

In summary, adopting MC profiles can provide the fol-
lowing advantages:

- Considering how they are computed, MC profiles directly
incorporate the average methylation of a given region, and
inform on how it is contributed by single DNA molecules.
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- MC profiles retain all information from a pool of
molecules, and enable the direct visualization of DNA
methylation heterogeneity of a given region

- MC profiles are empirically estimated from sequencing
reads, and are independent on a priori parametrization of
DNA methylation dynamics (see Discussion)

Description. In this study, we focused on the methylation
status of regions made up of four CpG sites, moving from
the observation that the number of reads per region drops
when increasing the number of CpG sites from 4 to 5 (34).
We will refer to these regions as epiloci in the following
text (Figure 1A). Based on the results obtained on simu-
lated data (see Methods), we selected for MC profiling those
epiloci covered by at least 50 reads, considering only reads
spanning the entire epilocus.

For a certain epilocus, methylated and unmethylated cy-
tosines can be arranged in 16 possible combinations which
can be in turn grouped in methylation classes (MCs) accord-
ing to the number of methylated cytosines they bear. For
a four CpG-locus, five MCs can be indeed described. We
depicted the DNA methylation status of a given epilocus
through its inherent MC profile, i.e. the set of the relative
abundances of the five MCs. To compute this MC profile,
we counted the different arrangements of methylated and
unmethylated cytosines found in sequencing reads spanning
the entire epilocus (Figure 1A, B).

Throughout this study, we adopted the Jensen Shannon
Distance (JSD) to quantify the dissimilarity between MC
profiles (see Materials and Methods).

Based on the results of simulations performed on high-
coverage targeted bisulfite sequencing data, we considered
eligible for MC profiling those epiloci covered by at least 50
reads, and we considered two profiles to be different when
we observed a JSD above 0.26 (see Methods).

To improve the interpretability of the data, we adopted a
data compression procedure, and assigned each MC profile
to a Methylation Pattern (MP) according to the most sim-
ilar of 5 archetypal profiles (Figure 1D), hereafter referred
to as prototypes (see Methods). The prototypes, which are
reminiscent of standard discrete distributions, were chosen
because they reflect the reasonable profiles of an epilocus ex-
pected at a given methylation amount. In fact, D1 and D2
represent the two symmetric profiles for highly methylated
or unmethylated epiloci, in which we expect a prevalence of
fully unmethylated and methylated MCs, respectively. D3,
D4 and D5, instead, represent the hypothetical profiles of
intermediately methylated regions, that can reflect (i) the
prevalence of both fully methylated and unmethylated MCs
(D3, bimodal profile), (ii) the prevalence of intermediately
methylated MCs (bell-shaped profile, D4) or (iii) the pres-
ence of all possible MCs with the same relative abundance
(uniform profile, D5).

MC profiles conjugate quantitative methylation and molecu-
lar heterogeneity of an epilocus. We applied MC profiling
to two datasets of samples publicly available in GEO (see
Materials and Supplementary Table S5). Dataset1 included
samples from 3 wild-type mice embryos, whereas Dataset2
included three samples from human CD19+ B-cells isolated
from normal controls. Indeed, our datasets came from dif-

ferent species and were representative of different develop-
mental stages, where we expect that DNA methylation het-
erogeneity probably derives from different dynamics (epi-
genetic drift in somatic cells versus cell differentiation in
mouse embryos). We reasoned that such an experimental
plan would have enabled us to generalize the results of our
analysis.

For each sample, we profiled about 100 000 epiloci in
Dataset 1 and 90 000 epiloci in Dataset 2. The systematic
description of the analyzed cytosines is reported in Supple-
mentary Figure S3 and S4.

By examining the average methylation of epiloci belong-
ing to different MPs, we confirmed that the quantitative
amount of methylated cytosines of assigned elements was
coherent with the expected values for each pattern (Figure
3A, Supplementary Figure S5). However, MC profiles add
further information depicting the heterogeneity of DNA
methylation among DNA molecules. This was particularly
evident for the D3, D4 and D5 patterns. In fact, epiloci ex-
hibiting the same average methylation were assigned to dif-
ferent MPs (Figure 3B).

MC profiles are mostly stable among individuals and across
genomic regions. We investigated the stability of MC pro-
files across samples. For this aim, we analyzed the epiloci
for which the MC profiles were assessed in all the samples
in the individual datasets (n = 87 457 and n = 41 609) and
computed the JSD of MC profiles among sample pairs. We
found that 98% of epiloci in Dataset 1 and 96% in Dataset
2 had JSD lower or equal to 0.26 in all sample pairs, mean-
ing that MC profiles at most of the epiloci were very similar
between samples (Figure 3C, Supplementary Figure S6A).

In both datasets, we found that stable epiloci, i.e. epiloci
with a JSD below the cutoff in all sample pairs (n = 86 319
and n = 39 767, in Datasets 1 and 2 respectively), were en-
riched in promoters (chi-square post hoc test P-values < 1e–
7) and depleted in intergenic regions (chi-square post hoc
test P-values < 1e–7). On the contrary, variant epiloci, i.e.
epiloci with JSD above the cutoff in at least one sample
pair (n = 1138 and n = 1842, in Datasets 1 and 2 respec-
tively), were depleted in promoters (chi-square post hoc test
P-values < 1e–7) and were enriched in intergenic regions
(chi-square post hoc test P-values < 1e–7). We found no
difference in the proportion of stable and variant epiloci lo-
cated in coding sequences (Figure 3D, Supplementary Fig-
ure S6B).

Based on this result, for each dataset we retained for fur-
ther analysis the stable epiloci, and computed the consen-
sus MC profile by averaging the relative abundances of each
MC from the three samples. We then applied the data com-
pression procedure, and assigned the consensus MC profiles
to the MPs (see Materials and Methods).

Since epigenetic modifications are expected to involve
larger DNA regions than individual epiloci, we expected
that neighboring epiloci exhibited concordant MC profiles.
To test this hypothesis, we binned the genome in 1 kb re-
gions, and compared the MPs of epiloci located in each bin
(see Materials and Methods). Among the bins harboring at
least three epiloci, 10 733 (99%) bore concordant and (1%)
148 bore discordant epiloci in Dataset 1, whereas (95%)
5079 bore concordant and (5%) 249 bore discordant epiloci
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Figure 3. MC profiling results for Dataset 1. (A) Average methylation level of epiloci assigned to each MP. (B) Example of epiloci with same average
methylation and different MC profiles. (C) Density plot of MC profile distance between sample pairs. x-axis: JSD values between sample pairs. y-axis:density
of epiloci with a given sample-pairs JSD value The red line indicates the cutoff value of JSD. (D) Genomic annotation of epiloci with stable or variant MC
profiles. (E) Average distance between epiloci inside concordant and discordant bins. (F) Fraction of epiloci attributed to the different MPs. (G) Genomic
annotation of epiloci assigned to the different MPs.

Dataset 2. We confirmed that the number of bins bearing
concordant epiloci significantly differed from the one ex-
pected by chance in both datasets (see Materials and Meth-
ods and Supplementary Figure S7). This result suggests
that MC profiles of neighboring epiloci tend to be simi-
lar. This conclusion is further supported by the observa-
tion that the reciprocal distance between epiloci in concor-
dant bins tends to be lower than in discordant bins (Mann-
Whitney P-value = 0.0005866, Figure 3E, Supplementary
Figure S6C).

Overall, MC profiles resulted to be mostly stable among
individuals and across genomic regions, thus suggesting
that the heterogeneity captured by MC profiles mostly re-
sults from controlled DNA methylation dynamics, rather
than from stochastic fluctuations of methylation levels.

MC profiles differentiate functional genomic regions. We
reasoned that assigning MC profiles to different MPs could
provide us with a signature of genome-wide MC profiles
composition in a given dataset. We indeed examined the
proportion of epiloci assigned to each MPs. In accordance
with the well-established bimodal distribution of average
DNA methylation (16), the most represented prototype
classes were D1 (83% and 78% of epiloci in Datasets 1 and
2, respectively) and D2 (about 15% and 16% of epiloci in
Datasets 1 and 2, respectively). The intermediately methy-
lated D3, D4 and D5 classes accounted respectively for 2%
of epiloci in Dataset 1 and 5% of epiloci in Dataset 2 (Fig-
ure 3F, Supplementary Figure S6D). Among the intermedi-
ately methylated classes, the most represented one was the
D5 (90% and 82% of epiloci in Datasets 1 and 2, respec-
tively), followed by the D3 class (9% and 13% of epiloci in

Datasets 1 and 2, respectively). The D4 class was strongly
underrepresented (1% and 4% of intermediately methylated
epiloci in Dataset 1 and 2, respectively) in normal condi-
tions (Figure 3F, Supplementary Figure S6D), suggesting
that intermediate values of average methylation rarely re-
flect an intermediate methylation amount on different DNA
molecules. Instead, intermediate values of average methyla-
tion more often reflected the coexistence of fully unmethy-
lated and fully methylated molecules, in presence (D5) or in
absence (D3) of intermediately methylated molecules.

The classification of MC profiles to MPs also enabled
us to investigate whether epiloci attributed to the differ-
ent prototype classes were located in genomic regions with
different functional characteristics. A shown in Figure 3G
and Supplementary Figure S6E, we found that the D1
class was enriched within promoters and exons (chi-square
post hoc P-values < 1e–7) and depleted in intergenic re-
gions and introns (chi-square post hoc P-values < 1e–
7). On the contrary, the D2 class was mainly located in
intergenic regions and introns (chi-square post hoc P-
value < 1e–7) and depleted in promoters and exons (chi-
square post hoc P-value < 1e–7). Similarly, the D5 class
was depleted from promoters and enriched in intergenic re-
gions (chi-square post hoc P-values < 1e–7). We did not
find significant differences in the localization of D3 and D4
epiloci.

We found that MPs composition could further distin-
guish genomic regions decorated with different histone
marks in Dataset 2 (Supplementary Figure S8A). For ex-
ample, MPs separated constitutive heterochromatin from
Polycomb-repressed regions (chi-square P-value < 1e–7),
with the former enriched not only for the methylated D2 but
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also for the D5 MP (chi-square post hoc P-value < 1e–7),
pointing to higher heterogeneity in constitutively inactive
genomic regions. Polycomb-repressed regions, on the other
hand, were enriched for the D1 MP (chi-square post hoc P-
value < 1e–7), pointing to lower levels of DNA methylation
in Polycomb-regulated regions.

We also found that MPs composition varied when sep-
arately investigating the promoter, exonic and intronic re-
gions of genes with expression levels lower or higher than
the median value in Dataset 2 (chi-square P-value < 1e–
7, Supplementary Figure S8B, C). We found that D1 MP
was enriched in promoters, introns and exons of highly-
expressed genes (chi-square post-hoc P-value < 1e–7),
whereas the D2 MP was enriched in exons (chi-square post-
hoc P-value < 1e–7) and slightly enriched in promoters of
lowly-expressed genes (chi-square post-hoc P-value < 5e–
3). Again, we found an enrichment of the D5 MP in promot-
ers, exons and introns of lowly expressed genes (chi-square
post-hoc P-value < 1e–7), suggesting a consistent pattern
of increased heterogeneity in low-to-inactive regions.

Cellular heterogeneity is the strongest contributor to MC pro-
files

MC profiles recapitulate heterogeneous methylation status
among DNA molecules. This heterogeneity can, in princi-
ple, reflect both allelic and cellular differences. For most
epiloci, these two components cannot be distinguished in
a bulk experiment, in which the information on how DNA
molecules are paired in individual cells is missing. We rea-
soned that epiloci present as single copies in the genome
could be a good model to investigate the contribution of
cellular differences to MC profiles. In fact, at these loci, the
presence of multiple MCs can reflect only cellular differ-
ences..

As a first model of DNA regions present as single copies
in the genome, we investigated epiloci located on the X chro-
mosome of a male mouse from Dataset 1 (n = 1303). For
each epilocus, we quantified the cellular heterogeneity in
terms of MC counts, i.e. the number of MCs supported by
at least 1 DNA molecule. We found MC counts above 1 for
most epiloci (>70%), pointing to cellular heterogeneity of
DNA methylation as the rule for most epiloci. Of note, the
distribution of MC counts’ values for X epiloci did resemble
that of autosomal epiloci. This observation seems to suggest
that the degree of heterogeneity captured by MC profiles is
poorly affected by the copy number of the given epilocus
(Figure 4A).

As an additional model, we studied autosomal epiloci of
mice born from two different strains (Dataset 3 in Supple-
mentary Table S5). Based on known polymorphic sites be-
tween the two strains, we were able to attribute each read
to the respective allele, and to explore the allele specific MC
profile for more than 300 autosomal epiloci in three mice
(see Materials and Methods). When analyzing the joint MC
profiles, we confirmed the high degree of DNA methylation
heterogeneity, with about 95% of the autosomal epiloci hav-
ing an MC count equal or greater than 1 (Supplementary
Figure S9A–C). However, when directly comparing the MC
profiles of the reference and alternative alleles, we found no

differences for most of the epiloci, with only a small propor-
tion of epiloci (6–7%) exhibiting allele specific methylation
(Figure 4B).

Overall, the results from the analysis of male X chromo-
some MC profiles and allele specific MC profiles provided
evidence for cell-to-cell differences as the major contributor
to MC profiles, with evidence of allelic differences only in a
small fraction of autosomal epiloci. In addition, we found
that the allelic MC profiles of 144 epiloci shared among the
samples were mostly stable among sample pairs, thus sug-
gesting that similar patterns of cellular heterogeneity were
present in different individuals (data not shown).

MC profiling individuates a signature of imprinted regions

We tested the capability of MC profiling to discriminate re-
gions undergoing genomic imprinting, a well-known phe-
nomenon of allele specific regulation. In these regions, it is
expected that the two alleles differ for their DNA methy-
lation status. Hence, we wondered whether D3 epiloci, in
which two pools of molecules exist with opposite DNA
methylation status, were enriched at genomic regions flank-
ing imprinted genes.

To test this hypothesis, we assigned each epilocus of
Datasets 1 and 2 to its nearest gene (see Methods) and
marked the epiloci as associated with imprinted genes if
the closest gene was enlisted in Geneimprint (https://www.
geneimprint.com/). As shown in Figure 5A and Supplemen-
tary Figure S10, the five MPs were differentially represented
among epiloci flanking imprinted and not imprinted genes
(chi-square test P-values < 2.2e–16). Specifically, epiloci
assigned to the D3 pattern were strongly overrepresented
among epiloci flanking imprinted genes (chi square post-
hoc test P-values < 2e–16), thus confirming that D3 epiloci
were preferentially, even though not exclusively, associated
with allele specific methylation.

As a confirmatory experiment, we searched for D3 epi-
loci flanking imprinted genes in Dataset 3. We found a sin-
gle epilocus with these characteristics, located on chr1, up-
stream of the Zdbf2 imprinted gene. In this locus, differ-
entially methylated regions had been previously described
(58). Figure 5B shows how the bimodal joint MC profile at
this epilocus results from different profiles on the two alleles,
with one skewed towards complete demethylation and the
other towards complete methylation. It is worth noting that,
for both alleles, MC profiling individuated a certain degree
of cellular heterogeneity, since intermediate MCs were also
represented.

Loss of genomic imprinting is a well-known epigenetic
modification occurring in many tumors (59,60). Consid-
ering the association that we found between bimodal D3
MC profiles and imprinted regions, we wondered whether
changes in MC profiles of D3 epiloci could be identified in
tumor samples. When inspecting epiloci flanking imprinted
genes in tumor samples (Dataset 4), we identified an epilo-
cus, located at chr20:57415288–57415313, whose MC pro-
file profoundly changed in one of the samples in respect to
controls from Dataset 2. This epilocus was located in the
promoter of the GNAS gene, for which loss of imprinting
in tumors has been described (Figure 5C) (60).

https://www.geneimprint.com/
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Figure 4. MC profiling of haployd epiloci. (A) Fraction of epiloci (x-axis) exhibiting a given value of MC count (y-axis) on the X chromosome (blue) and
autosomes (red) in a male sample from Dataset 1. (B) Distribution of JSD values between reference and alternative alleles in three samples from Dataset
3.

Figure 5. MC profiling of imprinted regions. (A) Proportion of epiloci assigned to the different MPs in imprinted and non imprinted genomic regions.
(B) Example of bimodal epilocus flanking the Zdbf2 imprinted gene. The joint MC profile (i.e. the profile obtained without splitting the alleles) is shown
in light blue, whereas the profiles of the reference (ref) and the alternative (all) alleles are shown in orange and green respectively. (C) Epilocus in GNAS
promoter (chr20:57415288–57415313) with altered MC profile in a tumor sample. For this epilocus, the MC profile averaged on three control samples from
Dataset 2 is shown in blue, and the MC profile from the tumor sample from Dataset 4 is shown in red.

MC profiling aids to dissect cell-to-cell differences in DNA
methylation on the inactive X

Based on the results obtained from MC profiling of im-
printed genes, we decided to investigate whether epiloci lo-
cated on the X chromosome also exhibited peculiar MC
profiles due to the X inactivation process. It is in fact known
that, during the inactivation of the X chromosome, most
loci are inactivated (subject loci) while others partially or
totally escape this inactivation (escapee or variable escapee
loci) (61).

We indeed analyzed the MPs to epiloci flanking genes
with different inactivation status. First, we assigned X epi-
loci to the respective MP in two female samples from
Dataset 2. Then, we assigned to each epilocus the consen-
sus inactivation status of the nearest gene (61). In this way,
we classified 551 epiloci as subject to X chromosome inac-

tivation, 138 as escapee, 56 as variable escapee and 233 as
unknown/discordant. As shown in Figure 6A, MPs were
represented in different proportions among subject, escape
and variable escape epiloci (chi square post-hoc test P-
value < 1e–7). Escape epiloci mostly exhibited unmethy-
lated D1 profiles (chi square post-hoc test P-value < 1e–
7), whereas subject epiloci mostly exhibited either bimodal
D3 or uniform D5 profiles (chi square test post-hoc P-
value < 1e–7). Both groups of MPs (D1 and D3/D5) were
represented among variable escape epiloci, none of them
significantly enriched.

We hence decided to investigate the MC profile of the in-
active X in Dataset 1, for which two female and one male
sample was available. We reasoned that we could deduce the
profile of the female inactive X by comparing the MC pro-
file of X epiloci in males and females, and that such deduc-
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Figure 6. MC profiling of X chromosome epiloci. (A) Classification of epiloci flanking genes undergoing X inactivation (subject), stably escaping X inac-
tivation (escapee), or variably escaping X inactivation (variable escapee). (B) Average MC profile of epiloci classified as D1 in a male sample from Dataset
1(blue) compared to the average profile of the same epiloci in two female samples from the same dataset (red).

tion would have been particularly feasible for epiloci clas-
sified as D1 in the male samples. In fact, in this condition,
it could be reasonably inferred that methylated molecules
in females mostly resemble the methylation status of the in-
active X. We indeed compared the average profiles of 1068
epiloci belonging to the D1 MP in males with the respective
average profile in female samples (Figure 6B). The sex dif-
ference among the average MC profiles pointed to a hetero-
geneous DNA methylation status of the inactive X, ranging
from being lowly to fully methylated in different cells. Of
note, we observed a more gradual methylation status of the
inactive X compared to the methylated alleles of imprinted
epiloci. This observation is compatible with the previously
described discrepancy of average methylation between im-
printed and X inactivated genes. In fact, while for imprinted
loci one of the alleles is fully methylated, X inactivated genes
exhibit partial methylation of the inactive allele (58). In ad-
dition, MC profiles suggest that this partial methylation is
due to cell-to-cell differences, and not to a partial methyla-
tion in all cells.

MC profiling individuates loci undergoing epigenetic remod-
eling upon neuronal differentiation

We challenged the ability of MC profiling to capture epige-
netic changes among conditions. As a model of epigenetic
changes, we choose a dataset of neuronal differentiation.

To this aim, we analyzed MC profiles changes of 115608
epiloci upon differentiation of hippocampal precursors
(HP) to granule cells (GC) (Dataset 5). For each epilocus,
we calculated the difference of average methylation between
differentiated cells and neuronal precursors (delta meth),
and quantified the MC profiles’ change by using the Jensen–
Shannon distance (JSD). The relationship between these
two measures is shown in Figure 7A. The red lines delin-
eate the difference of average methylation observed in 95%

of the considered epiloci (0.14), and the black line indicates
the JSD threshold (0.26).

As expected, MC profiles’ and average methylation
changes were mostly correlated. This relationship strength-
ened as differences in average methylation approached the
maximum, consistent with the fact that huge differences
in the amount of methylated cytosines are expected to af-
fect both average methylation and MC profiles. Symmet-
rically, the relationship between average methylation and
MC profiles’ changes weakened for lower values of aver-
age DNA methylation and was almost lost below 0.14. In
this range, despite a large number of epiloci exhibiting sta-
ble MC profiles (n = 104 720), a group of 5129 epiloci ex-
hibited significant changes in MC profiles upon differen-
tiation (blue dots in Figure 7A). As examples, Figure 7 B
shows two epiloci with significant changes of MC profiles
and little variation of average DNA methylation. This result
suggests that, at these epiloci, MC profiles were remodeled
without a significant gain or loss of overall DNA methy-
lation. The results of the enrichment analysis for genes
flanking this group of epiloci is shown in Supplementary
Figure S11.

To test the association between changes in MC profiles
and the process of neuronal differentiation, we checked the
consistency of the MC profiles changes upon differentia-
tion of the same precursor in a different type of neuron.
Notably, we found a high correlation between MC profiles
changes for the 97119 epiloci examined upon differentiation
of hippocampal precursors to granule cells or CA neurons
(Pearson R 0.81, Figure 7C), according to the previously
described high similarity among these differentiation pro-
cesses (50).

To further establish the relationship between the changes
in MC profiles and epigenetic remodeling upon cell differ-
entiation, we explored the chromatin landscape, summa-
rized by chromHMM labels, associated with the analyzed
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Figure 7. Application of MC profiling on neuronal differentiation. (A) DNA methylation changes at 104720 epiloci upon differentiation of hippocampal
precursors to granule cells. X-axis: average methylation change (delta met); y-axis: MC profile change (JSD). The black line indicates the JSD cutoff,
whereas the red lines indicate the 95th percentile of observed delta values. (B) Examples of epiloci with low difference in average methylation but high JSD
values between HP and GC MC profiles (epiloci coordinates: chr19:57700749–57700788 and chr1:186924297–186924337). (C) Comparison of MC profile
changes upon differentiation of hippocampal precursors (HP) to granule cells (GC) or CA3 neurons. x-axis: JSD values between MC profiles in HP and
GC. y-axis: JSD values between MC profiles in HP and CA. (D) MPs composition of hippocampal precursors (on the left) and granule cells (on the right)
samples. (E) Transition plot of variant epiloci in the HP-GC pair. For the epiloci assigned to the different MPs in HP cells the classification in differentiated
GC neurons is shown.

epiloci. We observed that MC profile changes more prob-
ably involved epiloci located in regions that also under-
went chromatin changes upon differentiation (Fisher test
P-value < 2.2 e–16). In fact, only 5% of epiloci located in
genomic regions with stable chromatin marks underwent
changes in their MC profile, whereas 22% of epiloci un-
dergoing chromatin changes also changed their MC profile,
thus suggesting that our approach was probably identifying
loci undergoing epigenetic remodeling.

When investigating the genomic localization of develop-
mentally variant epiloci discovered by our approach, we
found that they were slightly depleted outside CpG islands
and promoters (Fisher test P-values < 2.2 e–16) both in HP-
GC and HP-CA transitions.

Being JSD is a symmetric distance, it only quantifies the
dissimilarity between two MC profiles, but does not return
the information on whether this dissimilarity corresponds
to a gain or loss of DNA methylation. Thus, we turned
to the analysis of prototype classes to qualitatively inter-
pret MC profile changes upon differentiation. The proto-
type class composition for HP and GC is shown in Fig-
ure 7D.

First, we asked whether changes were occurring at epiloci
exhibiting peculiar MC profiles in neural precursors. We
found that epiloci classified as D1 remained mostly stable,

whereas epiloci assigned to the other classes mostly changed
their MC profile upon differentiation (chi-square post-hoc
P-values < 1e–7).

We then analyzed the prototype class composition in dif-
ferentiated neurons, and found a depletion of D2 epiloci
and an increased fraction of D5 epiloci (chi-square post-
hoc P-values < 1e–7), suggesting that the methylated status
in differentiated neurons tends to be more heterogeneous
among different cells.

Finally, to better characterize how MC profiles changes
were occurring, we analyzed the prototype class transitions
upon differentiation. In Figure 7E, for each prototype class
in neuronal precursors, we show the final prototype class in
differentiated neurons.

We noticed that for a consistent fraction of D1 and D2
epiloci, MC profiles’ changes did not correspond to class
transitions, meaning that these epiloci were shifting toward
a higher or lower DNA methylation heterogeneity. We also
noticed that a reduced fraction of epiloci evolved toward the
D2 class upon differentiation.

Interestingly, most of D3 epiloci evolved to lower methy-
lation upon differentiation, transiting to the D1 class.
Thanks to prototype class analysis, we could interpret this
demethylation as a negative selection of the fully methylated
molecules that were present in neural precursors.
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All together, these results indicate that our approach
well captures quantitative and qualitative DNA methyla-
tion changes upon neuronal differentiation that might be
underestimated or overlooked by an average methylation
based approach.

DISCUSSION

Each cell is a uniqum. Evidence has accumulated that even
in morphologically homogeneous cell populations extensive
differences can be highlighted at multiple molecular levels,
and that these differences are relevant to biological pro-
cesses (31).

Single-cell DNA methylation assays promise to be the
standard technique to study DNA methylation heterogene-
ity in cell populations (30,62). However, single-cell DNA
methylation technologies still generate very sparse data,
in a limited number of cells per sample, and at high cost
(28,32). Alternatively, cell-to-cell differences can be deduced
by studying the methylation patterns of consecutive cy-
tosines in sequenced reads from bulk experiments, assuming
each read coming from a single DNA molecule (19,28,33–
36). This approach can stand comparison with single-cell
assays when the goal is to obtain a statistical/robust de-
scription of DNA methylation of a genomic region in a cell
population (28).

Building on top of our experience on deep targeted bisul-
fite sequencing, in this study we propose MC profiling as a
genome-wide approach to the study of DNA methylation
heterogeneity. Given an epilocus holding 4 CpG sites, we
defined its MC profile as the ensemble of the relative abun-
dances of molecules sharing an equal number of methy-
lated cytosines (Methylation Classes, MCs). Such an ap-
proach, while incorporating information on the overall av-
erage methylation of a region, directly informs on the dif-
ferent methylation levels, and their abundance, observed in
a pool of molecules. This information is usually not, or
poorly, taken into account by other approaches, which di-
rectly quantify the degree of cellular heterogeneity through
the analysis of individual arrangements of methylated cy-
tosines in single DNA molecules (epialleles).

A previous study showed that the methylation level of
individual molecules can be used to adjust mean methyla-
tion indices for cell heterogeneity, thus improving prediction
of gene expression levels compared to the overall average
methylation (26). This method quantifies DNA methylation
at promoter regions as the ratio of reads holding ≥ 1 methy-
lated cytosines to the total number of reads mapped to the
promoter. MC profiling is in line with this logic, but further
enlarges the information on DNA methylation heterogene-
ity by considering molecules with different methylation lev-
els as separate entities.

A conceptually similar approach to MC profiling has
been proposed in (37–39). In these studies, DNA methyla-
tion is expressed as the probability mass function (PMF)
of methylation levels that could be observed in a pool
of molecules, which resemble the concept of our MCs.
This approach, specifically designed to deal with the low
coverage of WGBS experiments, has provided novel in-
sights on DNA methylation heterogeneity and its dispo-
sition across the genome, its evolution upon differentia-

tion, aging and cancer, and its relationship with the genetic
background (37–39). The biggest difference between this
approach and MC profiling is that while the PMF is pre-
dicted from a mathematical model applied to DNA methy-
lation data, the frequencies of MCs are empirically esti-
mated from experimental data, thus avoiding time consum-
ing model fitting and releasing the distribution of methy-
lation from a-priori parametrization of DNA methylation
dynamics.

To quantify the dissimilarity between MC profiles, we
adopted the Jensen-Shannon distance (42). This dissimilar-
ity measure has been applied in bioinformatics and epige-
netics (37–39,63–65).

To set the parameters of our approach, we synthesized
low coverage 4 CpG datasets from an in-house database of
high-coverage amplicon bisulfite sequencing data (27,44–
46). In this context, we provided a systematic quantifica-
tion of the impact of coverage on the accuracy of MC pro-
files, and estimated the expected error associated with MC
profiles at a coverage of 50 reads. In our opinion, these re-
sults could serve as guidelines to orient qualitative analysis
of DNA methylation in low coverage settings.

Here, similarly to previous studies (40,41), we adopted a
classification procedure, assigning each MC profile to the
most similar among 5 reference profiles. This classification
scheme provided us an interpretable representation of each
MC profile. Furthermore, it provided us with a qualitative
property to be compared across epiloci. Finally, being this
a fixed scheme, we could apply it and directly compare the
results on different conditions and species.

We demonstrated that MC profiles were stable among
different samples and neighboring epiloci. Previous stud-
ies illustrated that DNA methylomes exhibit high inter-
individual stability, especially in CG dense regions (66,67).
Concordant epigenetic marks, including DNA methylation,
across genomic blocks have been also described (23,37,68).
Altogether, our results are in line with previously described
patterns of regional and inter-individual stability of DNA
methylation, and suggest that MC profiles capture con-
trolled DNA methylation dynamics rather than stochastic
fluctuations of methylation levels.

In this paper, we applied MC profiling to gain insights on
methylation heterogeneity in various biological contexts.

Firstly, we profiled regions either present in single copies
in the genome of individual cells or carrying heterozygous
polymorphisms that enabled distinguishing the two alleles.
We found that cell-to-cell differences were the strongest con-
tributor to the molecular heterogeneity incorporated in MC
profiles. Allelic differences contributed only in about 6% of
analyzed regions, in agreement with the fraction of allele
specific methylation described in most studies (38,49,69).

Secondly, we tested the capability of MC profiling to
inspect known examples of mono-allelic regulation, i.e.
genomic imprinting and X-inactivation, in which DNA
methylation is notably involved.

When we analyzed the MC profiles of epiloci located in
proximity of known genomic imprinted regions, we found
that bimodal MC profiles were overrepresented. This was
expected, considering the known opposite methylation pat-
tern of the two parental alleles at imprinted regions (70). For
an epilocus located upstream of the Zdbf2 gene, holding a



14 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 4

polymorphic site, we were able to clearly show opposite MC
profiles on the two alleles.

Loss of imprinting (LoI) has been described in several tu-
mors (59,60). As a proof of concept, we showed that MC
profiling can capture LoI in a leukemic sample, suggest-
ing that this approach could be adopted in this field. We
illustrated an example of MC profile alteration in the pro-
moter of GNAS, which LoI has been described in diverse
types of cancer (60). Consistently with previous study, we
found that the MC profile was altered toward gain of DNA
methylation in the tumor sample (60). In addition, MC pro-
filing suggested that this gain was not homogeneously ac-
complished in the whole cell population.

We then analyzed the MC profiles of epiloci located on
the X chromosome in female samples. First, we compared
MC profiles of epiloci flanking genes with reported differ-
ential inactivation status. Consistent with previous findings
(71–73), escapee epiloci showed homogeneous DNA methy-
lation on both X copies, being unimodally fully methylated
or unmethylated. Subject epiloci, on the contrary, were en-
riched for more heterogeneous MC profiles (D3 and D5),
compatible with different DNA methylation status of the
two alleles (71–73).

To further inspect the DNA methylation status of the in-
active X, we selected the X epiloci with a fully unmethylated
profile in male samples, and examined the corresponding
MC profiles in female samples to infer the profile of the in-
active X. We showed a prevalence of intermediately methy-
lated classes on the inactive X, accompanied by high cellular
heterogeneity. Incomplete DNA methylation of the inactive
X was described in (74) at single CpG level, thus marking a
difference between the X inactivation and the genomic im-
printing processes that was well reflected in our analysis. It
is worth noting that the prevalence of intermediately methy-
lated MCs that we found with our approach also suggested
a difference between the methylated status on the inactive
X and at autosomal epiloci, suggestive of peculiar mecha-
nisms intervening in DNA methylation establishment and
regulation on the inactive X.

The methylation status of the inactive X appeared also
to be highly heterogeneous among different cells. We spec-
ulate that this cellular epipolymorphysm could almost in
part find its reflection in differences of X inactivation status
between equivalent cells described in single-cell RNA-seq
studies (75,76).

Finally, we applied MC profiling to the analysis of DNA
methylation changes in different conditions. In particular,
we examined profiles’ changes upon differentiation, when
epigenetic remodeling is expected to occur. We adopted
the Jensen-Shannon distance to capture epiloci with signif-
icant differences in MC profiles between neural precursors
and differentiated neurons. Being JSD a symmetric distance
measure, it did not return the information on whether MC
profiles changes correspond to gain or loss of DNA methy-
lation. Thus, we examined the pattern transitions to gain
insights on how profiles’ changes were occurring. Combin-
ing the analysis of JSD and pattern transitions provided us
a comprehensive picture of DNA methylation differences
among conditions: in fact, we could distinguish profiles
changes associated with unvaried patterns (and thus, with
stable reciprocal proportion of DNA molecules with differ-

ent methylation levels) from profiles changes accompanied
with pattern transitions (which indicate a redistribution of
the proportions of molecules with different methylation
levels).

As expected, we found that MC profiles changes cap-
tured by JSD correlated with average DNA methylation
gain or loss at most epiloci. However, we described MC
profile changes at almost constant DNA methylation for
>5000 epiloci. Qualitative DNA methylation changes oc-
curring with little to no changes in overall average methy-
lation were also described in (37–39), indicating that such
an approach can be even more informative than average
methylation based approach in the analysis of dynamic
systems.

Interestingly, we found that MC profile changes were en-
riched at CpG islands, which were described to be spared
from most epigenetic changes in the original study (50). The
association that we found with changes of chromatin marks,
as well as the concordance of MC profiles changes upon
differentiation in two different neuronal subtypes, pointed
to exclude random variations occurring at these epiloci. In-
stead, considering that most epiloci exhibited stable pro-
totype classes in precursors and differentiated neurons, it
is possible that MC profiling has captured changes in cel-
lular heterogeneity that were overlooked by the average
methylation-based approach.

Applying MC profiling to RRBS data can give insights
on cellular epigenetic heterogeneity from plenty of already
available datasets in public repositories. However, it strongly
limits the analysis to CpG islands and immediately proxi-
mate regions (15,16). This limit is further exacerbated when
selecting target regions harboring four CpGs (the epiloci
of this study) shared among multiple samples. The re-
quired coverage of 50 reads strongly limits the applica-
bility of the proposed approach outside Whole Genome
Bisulfite Sequencing (WGBS) data. However, more unbi-
ased enrichment assays have been developed which combine
high throughput sequencing with selection of target regions
through PCR or capture-based trapping that are natively
less biased toward CG dense regions and could fit the cov-
erage requirements of MC profiling (77,78).

Despite these limitations, we here showed that MC
profiling could effectively capture cellular differences and
changes also in CG dense regions, which are usually re-
ported to be resistant to DNA methylation in normal con-
ditions (3,79,80). We indeed believe that applying MC pro-
filing to these experiments could further extend our obser-
vations outside CG dense regions.
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65. Kartal,Ö., Schmid,M.W. and Grossniklaus,U. (2020) Cell
type-specific genome scans of DNA methylation divergence indicate
an important role for transposable elements. Genome Biol., 21, 172.

66. Palumbo,D., Affinito,O., Monticelli,A. and Cocozza,S. (2018) DNA
methylation variability among individuals is related to cpgs cluster
density and evolutionary signatures. BMC Genomics, 19, 229.

67. Bock,C., Walter,J., Paulsen,M. and Lengauer,T. (2008)
Inter-individual variation of DNA methylation and its implications
for large-scale epigenome mapping. Nucleic Acids Res., 36, e55.

68. Ernst,J. and Kellis,M. (2017) Chromatin-state discovery and genome
annotation with ChromHMM. Nat. Protoc., 12, 2478–2492.

69. Onuchic,V., Lurie,E., Carrero,I., Pawliczek,P., Patel,R.Y.,
Rozowsky,J., Galeev,T., Huang,Z., Altshuler,R.C., Zhang,Z. et al.
(2018) Allele-specific epigenome maps reveal sequence-dependent
stochastic switching at regulatory loci. Science, 361, eaar3146.

70. Edwards,C.A. and Ferguson-Smith,A.C. (2007) Mechanisms
regulating imprinted genes in clusters. Curr. Opin. Cell Biol., 19,
281–289.

71. NISC Comparative Sequencing Program, Duncan,C.G., Grimm,S.A.,
Morgan,D.L., Bushel,P.R., Bennett,B.D., Roberts,J.D., Tyson,F.L.,
Merrick,B.A. and Wade,P.A. (2018) Dosage compensation and DNA
methylation landscape of the x chromosome in mouse liver. Sci. Rep.,
8, 10138.

72. Cotton,A.M., Price,E.M., Jones,M.J., Balaton,B.P., Kobor,M.S. and
Brown,C.J. (2015) Landscape of DNA methylation on the x
chromosome reflects CpG density, functional chromatin state and
X-chromosome inactivation. Hum. Mol. Genet., 24, 1528–1539.

73. Balaton,B.P. and Brown,C.J. (2021) Contribution of genetic and
epigenetic changes to escape from X-chromosome inactivation.
Epigenetics Chromatin, 14, 30.

74. Balaton,B.P., Fornes,O., Wasserman,W.W. and Brown,C.J. (2021)
Cross-species examination of X-chromosome inactivation highlights
domains of escape from silencing. Epigenetics Chromatin, 14, 12.

75. Keniry,A. and Blewitt,M.E. (2018) Studying x chromosome
inactivation in the single-cell genomic era. Biochem. Soc. Trans., 46,
577–586.

76. Garieri,M., Stamoulis,G., Blanc,X., Falconnet,E., Ribaux,P.,
Borel,C., Santoni,F. and Antonarakis,S.E. (2018) Extensive cellular
heterogeneity of x inactivation revealed by single-cell allele-specific
expression in human fibroblasts. Proc. Natl. Acad. Sci. U.S.A., 115,
13015–13020.

77. Kacmarczyk,T.J., Fall,M.P., Zhang,X., Xin,Y., Li,Y., Alonso,A. and
Betel,D. (2018) “Same difference”: comprehensive evaluation of four
DNA methylation measurement platforms. Epigenetics Chromatin,
11, 21.
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