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ABSTRACT

A data-driven approach to estimate the global spectrum of gravitational planar liquid jets (sheet or curtain flows) is presented in this work.
The investigation is carried out by means of two-dimensional numerical simulations performed through the solver BASILISK, based on the
one-fluid formulation and the volume-of-fluid approach. The dynamic mode decomposition technique is applied to extract the underlying
linear operator, considering random perturbations of the base flow. The effectiveness of this procedure is first evaluated comparing results
with those of a simplified one-dimensional curtain model in terms of spectrum and eigenfunctions. The methodology is then applied to a
two-dimensional configuration obtaining the BiGlobal spectra for both supercritical (Weber number We> 1) and subcritical (We< 1)
regimes. Results highlight that in supercritical regime, the spectrum presents three branches: the upper and lower ones exhibit a purely sinu-
ous behavior with frequencies quite close to those predicted by the one-dimensional model; the middle branch presents a predominant vari-
cose component, increasing with the frequency. The subcritical spectrum, instead, shows that the first two less stable eigenvalues, sorted by
increasing frequency, exhibit, respectively, a sinuous and a varicose behavior, while their growth rate is almost the same. As expected, the
subcritical regime does not reveal the slow branch. The effect of the density ratio, rq, between the two phases is investigated, revealing that
the flow system is unstable for rq > 0:05. Topological inspections of the leading modes in this unstable configuration show that the predomi-
nance of a varicose behavior is related to the rupture of the curtain.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0123550

I. INTRODUCTION

Vertical planar gravitational liquid jets (sheet or curtain flows)
are an interesting industrial class of flows, whose modeling has been
investigated since the middle of the last century. Typical applications
are coating layer deposition1 and paper production.2 The ability to
control and eventually suppress undesired oscillations (or non-unifor-
mities) in steady configurations is fundamental for the final quality of
an industrial process. Vertical curtain flows are also related to the
nappe configuration, that is, the flow of waterfalls generated by the
overflow of water over long crests of dams or weirs.3–5 One of the
major drawbacks of these flows is related to the onset of self-sustained
oscillations, which can lead to significant noise levels and structural
damages.

Due to gravitational effects, the flow field is not parallel and the
determination of the oscillation frequencies of the liquid jet involves a
global problem essentially governed by the Weber number. The global
stability analysis has been until now theoretically carried out by using
a linear one-dimensional (1D) model6,7 and taking advantage from an

energy budget approach.8 A recent application of data-driven techni-
ques to liquid jets has been presented by Arote et al.9 who focused on
the effect of the Reynolds number on the topology of the flow; more-
over,10,11 explored the effect of a continuous harmonic perturbation
enforced at the inlet section on the main coherent structures of the
unsteady field and the related temporal frequencies. Recently, Schmidt
and Oberleithner12 studied the stability of planar liquid jets, harmoni-
cally forcing the transversal velocity at the inlet section without gravi-
tational effects.

Modal decomposition techniques represent a powerful tool to
gain further physical insights on fluid dynamics problems through the
identification and the analysis (in terms of spatiotemporal evolution)
of the main coherent structures of the flow.13 The recent increase in
computing power encouraged the development of many data-driven
analysis tools.14,15 In particular, the rediscovery of Koopman spectral
analysis by Mezic16 and Rowley et al.17 traced the road map for the
formulation of the dynamic mode decomposition (DMD) by
Schmid18 and Tu et al.19 DMD generates the best linear fit data-driven
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model and provides structures ranked according to the dynamics of
the system. Its application field is quite wide including the analysis of
fluid flows in several configurations,20 face recognition,21 and
neuroscience.22

One classical way of examining fluid flows is by linearizing the
governing equations, and studying the mathematical evolution of dis-
turbances (of small-amplitude) superposed on a base flow. This
approach provides the eigenvalue spectrum of the system, revealing
the emergence of the flow unsteadiness and thus allowing the predic-
tion of flow-field dominant frequencies.23–26 However, spectral infor-
mation of the system can be also obtained by means of the DMD
technique that can be conveniently applied instead of the linearization
procedure as shown in Ferrer et al.27 and Ranjan et al.28

In this case, the DMD provides the linear relationship between a
generic snapshot and the subsequent one, considering random pertur-
bations of the base flow. Other very recent applications involve data-
driven resolvent analysis29 and optimally time-dependent modes.30

This approach avoids the linearization process of the governing equa-
tions, together with the related numerical and theoretical complexity.

The aim of this work is to analyze the global spectra of viscous
gravitational two-dimensional (2D) liquid sheets by applying the
DMD technique on randomly perturbed base flows. The DMD is used
to estimate the linearized evolution operator and to extract the main
spatial structures, together with information on the system dynamics.
The flow fields have been obtained by means of numerical simulations
performed with the two-phase code BASILISK.31 To the authors’ best
knowledge, this is the first time that the DMD technique is applied to
a multiphase flow field for this purpose; the analysis of the liquid sheet
BiGlobal spectrum represents a novelty as well.

The paper is organized as follows: Sec. II contains a brief intro-
duction of the physical layout and the governing equations. Section III
is devoted to the methodology, focusing on the base flow perturbation
and the DMD algorithm for the estimation of the underlying linear
operator, with related eigenspectra/eigenfunctions. Section IV reports
the results first for the 1D model and then for the 2D configurations.

II. PHYSICAL AND COMPUTATIONAL LAYOUT

The flow here considered is a gravitational viscous liquid jet
interacting on both sides with an unconfined gaseous ambient. Panel
(a) of Fig. 1 contains a sketch of the system, together with the reference
frame: its origin is coincident with the center of the inlet flow section
(whose width is denoted by H), and the x axis is directed along the
streamwise direction, while the y axis is across the width of the sheet.
Red lines represent the symmetric unperturbed flow, corresponding to
the Torricellian solution whose thickness (�hðxÞ) is described by the
law

�hðxÞ
H
¼ 1þ 2g

U2
x

� ��1=2
; (1)

whereU is the mean axial velocity at the inlet section and g is the grav-
ity acceleration. Black lines, instead, correspond to the instantaneous
left and right interface locations, and are denoted with y�ðx; tÞ and
yþðx; tÞ, respectively. Accordingly, the centerline deflection, l(x, t),
and the sheet thickness, h(x, t), are computed as

lðx; tÞ
hðx; tÞ

� �
¼ 1=2 1=2

1 �1

� �
yþðx; tÞ
y�ðx; tÞ

� �
: (2)

The numerical investigation has been carried out by means of the
BASILISK open-source code.31 It is based on the single-phase formula-
tion32 and the volume-of-fluid (VOF) approach33 in which the two-
phase flow is considered as a one-fluid flow with the introduction of
the volume fraction, C. The volume fraction is a field variable equal to
1 in the inner phase and 0 in the ambient phase; the interface corre-
sponds to C¼ 0.5. In this framework, density, q, and viscosity, l, are
modeled as

q ¼ qa þ ðql � qaÞC; (3a)

l ¼ la þ ðll � laÞC; (3b)

where pedici a and l refer to the ambient and the liquid phase, respec-
tively. The main physical quantities, defining the base case involved in
the problem, are listed in Table I.

The momentum equations and the divergence-free condition, in
the index notation, are

q
@ui
@t
þ uj

@ui
@xj

 !
¼ � @p

@xi
þ @

@xj
l

@ui
@xj
þ
@uj
@xi

 !" #
þ rjnidS;

(4a)
@ui
@xi
¼ 0; (4b)

in which the surface tension effect is modeled as an impulsive force
located at the interface, namely, rjnidS, where r is the surface tension,
j the interface curvature, ni the ith component of the normal versor n,
and dS a Dirac function on the interface. Following Popinet,31 n and j
are computed as: n ¼ r~C=jr~C j and j ¼ r � n, where ~C is a
smoothed (i.e., diffused) version of the sharp volume fraction field.
The effects of the gravitational field are contained in the pressure term
p. For the closure problem,33 C has to satisfy the advection equation:

@C
@t
þ @Cui

@xi
¼ 0: (5)

The computational domain is a square with sides equal to
L ¼ 50H ðe ¼ H=L ¼ 0:02Þ; its representation is reported in panel
(b) of Fig. 1. The boundary conditions for the axial (u) and transversal
(v) velocity components at the inlet section (�0:5 < y=H < 0:5 and
x=L ¼ 0) are as follows:

u ¼ 3
2
U 1� 2y

H

� �2
" #

; v ¼ 0; C ¼ 1; (6)

corresponding to a fully developed parabolic velocity profile for u.
At the exit section, standard outflow conditions for u, v, and C

and the differential pressure p are imposed

@u
@x
¼ 0;

@v
@x
¼ 0;

@C
@x
¼ 0; p ¼ 0: (7)

Homogeneous Neumann boundary conditions are imposed for
all variables at the right and left sides. The computational grid
employed is a quad-tree adaptive grid, retaining its maximum level of
refinement in a rectangular region containing the liquid sheet
(0 < x=L < 1;�0:5 < y=H < 0:5). The minimum dimensionless cell
edge length is Dx=H ¼ 0:0488 corresponding to 20 cells within H.
This choice has been supported by a grid convergence analysis, as
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done in the work by Della Pia et al.,6 based on the ratio between the
outlet sheet thickness and the inlet one (not reported herein). The gray
patch (0 < x=L < 1;�1 < y=H < 1) highlights the region consid-
ered for the modal analysis. Note that the axes have been scaled with
different variables. The simulation time step is evaluated at each itera-
tion as follows:

Dts ¼ min
0:5Dx
u

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ql
1þ rq

2
Dx3

pr

r !
; (8)

in which ql is the density of the liquid phase, rq is the ratio between
ambient and liquid phase densities qa=ql , and r is the surface tension.

The behavior of the flow is completely characterized through a
few dimensionless parameters, as observed by Della Pia et al.6 In par-
ticular, relevant variables are related both to geometrical features, such
as the sheet slenderness ratio e ¼ H=L, and to physical quantities as
the Reynolds number Re ¼ qlUH=ð2llÞ, the Froude number
Fr ¼ U2=ðgLÞ, the Weber number We ¼ qlU

2H=ð2rÞ, and the den-
sity ratio rq ¼ qa=ql . Table II contains the values of the main parame-
ters for the configurations here analyzed; we note that the bold values
refer to the base case.

III. DATA-DRIVEN GLOBAL STABILITY ANALYSIS

The global stability analysis focuses on the temporal and spatial
evolution of small-amplitude perturbations superimposed upon a base
flow. In the framework of two-phase flows, it is convenient to define a
state vector q by stacking the velocity components and the volume
fraction at every time instance. With this assumption, the governing

FIG. 1. Sketch of physical (a) and computational (b) domains. The red lines represent the steady (or mean) interface locations corresponding to the Torricellian shape.

TABLE I. Dimensional physical quantities involved in the problem, corresponding to
the base case.

Name Variable Values Units

Inlet liquid mean velocity U 0.49 m s�1

Inlet sheet thickness H 1.5 � 10–3 m
Sheet length L 75 � 10–3 m
Surface tension coefficient r 72.5 � 10–3 N m�1

Gravity acceleration g 9.81 m s�2

Ambient density qa 9.97 kg m�3

Liquid density ql 997 kg m�3

Ambient viscosity la 1.84 � 10–5 kg m�1 s�1

Liquid viscosity ll 8.90 � 10–4 kg m�1 s�1

TABLE II. Dimensionless parameters involved in the numerical analysis. Bold values
refer to the base case.

Name Definition Values

Gas-to-liquid density ratio rq ¼ qa=ql 0.005, 0:01, 0.05
Sheet slenderness ratio e ¼ H=L 0:02
Reynolds number Re ¼ qlUH=ð2llÞ 413
Froude number Fr ¼ U2=ðgLÞ 0:329
Weber number We ¼ qlU

2H=ð2rÞ 0.75, 1.5, 2:5, 3.5
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equations (4) and (5) can be recast in the form of a classic first-order
dynamical system,

_q ¼ f ðqÞ; (9)

with f being a non-linear operator depending on q.
From a practical point of view, the analysis is carried out through

the decomposition of q in the sum of a base flow �q and the fluctua-
tions q0, such that q ¼ �q þ q0; in this way, it is possible to obtain the
linearized form of Eq. (9)

_q0 ¼ L�qq
0; (10)

with L�q being the Jacobian operator evaluated at the base flow.
The computation of L�q is numerically prohibitive. Theofilis34

and Bagheri et al.,35 in the hypothesis of small perturbations, showed
that its evaluation can be simplified when based on instantaneous
fields of q0 (snapshots), obtained by a high-order solver (in present
case the BASILISK). Moreover, following Gomez et al.36 a proper set
of snapshots is constructed through the Fr�echet derivative:

_q0 ¼ L�qq
0 ¼ @f ðqÞ

@q

����
�q

q0 � f ð�qþq0Þ � f ð�qÞ; (11)

which, when integrated from a generic time instance t¼ tn to the sub-
sequent one t ¼ tn þ Dt, leads to

q0nþ1 ¼ eL�qDtq0n ¼ Aq0n �
ðtnþDt

tn

f ð�qþq0Þdt �
ðtnþDt

tn

f ð�qÞdt: (12)

The inspection of the previous equation highlights the linear relation-
ship between two subsequent snapshots q0n and q0nþ1 through the
matrix A; we note that Aq0n approximates the difference between the
variation of the perturbed field and that of the base flow.

The base flow �q has been assumed coincident with the flow field
after an evolving time t0 ¼ 6tr , where tr is the reference time
tr ¼ L=U . The perturbed field has been obtained by adding a purely
random perturbation to the whole flow field at t¼ t0. In particular,
this perturbation is modeled as white noise, with an amplitude of 1%
of U for the velocity components (u and v) and 0.01 for the volume of
fraction in the interface region.

The matrix A has been obtained by means of the DMD tech-
nique,28 which decomposes time-resolved data into modes, each
of one with its own frequency and growth rate. Considering a
standard DMD algorithm,19 it is convenient to define a physically
meaningful norm for q0 related to the fluctuations energy of the
velocity components and of the volume fraction. In particular,
the norm is kq0k2P ¼ q0�Pq0, where ð�Þ� denotes the conjugate
transpose operator and P represents a weight matrix whose ele-
ments have been computed according to the work of Chu37 pro-
viding the following energy norm:

E ¼
ð

X
�q u02 þ v02ð Þ þ �u2 þ �v2ð ÞDq2

�q
C02

� �
dX; (13)

in which X is the computational domain. In this way, P takes
into account the integration quadratures and appropriate scaling
of heterogeneous variables of the problem. Finally, a Cholesky
decomposition P ¼ F�F has been computed to obtain E ¼ kq0k2P
¼ q0�F�Fq0 ¼ kFq0k22.

The DMD algorithm considers the snapshots (Fq0k) collected as
columns in the matricesQ1 andQ2

Q1 ¼ F

j j j
q01 � � � q0k � � � q0M
j j j

2
64

3
75;

Q2 ¼ F

j j j
q02 � � � q0kþ1 � � � q0Mþ1
j j j

2
64

3
75; Q1;Q2 2 RN�M; (14)

where N is the cardinality of the state vector q0, and M the number of
snapshots. In this view, the linear operator approximates the temporal
dynamics of the data such that

Q2 � HQ1: (15)

It is worth noting that the matrix H is related to the matrix A by
H ¼ FAF�1; it shares the same eigenvalues of A and has eigenvectors
scaled by F. Moreover, snapshots collected within the matrices Q1 and
Q2 can also refer to several simulations with different random initiali-
zations.29 The following analysis considers 200 simulations each one
of 200 snapshots, with Dt ¼ 10Dts � 0:003 tr .

The leading coherent structures (namely, the DMD modes) are
evaluated through the SVD decomposition of Q1, according to which
Q1 ¼ URV�. In this way, Eq. (15) becomes H ¼ Q2VR�1U�, which
generally requires a large computational cost. To mitigate this effort, it
is convenient to introduce the matrix ~H ¼U�Q2VR�1 that shares the
same non-zero eigenvalues of H (and of A), but has a lower dimension
and thus requires a reduced numerical cost. Finally, the DMD modes
U are retrieved as U ¼ Q2VR�1W, withW being the matrix of eigen-
vectors of ~H.

The dimensionless spectrum of the underlying linear operator L�q

is computed by

kk ¼ kr þ ki i ¼
log ðlkÞ

Dt
2ptr; (16)

where lk is the kth eigenvalue of ~H, kr is the dimensionless growth
rate, and ki is the dimensionless frequency. Note that throughout this
work relevant eigenvalues are represented with two decimal digits
only.

The convergence and the saturation of the DMD algorithm are
evaluated by means of the L2 norm of the residual r. Indeed, consider-
ing the qr factorization of the snapshots matrix (Q1 ¼ SR) the residual
r is defined as

r ¼ q0Mþ1 � Q1R
†S�q0Mþ1; (17)

in which q0Mþ1 is the last snapshot and ð�Þ
† is the pseudoinverse opera-

tor. Note that r is the reconstruction error field of the last snapshot
q0Mþ1 and simply represents how well the last snapshot can be repre-
sented as a linear combination of the firstM ones.

IV. RESULTS
A. 1D global analysis

The methodology illustrated in Sec. III is first tested on the sim-
plified 1D model of the curtain flow described by Della Pia et al.,6

which provides the streamwise distribution of both the sheet centerline
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lateral displacement (‘s) and the lateral velocity on the centerline (vs)
for sinuous perturbations of the jet. Results of the linear stability analy-
sis carried out by means of the 1D model will be hereafter compared
with those obtained by the application of the DMD technique to the
same simplified flow data.

The dimensionless 1D model is based on the following governing
equations:

@vs
@ t̂
� RUs

ð1
0

@vs
@ t̂

ln jx̂ � njdnþ RUs

ð1
0
Us

@2‘s

@ t̂@x̂
ln jx̂ � njdn

¼ �Us
@vs
@x̂
þ Us

We
@2‘s

@x̂2
þ e
2Re

@2vs
@x̂2

; (18)

@‘s

@ t̂
¼ vs � Us

@‘s
@x̂

; (19)

where t̂ ¼ t=tr and x̂ ¼ x=L coupled with only homogeneous bound-
ary conditions at the inlet section, ‘sð0Þ ¼ 0; vsð0Þ ¼ 0, being the
free-outflow condition at the bottom edge self-guaranteed.4 Equation
(18) represents the momentum equation averaged along the lateral
coordinate y and contains the unsteady Bernoulli-based pressure
model by Kornecki et al;38 Eq. (19), instead, is the linearized kinematic
boundary condition imposed at the free interfaces.4 The parameter R
takes in account the effects of the density ratio, rq, and the sheet slen-
derness, e, while Us is the dimensionless axial velocity (corresponding
to the free fall Torricellian base flow)

R ¼ 2
p
1
e
rq; Usðx̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

x̂
Fr

r
: (20)

The analysis starts by considering supercritical flow conditions
(We> 1). Note that in this one-dimensional analysis, unlike the subse-
quent two-dimensional one, the state vector q0 consists of a collection
of the values of ‘s and vs in each streamwise location, and snapshots of
the simulation are taken by integrating the system (18) and (19).
Accordingly, the weight matrix is computed by considering the pertur-
bations energy per unit length given by Olsson and Henningson39 and
Della Pia et al.8

E1D ¼
1
2

ð1
0

v2s
Us
þ 1
We

@‘s
@x̂

� �2
" #

dx̂; (21)

in which the first term, proportional to v2s , is related to the kinetic
energy, whereas the second one, proportional to ð@‘s@x̂ Þ

2, involves the
surface tension.

Panel (a) of Fig. 2 reports the global spectrum computed with the
linear stability theory (LST), together with the ones estimated through
the DMD technique for several numbers of random initializations
(ns). The physical conditions are represented by the following set of
parameters: We¼ 2.5, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413.
The LST spectrum, as reported by Della Pia et al.,6 exhibits two
branches [see the zoom reported in panel (b)], with an almost constant
spacing between the imaginary part of the eigenvalues, which is
directly associated with the crossing time of slow (upper branch) and
fast (lower branch) traveling waves.

The cases represented consider ns¼ 1, 7, and 10. It is interesting
to observe that with a few random snapshots (ns¼ 7), the spectrum
exhibits spurious unstable eigenvalues, but with a slight increase in ns,
it quickly tends to converge to the standard one (open circles) for both

branches. For ns¼ 10, a good match can be appreciated, the leading
eigenvalues being properly captured both in real part (growth/decay
rate) and imaginary one (frequency). Note that the convergence of the
residuals comes with the convergence of the eigenvalues and the disap-
pearance of the spurious ones. For the analyzed case, the leading
dimensionless frequency (imaginary part of the leading eigenvalue) is
ki ¼ 3:64.

The leading eigenfunctions of displacement [ul , panel (a)] and
lateral velocity [uv , panel (b)] for the cases ns¼ 7 and 10 together with
those based on the LST method are reported in Fig. 3. The DMD
modes computed with ns¼ 10 exhibit a very good match with the the-
oretical ones; the case with ns¼ 7 is interesting because even if the
leading modes exhibit spurious oscillations due to the randomness of
the perturbations, the streamwise trend of these modes is correctly
predicted.

The convergence and the saturation of the algorithm are evalu-
ated by means of the L2 norm of the residual, krk, which measures
how much the last snapshot q0Mþ1 can be expressed as a linear combi-
nation of first M ones.18 The trend of the residue is reported in Fig. 4
as a function of the number of simulations ns. In accordance with the
spectrum considered above, a rapid convergence can be observed for
ns > 8, for which krk � 10�12, thus providing a sufficient accuracy to
determine the spectrum and the corresponding eigenmodes.

Once the capability of the DMD algorithm in determining the
eigenfunctions/eigenvalues of the underlying linear system has been
proven, it is interesting to test its ability to properly represent the evo-
lution of the system by comparing results of its integration with the
theoretical ones [Eqs (18) and (19)].

Indeed, the linear operator A can be used to predict the behavior
of the system in both free and forced configurations; to do that, the
system (18) and (19) is recast in the form

M _q0 ¼ Lq0 þ b1f þ b2 _f ; (22)

where f models the effect of an external forcing at the inlet (x̂ ¼ 0),
through non-homogeneous boundary conditions: f ¼ ½vsð0; t̂Þ; ‘sð0; t̂Þ�.
For discrete times, the solution reads

q0nþ1 ¼ ALSTq
0
n þ B1fn þ B2

_f n; (23)

in whichALST ¼ eðM
�1LÞDt ; fn, and _f n are the forcing and its derivative

at the nth time step, respectively; the matrices B1 and B2 are equal to

B1 ¼
ðDt

0
eðM

�1LÞðDt�sÞb1ds; B2 ¼
ðDt

0
eðM

�1LÞðDt�sÞb2ds: (24)

Figure 5 shows the solution obtained enforcing homogeneous
conditions for ‘s and a harmonic forcing (ff¼ 25Hz) for the transverse
velocity vsð0; t̂Þ ¼ sin ð2ptr ff t̂Þ. A comparison between the integra-
tion of Eq. (23) by using ALST and the DMD estimations of A is
reported. Again, as ns increases the DMD modes tend to behave
strictly as the eigenfunctions of the LST model. Note that for ns¼ 7,
despite the quite noisy modes of the DMD model, an acceptable aver-
aged representation of the centerline deflection (blue lines) is achieved.

B. 2D analysis

The methodology described above is now applied to 2D numeri-
cal simulations, providing an estimation of the BiGlobal spectrum in a
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non-intrusive way, namely, without the linearization of the governing
equations.

As stated before, the perturbation is imposed at the initial time in
a random way (white noise) in both the velocity components and

volume fraction fields. Its evolution, for the axial velocity (u0) field
only, can be appreciated considering the snapshots reported in Fig. 6.
Panel (a) contains the white noise added to the velocity component at
the initial time (t¼ 0); panels (b) and (c) show the evolution of these
disturbances that, while reducing in amplitude, excite dynamics with
different scales.

The study exploits the DMD technique to obtain the global spec-
trum; in this case, 200 simulations, corresponding to 40 000 snapshots,
have been used for the analysis. The DMD spectrum of the base case
has been reported in Fig. 7, together with the corresponding one of the
1D model (red circles), for a direct comparison. Here, only 400 DMD
modes are reported, which retain more than the 99.9% of the POD
(proper orthogonal decomposition) total energy, avoiding the intro-
duction of spurious modes.18

FIG. 2. Comparison between the supercritical spectrum evaluated with the linear stability analysis and various spectra computed with the DMD approach for different values of
ns. Panel (a) contains the global spectrum, and panel (b) a zoom of its inner region. We¼ 2.5, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413.

FIG. 3. Comparison between leading LST eigenfunctions and DMD modes of lateral
displacement (a) and transverse velocity (b).

FIG. 4. Convergence of DMD algorithm. Residual value history vs number of ran-
dom simulations ns.
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In general, the BiGlobal spectrum highlights a wider frequency
content than the LST results, with a further branch in between the
upper and lower branches previously found for the 1D model. The
physical relevance of the middle branch will be discussed hereafter. All
the eigenvalues have a negative real part due to the stable nature of the
flow; the less damped eigenvalues are located at low frequencies. The
leading mode, labeled A, is equal to k ¼ �0:54þ 3:64 i which per-
fectly matches the value predicted by the low-order analysis; other
interesting eigenvalues are highlighted with blue circles in the spec-
trum and are located on different branches: modes A and B belong to
the upper branch; modes C, D, and E are on the middle one; and
mode F lies on the lower branch. The corresponding values are
reported in Table III.

The DMD technique also provides insights on the topology of
the flow through the analysis of the coherent structures associated
with the main modes. In particular, for the liquid sheet flow under

study, the DMD provides the spatial distributions of both velocity
components (u0; v0) and volume fraction (C0). Figure 8 reports the real
part of the structures corresponding to modes A and B, scaled with
respect their maximum. Note that the black dashed line represents the
interface location due the mode’s action that is computed considering
only the correspondent mode in the C reconstruction according to Tu
et al.19 and Schmid.18 Panels (a) and (c) show antisymmetric distribu-
tions of u0 and C0, while panel (b) contains a symmetric distribution of
v0. In accordance with Colanera et al.,10 this is typical of a sinuous
motion. The v0 distribution [panel (b)] along the axis y=H ¼ 0 fea-
tures the same behavior as the 1D leading eigenfunction reported in
Fig. 3, namely, an almost monotonic increase in the transverse velocity
component along the downstream direction. A similar behavior can
be also observed for the mode B, which is a generic mode representa-
tive of the flow topology in this branch. Indeed, panels from (d) to (f)
report structures with smaller spatial scales with respect the previous

FIG. 5. Comparison between sheet centerline snapshots of the forced configuration and the same results obtained by means of the DMD approach. We¼ 2.5, Fr¼ 0.33,
e ¼ 0:02; rq ¼ 0:01, and Re¼ 413. Sinusoidal forcing of vs at inlet, vsð0; t̂Þ ¼ sinð̂f f tÞ with f̂ f ¼ 25.
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ones, but still characterized by a sinuous motion. The topology
described above is retrieved, with different scales, in all modes of this
branch, which is therefore characterized by a purely sinuous behavior.
The same characteristics are obtained for the mode F (not reported
herein) belonging to the lower branch, whose eigenvalues physically
are associated with fast traveling waves with a sinuous behavior. Thus,
bearing in mind that the 1D model is purely sinuous, it is not surpris-
ing that for these two sinuous branches, there is a good agreement
between both spectra.

As will be detailed in the following, the additional 2D middle
branch is associated with a varicose flow behavior, which could not be
predicted by the 1D model, accounting for the sinuous dynamics only.

To proceed further with the discussion of the spectrum, it is con-
venient to recall that each mode uj can be decomposed in sinuous and
varicose contributions10

ujðx; yÞ ¼ us
jðx; yÞ þ uv

j ðx; yÞ; (25)

where us
jðx; yÞ and uv

j ðx; yÞ are the sinuous and varicose components
of the mode, respectively. us

jðx; yÞ contains the antisymmetric part
(with respect to the axis y=H ¼ 0) of u0 and C0 modes and the sym-
metric one of v0, while uv

j ðx; yÞ the complementary distributions.
Note that sinuous and varicose components are orthogonal to each
other by definition. This decomposition can be directly extended to
the perturbations energy, E, of Eq. (13). In this way, the energy reads
E ¼ Es þ Ev , where Es and Ev represent the sinuous and varicose con-
tributions, respectively. Table IV reports the energy contents for the
selected DMDmodes.

Looking at the table, one can note that, as expected, the first two
modes (A and B) contain a sinuous energy contribution around the
93%; a similar energy distribution can be observed also for the mode
F, for which Es ¼ 89%. Different energy contents are observed in the
central branch for increasing frequencies; indeed, modes C, D, and E
exhibit a growing varicose energy content, respectively, equal to
Ev ¼ 22:0%, 52.1%, and 77.1%.

Bearing in mind the previous energy distributions, Fig. 9 reports
the varicose component of the u0 modes for eigenvalues C, D, and E.
The black dashed line represents the interface location, highlighting
the cross-sectional area variation in varicose regime.

FIG. 6. u0 random initial disturbance (a) and its temporal evolution (b) and (c). We¼ 2.5, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413. Field variables have been normalized
with respect to the maximum.

FIG. 7. Data-driven BiGlobal spectrum. We¼ 2.5, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01,
and Re¼ 413. Black dots refer to the 2D simulations, and red circles represent 1D
model results. Letters denote selected modes.

TABLE III. Selected eigenvalues of Fig. 7 for the case of We¼ 2.5, Fr¼ 0.33,
e ¼ 0:02; rq ¼ 0:01, and Re¼ 413.

kk

A –0.54 þ3:64 i
B –3.86 þ20:36 i
C –10.36 þ19:73 i
D –6.75 þ36:08 i
E –10.33 þ55:51 i
F –18.96 þ19:84 i
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Moving from C to E, a frequency increase is accompanied by a
global decrease in the spatial scales. The resulting wavelength reduc-
tion determines a more uniform energy distribution along the sheet
length. This can be inferred considering the spatial distributions of the
modes’ amplitude, which represents the local contribution of the
mode to the energy defined in Eq. (13). The corresponding energy dis-
tributions are reported in Fig. 10; the energy of the mode C is mainly
concentrated downstream of the station x=L ¼ 0:6, whereas the
modes D and E show a more homogeneous distribution starting from
x=L ¼ 0:5 and 0.4, respectively.

As discussed also for the 1D case, the convergence and the satu-
ration of the algorithm have been evaluated by means of the analysis

FIG. 8. Spatial distributions of the DMD modes A [panels (a)–(c)] and B [panels (d)–(f)]. We¼ 2.5, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413. The black dashed line rep-
resents the interface location. Field variables are normalized with respect to the maximum.

TABLE IV. Sinuous and varicose energy contributions of the selected DMD modes.
We¼ 2.5, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413.

kk Es(%) Ev(%)

A 93.5% 6.5%
B 93.5% 6.5%
C 78.0% 22.0%
D 47.9% 52.1%
E 22.9% 77.1%
F 89.0% 11.0%
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of the residual r. Its trend is reported in Fig. 11, which shows that the
residual rapidly tends toward 10�13 using about 95 random
initializations.

1. Weber number effect

This section investigates how the Weber number affects the
eigenspectra and the leading frequencies in both supercritical and sub-
critical regimes. Changes in the We number have been obtained by
varying the surface tension (r), keeping constant the inlet axial velocity

U in order to not include effects related to Reynolds and Froude num-
ber variations. The analysis has been carried out considering the fol-
lowing reference values: Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413.
Note that in this work only the effects of the Weber number and the
density ratio have been considered, as previous works6–11 have shown
that these parameters are the ones with the greatest influence on the
behavior of the flow.

The analysis starts considering the flow in supercritical condi-
tions for three different We numbers, equal to We¼ 1.5, 2.5, and 3.5.
The corresponding dimensionless spectra are reported in Fig. 12,

FIG. 9. Varicose component of DMD modes of u0 corresponding to eigenvalues C [panel (a)], D [panel (b)], and E [panel (c)]. We¼ 2.5, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and
Re¼ 413. The black dashed line represents the interface location. Field variables are normalized with respect to the maximum.

FIG. 10. Energy distribution for the modes C [panel (a)], D [panel (b)], and E [panel (c)]. We¼ 2.5, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413. The black dashed line rep-
resents the interface location. Field variables are normalized with respect to the maximum.
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which reveals that, for all theseWe values, the flow is stable. WhenWe
increases, at high frequencies the middle branch moves toward the
upper one, and the corresponding modes tend to lose their varicose
characteristic assuming a pure sinuous behavior. The leading frequen-
cies are in good agreement with the corresponding ones of the 1D
model; the frequency values (ki) and the relative spreads (normalized
with respect to the 1D model values) are summarized in Table V.

When the Weber number decreases under the unit threshold, the
surface tension has a great influence on the flow field, and the behavior
of the curtain radically changes. Indeed, passing from supercritical to
subcritical conditions, the damping rate increases together with the
leading frequency which presents a jump of about an order of magni-
tude. The experimental evidence of this phenomenon has been
recently presented in the work by Chiatto and Della Pia.40

Figure 13 contains the dimensionless spectra for We¼ 0.75 (red
dots) and We¼ 1.5 (black dots). The leading modes are highlighted
with vertical solid lines, and the corresponding frequencies are equal
to ki ¼ 2:95 and 16.69 for the supercritical and subcritical case,
respectively. For the subcritical spectrum, the second leading eigen-
value is also highlighted (vertical dashed line at ki ¼ 31:64); the first
two leading eigenvalues have a similar growth rate, and the spectrum
does not reveal the slow branch. Table VI reports the first two leading

eigenvalues together with their sinuous and varicose energy contents.
Unlike the previous cases, here the second leading eigenvalue has
already a remarkable varicose energy content, about the 53%.

The spatial distributions of the leading DMD mode (with
ki ¼ 16:69) highlight a sinuous behavior, similar to those of the super-
critical conditions [see panels (a)–(c) of Fig. 8] but with a lower spatial
wavelength; therefore, they have not been reported here. The second
leading eigenvalue, as already said, presents a relevant amount of
energy related to the varicose motion; the corresponding spatial distri-
butions of u0 and C0 are reported in panels (a) and (b) of Fig. 14. Panel
(c) contains both real (black line) and imaginary (red line) parts of the
thickness mode uh that has been computed as:uh ¼

Ð 1
�1 uC dŷ , where

ŷ ¼ y=H.
To give further insights on the behavior of the sheet in the sub-

critical regime, it is convenient to recover the centerline displacement
mode from the spatial distribution of the volume of fluid C0 one. In
particular, given a C0 mode distribution uCðx; yÞ, the lateral displace-
ment mode u‘ðxÞ is calculated as

FIG. 11. Convergence of DMD algorithm. Residual history of the DMD vs number of
random simulations ns for the base case (We¼ 2.5, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01,
and Re¼ 413).

FIG. 12. Effect of the We number on the global spectrum in supercritical regime.
Red filled markers represent the DMD spectrum at We¼ 1.5; black ones at
We¼ 2.5 and blue ones at We¼ 3.5. Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and
Re¼ 413.

TABLE V. Comparison of the leading dimensionless frequency (ki) of the DMD and
1D model at various supercritical Weber numbers. The spread refers to the percent-
age difference between the values normalized with respect to the 1D model one.

We

1.5 2.5 3.5

DMD 2.95 3.64 4.02
1D model 2.99 3.78 4.07
% spread 1.4% 3.7% 1.2%

FIG. 13. DMD spectra comparison between supercritical and subcritical regimes.
Black filled markers represent the DMD spectrum at We¼ 1.5 and red ones at
We¼ 0.75. Vertical solid lines highlight the leading eigenvalues. The red dashed
line refers to the second most unstable eigenvalue of the We¼ 0.75 case.
Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413.

TABLE VI. Sinuous and varicose energy contents of the first two leading eigenval-
ues for the case at We¼ 0.75, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413.

kr ki Es(%) Ev(%)

–5.51 16.69 93.5% 6.5%
–5.56 31.64 46.3% 53.7%

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 122101 (2022); doi: 10.1063/5.0123550 34, 122101-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


u‘ðx̂Þ ¼

ð1
�1

uCŷ dŷð1
�1

�C dŷ

: (26)

Panels (a) and (b) of Fig. 15 report real (solid line) and imaginary parts
(dash-dotted line) of the leading lateral displacement mode (u‘) for
We¼ 0.75 andWe¼ 1.5, respectively.

Apart from the different spatial wavelength, the main difference
between these modes is the disturbances traveling time. To clarify this,

it is useful to compute the dimensionless phase velocity distributions
cphðx̂Þ ¼ ki=a for both modes, where aðx̂Þ is the leading spatial wave-
length, depending on the position x̂ , and it is equal to aðx̂Þ ¼ dh=dx̂ ,
where the phase distribution is hðx̂Þ ¼ argðu‘ðx̂ÞÞ. The corresponding
phase velocities for We¼ 0.75 and 1.5 are reported in the panel (c) in
black and red lines, respectively. Considering that the phase velocity of
the leading mode at the lower We is always higher than that at the
higher We, the crossing time in the subcritical configuration will be
smaller. This finding agrees with the results of the 1D model discussed
in the previous works of Della Pia et al.6 and Girfoglio et al.4

FIG. 14. Varicose components of DMD modes with ki ¼ 31:63 [panels (a) and (b)]. We¼ 0.75, Fr¼ 0.33, e ¼ 0:02; rq ¼ 0:01, and Re¼ 413. The black dashed line repre-
sents the interface location. Field variables have been normalized with respect to the maximum. Panel (c) reports the real (black line) and imaginary (red line) parts of the thick-
ness mode.

FIG. 15. Leading modes lateral displace-
ment (u‘) for We¼ 0.75, panel (a), and
We¼ 1.5, panel (b). The solid lines are
the real parts, and the dash-dotted lines
are the imaginary ones. Modes have been
normalized with respect to the maximum
amplitude. Panel (c) reports the phase
velocity cph of the modes.
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2. Density ratio effect

The density ratio rq has a great impact on the stability of the
flow. Here, three different rq values, equal to rq ¼ 0:005, 0.01, and
0.05, have been considered, whose spectra are reported in Fig. 16. The
analysis has been carried out considering We¼ 2.5. Increasing the
density ratio up to rq ¼ 0:05, the flow shows an unstable behavior.
The most unstable eigenvalue is equal to k ¼ 2:69þ 20:85i, with a
characteristic frequency in good agreement with that reported in the
work by Della Pia et al.6 (Table VI), that regards the frequency
response to an impulse disturbance of the transversal velocity
component.

A comparison between frequencies of the leading DMD modes
and the most unstable eigenvalues of the 1D model is presented in
Table VII. A good agreement is retrieved for rq � 0:01, with a relative
spread of about the 5%. For the case rq ¼ 0:05, the frequencies of the
first two most unstable eigenvalues are reported, because, according to
the work by Della Pia et al.,6 a better agreement between VOF simula-
tions and 1D model is found for the imaginary part of the second
most unstable eigenvalue (ki ¼ 22:60) rather than the leading one
(ki ¼ 34:47). In fact, the ripples of shorter wavelength are likely
damped in the more realistic 2D VOF simulations.

The DMD structures for the stable cases at rq ¼ 0:005 and 0.01
feature a purely sinuous shape and, being quite similar to those shown
in Fig. 8, they are not reported herein. On the contrary, the unstable
condition found for rq ¼ 0:05 presents leading modes with a different
and very interesting spatial distribution. In this last case, the investiga-
tion is carried out decomposing the flow field into sinuous and vari-
cose contributions as shown in Eq. (25).

The energy content of the sinuous and varicose components of
the leading mode is equal to Es ¼ 57:0% and Ev ¼ 43:0%, respec-
tively. This unstable case is therefore characterized by a relevant vari-
cose content, unlike what has been observed in the previous stable
cases, exhibiting a predominant sinuous behavior. Moreover, the
amplitude of the varicose components increases downstream, as can
be observed by the corresponding spatial distributions reported in
Fig. 17.

Further insights on the topology of the leading mode can be
obtained by analyzing the local contribution Ex of the sinuous and var-
icose components to the total energy E of the mode. This contribution
is obtained for each mode by integrating the Eq. (13) along the span-
wise direction y only, and therefore, Ex depends on the x/L station.
Furthermore, as the orthogonality between the sinuous and varicose
components is also found locally, one can write Ex ¼ Es

x þ Ev
x , where

Es
x and Ev

x are the sinuous and varicose contributions to the total
energy, respectively. Figure 18 contains the spatial distribution along

FIG. 16. Density ratio rq effect on DMD spectrum. Red filled markers represent the
DMD spectrum at rq ¼ 0:05; black ones at rq ¼ 0:01, and blue ones at
rq ¼ 0:005. We¼ 2.5, Fr¼ 0.33, e ¼ 0:02, and Re¼ 413.

TABLE VII. Effect of the rq on the leading frequency. For the case rq ¼ 0:05, the
frequencies of the first two most unstable eigenvalues are reported.

rq

0.005 0.01 0.05

DMD 3.85 3.64 20.85
1D model 4.07 3.78 34.47–22.60
% spread 5.4% 3.7% 39.5%–7.7%

FIG. 17. Varicose components of the DMD leading mode of u0 [panel (a)] and v0 [panel
(b)] for ki ¼ 20:85. We¼ 2.5, Re¼ 413, Fr¼ 0.33, e ¼ 0:02; and rq ¼ 0:05. Field
variables are normalized with respect to the maximum.

FIG. 18. Spatial distribution of the local norm Ex (black line) together with the corre-
sponding sinuous (red) and varicose (blue) contributions normalized with respect
the maximum of Ex. We¼ 2.5, Re¼ 413, Fr¼ 0.33, e ¼ 0:02; and rq ¼ 0:05.
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the longitudinal direction x of the local norm Ex together with Es
x and

Ev
x . Curves have been normalized with respect to the Ex maximum.

The inspection of this figure reveals that the rupture mechanism of an
unstable liquid jet is deeply related to the amplification of the varicose
mode. Indeed, the leading mode is mainly sinuous until x=L � 0:9,
while the varicose behavior gains prominence moving downstream.
The shift from sinuous to varicose shape is strictly related to the cur-
tain instability, leading to the rupture of the sheet.

Figure 19 reports the DMD reconstructions of the volume frac-
tion field C at different time instances for this unstable case. By looking
at the panel (b), which refers to a time instance before the curtain rup-
ture, it is possible to note that the liquid phase (where C¼ 1, dark red)
reports a greater thickness reduction around x=L ¼ 0:9 that corre-
sponds to the aforementioned varicose behavior. The sheet rupture
can be appreciated in the panel (c).

V. CONCLUSIONS

A data-driven approach, based on the dynamic mode decomposi-
tion, has been employed to obtain 2D global (BiGlobal) spectra of
gravitational viscous liquid sheet flows in both supercritical and sub-
critical regimes. The flow fields have been obtained by means of the
BASILISK computer code, considering a one-fluid formulation and
the volume-of-fluid approach.

The procedure has been verified considering first simplified 1D
equations, modeling the lateral displacement and the transversal veloc-
ity of the sheet. The estimated eigenmodes and eigenfunctions quickly
convergence toward the standard ones of the linear stability theory,
computed with the Chebyshev collocation method.

The BiGlobal spectrum for the supercritical case at We¼ 2.5
shows three different branches. The upper and the lower branches,
already observed with the 1D model, are associated with the crossing
time of slow and fast traveling waves, respectively; they exhibit a purely
sinuous behavior with frequencies quite close to those predicted by the
1D model. The middle branch, instead, presents a predominant

varicose component, increasing with the frequency, and a uniform
energy distribution along the curtain. This last branch could not be
predicted by the 1D model, which takes into account the curtain sinu-
ous behavior only.

A parametric investigation has also been performed, to eluci-
date the impact of the Weber number and the density ratio
between the two phases on the dynamics of the curtain. In the
supercritical regime, for moderate values of We, the flow is stable
and the leading eigenmodes are purely sinuous. When We
increases, the varicose middle branch moves toward the upper one
at high frequencies. The subcritical regime, instead, shows a lead-
ing mode with a frequency almost an order of magnitude higher
than the previous ones, but still with a sinuous behavior; the sec-
ond most unstable eigenvalue has a growth rate comparable with
the leading one and a varicose behavior.

In the supercritical regime, increasing the density ratio, flow
instabilities arise. The topology of the leading modes reveals how in
the unstable configuration there is a superposition of both sinuous and
varicose regimes. By means of the inspection of the streamwise contri-
bution to the total energy of the leading mode, some insights on the
disturbance propagation have been shown. In particular, moving
downstream along the curtain there is a prominent shift from the sinu-
ous shape to the varicose one, highlighting that the instability mecha-
nism, which leads to the rupture of the sheet, is deeply related to the
amplification of the varicose modes.
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FIG. 19. DMD reconstruction for the C field, considering the leading unstable mode only. Panels from (a) to (c) report its temporal evolution. We¼ 2.5, Re¼ 413, Fr¼ 0.33,
e ¼ 0:02; and rq ¼ 0:05.
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