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ABSTRACT   

Plants are subjected to a wide range of stresses which reduces the productivity of agricultural crops. In the case of cereal 
cultivations, climate change impacts on their production mainly through abiotic and biotic stress due for example to heat 
and water stress but also to pathogens such as bacteria, fungi, nematodes and others. The area under cereal cultivation is 
increasing worldwide, but, due to these problems, the current rates of yield growth and overall production are not enough 
to satisfy future demand. For this motivation, there is the needs to monitor and to control the cultivations, also 
developing new technological solutions useful to better optimize the management strategies, increasing both the quality 
of products and the quantity of the annual cereal harvest. Infrared imaging is a well-known non-invasive and non-contact 
technique that represents an outstanding approach of analysis applied in many fields: engineering, medicine, veterinary, 
cultural heritage and others. In recent years it has been gaining great interest in agriculture as it is well suited to the 
emerging needs of the precision agriculture management strategies. In this work, we performed an in-field multispectral 
infrared monitoring of different cereal crops (durum wheat and common wheat) through the use of both LWIR and 
MWIR cameras. The monitoring carried out made it possible to identify, among the crops analyzed, those subject to 
higher stress levels and their response to the different spectral ranges used. The results obtained open to the possibility of 
identifying new figures of merit useful for an effective monitoring of cereal crops and measurable through remote 
instrumentation. 
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1. INTRODUCTION  

Cereals are used as raw material for many foods around the world and in particular in the Mediterranean basin.1,2 Wheat 
constitutes one of the most cultivated cereals thank to its versatility for the preparation of various foods and to its 
nutritional value in the human diet.3,4 They are often subjected to a wide range of stresses which reduces their 
productivity. Climate change as well as others abiotic and biotic stress due for example to heat and water stress but also 
to pathogens such as bacteria, fungi, nematodes might be responsible for larger or smaller changes in their crop yields.5 
Moreover, adaptation to specific climatic and territorial conditions of the Mediterranean area can play an important role 
in their growth. Due to these problems, the current rates of yield growth and overall production are not enough to satisfy 
future demand. For this motivation, there is the needs to monitor and to control the wheat crops, also developing new 
technological methods to optimize the management strategies, increasing both the quality of products and the quantity of 
the annual harvest. Wheat monitoring based on imaging techniques is an interesting approach to quantify both the state 
of health and the performance of crops under different environmental conditions. Among these techniques, infrared 
imaging is a well-known non-invasive and non-contact method that represents an outstanding approach of analysis 
applied in many fields, from agriculture to non-destructive testing.6-16 As reported in literature, it is essential to determine 



 
 

 

 

 

 

the temperature demands in each phenological stage in order to account for the variations in wheat yield due to climatic 
conditions.17,18 In recent years, this technique has been used to evaluate physical and physiological characteristics of 
plants among which: transpiration rates, heat capacity of the leaves, local water content, water flow velocity, response to 
UV interaction.19-23 Moreover, it proved to be a valuable tool for the diagnosis and detection of plant to different kind of 
biotic and abiotic stress, adapting well to the emerging needs of precision agriculture management strategies.24,25 Infrared 
imaging was extensively used for proximal (in field, in growth chambers and in greenhouses) or remote sensing (drones 
and UAVs systems) of plant stress. In this work, realized in the frame of the Italian regional project “Valorizzazione 
della BIOdiversità cerealicola in regime BIOlogico - BIOeBIO” (PSR Campania 2014-2020), it was performed a 
multispectral infrared monitoring of different varieties of wheat crops (durum and common) realized on both proximal 
and remote scale. The performance of two cameras with sensors in the spectral range respectively Long Wave Infrared 
(LWIR) and Mid Wave Infrared (MWIR) were tested and compared, in the specific environmental condition of the 
experimental field to monitor the state of different varieties of wheat. Furthermore, the analysis performed made it 
possible to compare and to identify, among the monitored varieties, those ones subject to higher stress levels during the 
different phenological stages of growth and the respective percentages of soil coverage introducing two indices for their 
estimation. The results achieved give interesting information concerning both the development of novel infrared 
monitoring systems and the level of adaptation of the wheat varieties monitored to the specific climatic conditions of 
growth to which they were subjected, typical of the Mediterranean area. 
 
 

2. MATERIALS AND METHODS 

Infrared measurements 

Infrared measurements were performed using both a MWIR camera FLIR X6580 sc with a cooled indium antimonide 
(InSb) detector (FPA 640x512 pixels and NETD ~20 mK at 25 °C) mounting a 50 mm focal lens with spectral band               
3.5-5 μm and IFOV 0.3 mrad and a LWIR AVIO TVS500 with an uncooled microbolometric detector (spectral range             
8–14 μm, FPA 320 × 240 pixels and NETD ~ 60 mK at 25 °C) mounting a 22 mm focal lens with IFOV 1.68 mrad. The 
commercial software, ResearchIR (FLIR Systems) and IRT Analyzer (GRAYESS inc.), with which the cameras are 
supplied, are used for monitoring the temperature in real-time and for basic operations. Figure 1 shows pictures of the 
two cameras (MWIR 1a and LWIR 1b) and a table (1c) reporting their main technical characteristics.   

 

 

Figure 1. Pictures of the two cameras used for the infrared monitoring, a) MWIR and b) LWIR and c) table reporting their main 
technical characteristics. 



 
 

 

 

 

 

Experimental design and plant materials 

Field measurements were carried out during the growing seasons 2021-2022, on two private farms located in the Alto 
Tammaro area (Benevento area, Campania Region – Italy), specifically in Colle Sannita (Latitude: 41° 22’ 48.5’’ N, 
Longitude: 14° 52’ 09.5’’ E, Altitude: 695 m) and in Castelpagano (Latitude: 41° 25’ 50.7’’ N, Longitude: 14° 48’ 15.1’’ 
E, Altitude: 805 m). In the first farm, five different varieties of durum wheat were compared: Pigreco, Svevo, Saragolla, 
Senatore Cappelli, and Marzellina, of which the last three are traditional varieties; in the second one, five varieties of 
common wheat were tested: Alteo, Taxum, Risciola, Romanella, and Gentil Rosso, and also in this case, the last three are 
traditional varieties. The sowings were made on December 21, 2021, with a density of 500 seeds per square meter. 
Each experimental plot was 2.5 x 20 m and it was replicated three times. No fertilization nor interventions for weeds and 
pathogens control were made since both farms follow organic cultivation. Infrared monitoring was performed at four 
different phenological phases of the crops: steam elongation (April 21, 2022), heading begins (May 26, 2022), milky-
waxy ripening (June 13, 2022) and full ripening (June 30, 2022). The harvests were made on July 11, 2022, in both 
farms.  

3. RESULTS AND DISCUSSION 

Comparison of MWIR and LWIR spectral ranges for wheat monitoring 

Designing a high-performance monitoring system that can also operate remotely, based on infrared technologies, 
requires the optimization of various physical-optical parameters, among which the choice of the sensor and therefore of 
the spectral range to be used is a crucial point. 
MWIR and LWIR sensors are developed using respectively photon and thermal detectors. Photon detectors boast many 
technical advantages respect the thermal counterpart, including fast response and a lower signal to noise ratio. On the 
other side, thermal detectors are lighter and less expensive substantially due to the absence of a cooling system necessary 
instead for photonic sensors which are based on the use of semiconductors. However, the optimal choice is closely linked 
both to the type of samples to be investigated and to the average atmospheric conditions present during the experimental 
measurements. In order to provide more information on this aspect, in this work infrared measurements of five plots of 
durum wheat, taken at heading begins growing phase (May 26, 2022), were realized using two thermal cameras 
respectively in the LWIR and MWIR spectral ranges in both proximal and remote scale. 
In figure 2 are reported the main information achieved with both camera on five type of durum wheat realized in remote 
scale, from a hill at about 350 m from the experimental field.  
 

 
Figure 2. Comparison of the infrared monitoring realized on remote scale using two spectral ranges: a) visible image of the plots of the 

five durum wheat varieties, b) LWIR and c) MWIR image images of the experimental field, d)-h) comparison of the temperature 
profiles measured with the two cameras on the five durum wheat monitored, i) table reporting the TAV values estimated for the five 

crops. 



 
 

 

 

 

 

In particular, figures 2a-c show a comparison between a visible, a LWIR and a MWIR image of the experimental field 
while figures 2d-h report the temperature profiles measured with the two cameras (red lines MWIR, black lines LWIR) 
taken from top to bottom of the crop rows. 
As visible from the graphs, in all cases the profiles achieved in the MWIR range shows higher temperatures than those 
measured in the LWIR range. This achievement can be explained considering the atmospheric condition during which 
the measurements were realized, characterized by a mean environmental temperature of 27°C and a humidity in the 
range 75 -78%, typical values in the months of May-June for the geographical area in which the experimental field is 
located. In fact, as well known, sensors based on MWIR range has higher transmittivity under high humidity and clear 
weather performance, whereas sensor based on LWIR range shows performs better in fog, dust conditions having a 
higher tolerance to atmospheric turbulence.26 From the data acquired we calculate the average canopy temperature index 
TAV = (TMAX-TMIN)/TMAX where TMAX and TMIN are the maximum and the minimum average temperature measured on the 
crop rows respectively.27,28 The values achieved with the two spectral ranges for the five durum wheat varieties 
monitored are reported and compared in the table reported in figure 2i. The results obtained indicate how, in the specific 
atmospheric condition of measurement, the data acquired in the LWIR range can induce an overestimation of this 
parameter thus making the assessments carried out with this type of sensor remotely (also for example through the use of 
drones and UAV systems) less reliable than those obtained in the MWIR range.  
This difference in performance and reliability of the results is cleared in the case of evaluations carried out on a proximal 
scale. In figure 3, as an example, are reported experimental measurements realized on one durum wheat cultivation 
(‘Svevo’ variety) takes in proximal scale.  
 

 
Figure 3. Comparison of the infrared monitoring realized on proximal scale using two spectral ranges: a) visible image of the plots of 
‘Svevo’ variety, b) LWIR and c) MWIR image images of the experimental field, d) comparison of the temperature profiles measured 

with the two cameras on the soft wheat variety considered and table reporting the TAV values estimated for the crop. 
 



 
 

 

 

 

 

As in the case of remote analysis, figure 3a shows a visible image of the wheat, 3b and 3c a comparison between its 
LWIR and MWIR images respectively, while in figure 3d the temperature profiles measured with the two cameras. 
As can be seen from the graph in 3d, even if the measured temperatures are slightly different, the TAV index calculated 
and shown in the table, is practically the same. This last result highlights how the effects due to high humidity for 
measurements carried out on a proximal scale are negligible, and, therefore, also due to its lower commercial cost, the 
LWIR technology can be preferred to MWIR-based cameras in this type of experimentation. 
 
Evaluation of the soil coverage of durum wheat varieties  

From the infrared images acquired, the percentage of soil coverage by the various wheat crops monitored was evaluated. 
The analysis was performed in the steam elongation (April 21, 2022) phenological state of the crops. To achieve this 
parameter from each thermographic image acquired, the number of pixels associated with the vegetation (NV) and those 
associated with the soil (NS) were evaluated. In Figure 4, as an example, are shown a visible image of a cultivation clod 
(4a), the corresponding thermographic image (4b), and two of its representations in which only the pixels associated with 
the vegetation (4c) or with the soil (4d) are reported.  
 

 
Figure 4. Analyses for cereal coverage estimation: a) visible image of a cultivation clod the corresponding thermographic image (4b), 
and two of its representations in which only the pixels associated with the vegetation (4c) or with the soil (4d) are reported.  
 
The separation of the two classes of pixels was carried out considering the temperature diagram associated with the 
image where it is possible to identify a threshold value TTH that allows to discriminate the temperature distribution of the 
vegetation and that of the soil (TTH =16.1 °C in figure 4b). The pixels NV that refer with vegetation are those with a 
temperature TV <TTH while those that refer with the soil NS with a temperature TS>TTH. The percentage of wheat coverage 
(% WC) can therefore be calculated with the following relationship: %WC= [NV/(NV+NS)]x100. 
It must be said that this type of evaluation based on the choice of a TTH is subject to an intrinsic error due to the presence 
of pixels in the diagram related with the vegetation having TV>TTH and pixels related with the soil having TS <TTH. 
However, in the reasonable hypothesis that the number of such pixels is approximately equal and negligible respect both 
NV and NS, the proposed method allows an estimation of the percentage of soil coverage of wheat crops and a comparison 
of the different types of cereals rows considered. In table 1 the comparison of the %WC values estimated for respectively 
five durum wheat varieties and five common wheat varieties monitored is reported. 
 



 
 

 

 

 

 

 
Table 1. Table reporting the %WC  values estimated for both durum and common wheat varieties monitored. 

 
The values  reported for each species of cereals represent the average calculated from five infrared images acquired 
randomly along the crops. %WC estimated are in the range 83% - 93% for both wheat species with the highest values 
(93%) found in the case of the 'Senatore Cappelli' variety for durum wheat and 'Gentil Rosso' variety for common wheat. 
 
Common wheat stress level monitoring: NRST index 
Different varieties of common wheat were monitored throw the use of the infrared imaging in LWIR range, taking 
measurements in proximity scale, in order to evaluate their level of adaptability to the environmental conditions to which 
they are subjected during their growth period. Analysis were performed at four different phenological phases of the 
crops: steam elongation (April 21, 2022), heading begins (May 26, 2022), milky-waxy ripening (June 13, 2022) and full 
ripening (June 30, 2022), acquiring 20 thermal images for each variety along all the rows, randomly. As an example, in 
figure 5a, both a visible and a thermal image acquired in the four phases of growth are shown for one of the investigated 
variety.  
 

 
Figure 5. Analyses for the estimation of the stress level of cereals: a) visible and corresponding thermal images acquired in four phases 
of growth for one of the investigated variety, b) graph of the NRST index measured for each variety of common wheat monitored in 
the four phenological phases taken into account. 
 



 
 

 

 

 

 

In the thermal images acquired, the pixels referring to vegetation and soil were separated as described in the previous 
section, and the mean values of the temperature of the wheat variety (TMW) and of the soil (TMS) were calculated in each 
growth phase analyzed. With these two values a new index, the Normalized Relative Soil Temperature (NRST) achieved 
with the following relation NRST= (TMS – TMW) / TMS, was calculated. In table 2 and figure 5b, the NRST index obtained 
for each variety of common wheat in the four monitored phenological phases are showed and graphicated, respectively.  
 

 
Table 2. Table reporting the NRST index obtained for each variety of common wheat at the four monitored phenological phases. 

 
In all the measurements carried out we found TMS > TMW, therefore, from the NRST relation given above, lower NRST 
values corresponding with lower difference TMS – TMW and vice versa. In general, this difference is smaller the higher the 
value of TMW. In the hypothesis that this difference can be related to the stress level of the crop, lower values of NRST 
indicate a tendency of the vegetation to higher stress level while higher values of the same index a tendency to lower 
stress level and therefore greater adaptability of the variety. Considering the mean value of the NRST reported in the last 
column of table 2, ‘Alteo’ represents the variety that has shown higher adaptability to the environmental conditions of 
growth while ‘Gentil Rosso’ showed a higher mean stress level during the four growth stages monitored. Moreover, 
considering the phase mean values reported in the last row of the same table, both steam elongation and full ripening 
represent the phenological growth phases where all the varieties show higher mean stress level, and hence, based on our 
results, they represent the states that need more control and monitoring by the farmer.  
Unlike other indices present in the literature normalized with respect to the air temperature Tair 

29-31, the choice in the new 
index introduced here to consider the soil temperature as a reference is based on two main considerations: 1) the TMS 
better describes the local environmental conditions to which a specific wheat row is subjected respect to Tair, as it is  
affected with higher sensitivity from any differences in both irradiation (presence of shaded areas) or soil moisture, 2) 
unlike the measurement of Tair that requires an additional instrument,  TMS can be extrapolated directly from the acquired 
thermal frames, thus facilitating the design of automatic and remote analysis systems.  
 

4. CONCLUSIONS  

In this work, we made an in-field infrared monitoring of different cereal varieties belonging to the durum wheat and 
common wheat species. A comparison between the information achieved on two spectral ranges LWIR and MWIR was 
carried out highlighting the advantages and criticalities of their use in both proximal and remote scales. Two indices for 
the estimation of soil coverage (%WC) and stress level (NRST) for wheat crops were introduced, calculated, and 
discussed. The results obtained provide useful information to identify new figures of merit and to design new infrared 
automatic detection systems that also meet the demands of precision agriculture strategies. 
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