
����������
�������

Citation: Marzano, M.;

Terracciano, M.; Piccialli, V.; Mahal,

A.; Nilo, R.; D’Errico, S.

O6-[(2”,3”-O-Isopropylidene-5”-O-
tbutyldimethylsilyl)pentyl]-5′-O-
tbutyldiphenylsilyl-2′ ,3′-O-

isopropylideneinosine. Molbank 2022,

2022, M1345. https://doi.org/

10.3390/M1345

Academic Editor: Fawaz Aldabbagh

Received: 3 February 2022

Accepted: 23 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molbank

Short Note

O6-[(2”,3”-O-Isopropylidene-5”-O-tbutyldimethylsilyl)pentyl]-
5′-O-tbutyldiphenylsilyl-2′,3′-O-isopropylideneinosine
Maria Marzano 1, Monica Terracciano 2 , Vincenzo Piccialli 3 , Ahmed Mahal 4,5,6, Roberto Nilo 7

and Stefano D’Errico 2,*

1 Institute of Applied Sciences and Intelligent Systems (ISASI), Unity of Naples,
National Research Council (CNR), via Campi Flegrei, 34, 80078 Naples, Italy; maria.marzano@na.isasi.cnr.it

2 Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy;
monica.terracciano@unina.it

3 Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy;
vinpicci@unina.it

4 Department of Medical Biochemical Analysis, College of Health Technology, Cihan University—Erbil,
Erbil 44001, Kurdistan Region, Iraq; ahmed.mahal@cihanuniversity.edu.iq

5 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key
Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou 510650, China

6 Guangzhou HC Pharmaceutical Co., Ltd., Guangzhou 510663, China
7 Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS) National Research

Council (CNR), via T. De Amicis, 95, 80145 Naples, Italy; r.nilo@studenti.unina.it
* Correspondence: stefano.derrico@unina.it; Tel.: +39-081-679981

Abstract: Cyclic adenosine diphosphate ribose (cADPR) is a cyclic nucleotide involved in the Ca2+

homeostasis. In its structure, the northern ribose, bonded to adenosine through an N1 glycosidic
bond, is connected to the southern ribose through a pyrophosphate bridge. Due to the chemical
instability at the N1 glycosidic bond, new bioactive cADPR derivatives have been synthesized. One
of the most interesting analogues is the cyclic inosine diphosphate ribose (cIDPR), in which the
hypoxanthine replaced adenosine. The efforts for synthesizing new linear and cyclic northern ribose
modified cIDPR analogues led us to study in detail the inosine N1 alkylation reaction. In the last few
years, we have produced new flexible cIDPR analogues, where the northern ribose has been replaced
by alkyl chains. With the aim to obtain the closest flexible cIDPR analogue, we have attached to the
inosine N1 position a 2”,3”-dihydroxypentyl chain, possessing the two OH groups in a ribose-like
fashion. The inosine alkylation reaction afforded also the O6-alkylated regioisomer, which could be a
useful intermediate for the construction of new kinds of cADPR mimics.

Keywords: cADPR; nucleosides; nucleotides; inosine; alkylation; calcium mobilization; ryanodine
receptor; primary cortical neurons

1. Introduction

The design and synthesis of new nucleoside and nucleotide analogues is a frontier
theme in light of the current SARS-CoV-2 pandemic that the world is facing [1]. However,
apart from being employed in medicinal chemistry both as antiviral [2] and antitumor
drugs [3], nucleosides, nucleotides, and their analogues can be also used as probes in the
signaling pathways [4–6]. Cyclic nucleotides are important second messengers involved
in signal transduction [7,8]. Among them, cADPR (1, Figure 1), an 18-membered cyclic
nucleotide firstly isolated from sea urchin egg extracts [9], elicits Ca2+ ions from the
endoplasmic reticulum (ER) to cytosol through the ryanodine receptor (RyR) in several
cellular systems [10]. Alterations in the cADPR biosynthesis and calcium homeostasis
can play pathological roles in diabetes, airway hyper-responsiveness and autism [11].
Unfortunately, the chemical instability at the N1 glycosidic bond in physiological conditions
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hampered the definition of cADPR molecular mechanism of action [12]. In this frame, efforts
have been devoted to the synthesis of stable cADPR analogues [13–16]. In particular, the
replacement of the adenine with hypoxanthine generated the very stable cIDPR analogue 2,
which retained the same Ca2+ mobilizing activity of the endogenous metabolite [17]. In
the last few years, we have produced both in solution [18–21] and on solid phase [22,23]
some cIDPR analogues with alkyl chains in the place of the northern ribose (3–7). As we
have found a promising Ca2+ mobilizing activity in the derivative with a pentyl chain (6,
n = 4) in a neuronal cellular model [18], we have recently prepared a new flexible cIDPR
analogue (8), with a 2”,3”-dihydroxypentyl chain replacing the northern ribose [21].
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Figure 1. The structures of cADPR (1), cIDPR (2) and their analogues (3–8).

As the last mimic possesses the two OH groups in a ribose-like fashion, it may be
considered the closest cIDPR flexible analogue. Interestingly, the cyclic compound 8
induced a concentration-dependent increase in [Ca2+]i when perfused to primary cortical
neurons as efficiently as cADPR.

Since 6-substituted purine nucleosides displayed interesting biological activities [24–26],
herein we report on the synthesis and characterization of the O6-alkylated compound 9, obtained
as a side product during the coupling reaction of the protected inosine 10 and the tosylate 11
(Scheme 1). That reaction was revealed to be fundamental for the construction of the new cyclic
analogue (8) scaffold.
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Table 1. Optimization of the reaction between 10 and 11 1.

Entry Base Equivalents 2 Temperature
(◦C) Yield (%) 9:12

1 K2CO3 1 or 3 r.t. No reaction -
2 K2CO3 3 80 10 20:80
3 Triethylamine 1 or 3 r.t. No reaction -
4 Triethylamine 3 80 No reaction -
5 DBU 1 or 3 r.t. No reaction -
6 DBU 3 80 70 30:70
7 DBU 3 120 30 60:40

1 All the reactions were carried out in anhydrous N,N-dimethylformamide (DMF) as solvent. 2 Calculated from 10.

2. Results and Discussion

Scheme 1 shows the convergent synthetic approach that we have used for the prepa-
ration of the cyclic compound 8. The ribose-protected inosine 10, after reaction with the
tosylate 11, afforded as the main product the N1-alkylated derivative 12. The electrophile
11 was prepared as a racemic mixture starting from the commercially available propargyl
alcohol 13 with an overall 63% yield [21].

To obtain the target compound 8, we used the well-known Hata protocol, which
required an I2 mediated cyclopyrophosphorylation reaction among a phosphomonoester
and a phosphorothioate [14]. As a TBDMS group could be selectively removed in the
presence of a TBDPS group [27], we followed the synthetic sequence reported in Scheme 1,
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and compound 14 was readily obtained. The two phosphates in 14 were then deprotected
to give the key intermediate 17. The pyrophosphate bond formation was carried out by
adding compound 17 through a syringe pump to a very diluted solution of I2. The cyclic
compound was isolated from a complex reaction mixture and finally deprotected from both
the acetonides, affording the new cADPR analogue 8 with an overall 1% yield.

The reaction between the protected inosine 10 with the electrophile 11 has been stud-
ied in detail. In principle, as hypoxanthine is an ambident nucleophile [28] at the N1
and O6 purine positions [29,30], the two regioisomers 12 and 9 could be expected. In our
studies focused on the inosine N1 functionalization, we discovered that the Mitsunobu
reaction was not a good method to regioselectivity obtain the N1-alkylated isomer. In fact,
the reaction of inosine with di-tert-butyl (5-hydroxypentyl)phosphonate in the presence
of diethyl azodicarboxylate (DEAD) and triphenylphosphine (PPh3) afforded mainly the
O6-alkylated regioisomer. We attributed the observed regioselectivity to the hard–hard
interaction between the alkoxy-phosphonium cation intermediate and the nucleobase
O6 atom [19]. On the other hand, previous findings demonstrated that inosine could
be efficiently alkylated at the N1 purine position at room temperature (r.t.) when a soft
electrophile was used [31]. Unfortunately, all the attempts to transform both the tosylate
11 and its primary alcohol precursor into the iodide derivative proceeded with very un-
satisfactory yields [21]. As literature data reported on the efficient nucleophilic mediated
displacement of a tosylate flanked by an isopropylidene under mild conditions [32,33], we
reacted the inosine derivative 10 with the electrophile 11 at r.t. in the presence of some
bases (Table 1); unfortunately, no reaction took place. By increasing the temperature, we
noted on TLC (petroleum ether/AcOEt, 6:4) the formation of two spots. 1D/2D NMR
analyses of the purified compounds (see Supplementary Materials) allowed to assign the
N1-alkylated inosine 12 to the spot with Rf = 0.10, whereas the O6-alkylated inosine 9 to
that with Rf = 0.50. In detail, in the 1H NMR spectrum of compound 12 the two 1”-H
protons resonated as two doublets of doublets centered at 4.70 and 4.66 ppm and correlated
with their carbon atom resonating around 47.7 ppm. The HMBC correlation between the
purine 2-H and the C1” carbon atom supported the structure 12 [21]. Conversely, in the
1H NMR spectrum of compound 9 (Figure S1, Supplementary Materials) the 1”-H protons
resonated in the range 4.68–4.54 ppm and correlated with their carbon atom resonating at
65.6 ppm (Figure S4). The HMBC correlation between the two 1”-H protons and the C6
purine carbon atom resonating at 160.3 ppm and the absence of HMBC correlation between
the purine 2-H (8.43 ppm) and the C1” carbon atom supported the structure 9 (Figure S5).

Careful tuning of the reaction conditions allowed to recover the N1-alkylated regioiso-
mer 12 as the main product. In particular, 3.0 equiv. of 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU) and 80 ◦C for 12 h were the best conditions to recover the N1 and O6 regioisomers
with a good 70% yield in a 7:3 ratio. (Scheme 2 and Table 1) Higher temperatures were detri-
mental to the reaction yield and increased the ratio 9:12. The last experimental evidence
could be explained assuming that compound 9 is the thermodynamic regioisomer.
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3. Materials and Methods

All the reagents and solvents were commercially available and used without further
purification. 1H- and 13C-NMR spectra were acquired on the Bruker Avance 600 MHz
spectrometer (Bruker-Biospin, Billerica, MA, USA) using CDCl3 as solvent. NMR chemical
shifts are reported in parts per million (δ) relative to residual solvents signals: CHCl3
7.26 for 1H-NMR and CDCl3 77.0, for 13C-NMR. The 1H NMR chemical shifts were assigned
through 2D NMR experiments. The NMR spectra were processed with the MestReNova
(Mestrelab Research, Santiago de Campostela, Spain) suite. The HRESI-MS spectra were
acquired on a Thermo Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA). Column chromatography was carried out on silica gel-60 (Merck, Readington
Township, NJ, USA, 0.063–0.200 mm). TLC analyses were carried out on F254 silica gel
plates (0.2 mm thick, Merck). TLC spots were detected under UV light (254 nm).

O6-[(2”,3”-O-isopropylidene-5”-O-tert-butyldimethylsilyl)pentyl]-5′-O-tert-butyldiphenylsilyl-
2′,3′-O-isopropylideneinosine 9. To a stirred solution of compound 10 (0.10 g, 0.18 mmol) in
anhydrous DMF (2.0 mL), DBU (80 µL, 0.55 mmol) was added. After 20 min. the tosylate 11
(49 mg, 0.11 mmol) was added and reaction warmed to 80 ◦C for 12 h (TLC monitoring: petroleum
ether/AcOEt, 6:4). The mixture was cooled, and the solvents removed under reduced pressure.
The crude product was purified over a silica gel column eluted with increasing amounts of AcOEt
in petroleum ether (up to 20%), giving the pure 9 as a 1:1 mixture of diastereomers (Rf = 0.50).
Colorless syrup (21% yield). 1H NMR (600 MHz, CD3Cl) δ 8.43 (s, 1H, 2-H), 8.42 (s, 1H, 2-H),
8.07 (s, 1H, 8-H), 8.07 (s, 1H, 8-H), 7.62−7.54 (complex signal, 8H, arom.), 7.43−7.25 (complex
signal, 12H, arom.), 6.15 (d, J = 1.7 Hz, 2H, 2× 1′-H), 5.32−5.28 (m, 2H, 2× 2′-H), 4.98−4.95 (m,
2H, 2 × 3′-H), 4.68−4.62 (m, 2H, 2 × 1”-Ha), 4.61−4.54 (complex signal, 4H, 2 × 1”-Hb and 2
× 2”-H), 4.49−4.43 (m, 2H, 2 × 3”-H), 4.42−4.38 (m, 2H, 2 × 4′-H), 3.92−3.85 (m, 2H, 2 × 5′-
Ha), 3.83−3.74 (complex signal, 6H, 2 × 5′-Hb and 2 × 5”-Ha,b), 1.97−1.89 (m, 2H, 2 × 4”-Ha),
1.85−1.75 (m, 2H, 2× 4”-Hb), 1.62 (s, 6H, 2× CH3 acetonide), 1.48 (s, 6H, 2× CH3 acetonide),
1.37 (two overlapped singlets, 12H, 4×CH3 acetonide), 1.01 (two overlapped singlets, 18H, 2×
tBu), 0.88 (s, 18H, 2× tBu), 0.04 (s, 6H, 2× SiCH3), 0.05 (s, 6H, 2× SiCH3). 13C NMR (151 MHz,
CDCl3) δ 160.32 (2 × C6), 152.10 (C2), 152.08 (C2), 151.45 (C4), 151.44 (C4), 141.01 (C8), 140.98
(C8), 135.49, 135.47, 132.82, 132.80, 132.69, 129.85, 127.74, 127.69, 127.62, 122.05 (2×C5), 114.34 (Cq
ribose acetonide) 114.33 (Cq ribose acetonide), 108.37 (2×Cq acetonide), 91.19 (C1′), 91.17 (C1′),
87.02 (C4′), 86.97 (C4′), 84.40 (C2′), 84.36 (C2′), 81.36 (C3′), 81.35 (C3′), 75.14 (C2”), 75.12 (C2”), 73.71
(C3”), 73.70 (C3”), 65.60 (2× C1”), 63.85 (2× C5′), 60.02 (C5”), 60.00 (C5”), 32.16 (C4”), 32.14 (C4”),
29.66, 28.19, 28.17, 27.19, 26.81, 25.91, 25.86, 25.58, 25.35, 19.15, 18.30,−5.39,−5.44. HRESI-MS m/z
819.4184, ([M + H]+ calcd. for C43H63N4O8Si2 819.4191).

4. Conclusions

Purine bases and nucleosides carrying O-, N- and C-substituents at the C6 position
represent an important class of compounds endowed with important biological activi-
ties. These compounds are generally prepared by nucleophilic aromatic (SNAr) substi-
tutions, [34] metal-mediated cross-coupling reactions [35,36] and by Grignard’s reagents
addition [26] to 6-halopurine ribosides. In our search of new cADPR analogues, we have
obtained the O6-alkylated inosine 9 as a side product during the SN2 reaction between the
nucleoside 10 and the tosylate 11. The O6 reactivity of the ambident nucleophile hypoxan-
thine in 10 was a consequence of the high temperature necessary to perform the coupling
reaction. Product 9 is an interesting intermediate that will be exploited for the synthesis of
unprecedented O6-substituted cADPR derivatives.

Supplementary Materials: The following are available online. Figures S1–S6: copies of 1H-, 13C-
NMR, COSY, HSQC, HMBC and HRESI-MS spectra of compound 9.
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