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Abstract. We analyse in a systematic way the dynamics of a model describing a planar diffusion flame with radiative heat
losses. In particular we construct the full bifurcation diagram with respect to the Damköhler coefficient including the branches
of oscillating solutions. Based on this analysis we found several interesting nonlinear phenomena including global bifurcations
(homoclinic bifurcations) that mark the abrupt extinction of the nonlinear oscillations.
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INTRODUCTION

The interest in detecting unstable combustion conditions is continuously increasing together with the need to reduce
pollutant emissions. Indeed, this achievement is pursued by moving the operative conditions of combustion appliances
towards conditions that, while being beneficial with respect to the emissions, are often more prone to the loss of
stability of a stationary behavior, sometimes leading to complete extinction, e.g. blow-off or quenching.

It is clearly emerged from previous investigations that an oscillating behavior and flame instabilities can emanated
from the competition between the thermal and mass diffusion [1, 2]. Several examples of this behavior are reported
in the literature for the case of blow-off of anchored diffusion flames [3, 4] or, extinction due to heat losses [1, 5, 6].
Experimental evidence of diffusion flames instabilities have been reported in a variety of configurations like candle
flames and jet flames (see also the recent review of Matalon [7]).

However, despite the evidence a rich nonlinear dynamic behavior, diffusion flames have been much less theoretically
studied and in particular the analysis of the nonlinear dynamics following the onset of instabilities. A systematic
identification of the conditions of stable oscillating regimes has been rarely applied in the combustion science [8, 9, 10],
while it is much more usual in the chemical engineering science for similar test models, as reported in [11].

One reason is that in all the above mentioned experiments the fluid dynamics are generally non-trivial and as a
consequence the comparison with theoretical predictions is quite difficult [7].

Previous investigations reported in [14] were based on numerical computations that identified supercritical Hopf
bifurcation points. In a successive analysis [15], a more complex pattern was found, with the possibility to distinguish
different paths leading to extinction and the occurrence of limit cycle behavior associated with the existence of a
double Hopf bifurcation.

A linear stability analysis was adopted in [16], making possible to describe the stability map of the system varying
both the Damköhler number and the radiative heat release coefficient. The adoption of a more rigorous approach,
namely the nonlinear time series analysis in combination with the method of mutual information, was the basis of a
clearer description of the transition to chaos in [17].

In this paper we focus on the systematic analysis of the nonlinear dynamics of a planar counterflow flame model
with radiative heat losses, already well investigated by several authors [14, 15, 16, 17, 18]. By applying a compu-
tational approach we managed to construct the full bifurcation diagram including the branches of limit cycles. By
systematically tracing the branches of oscillating solutions we found a rich nonlinear behaviour including homoclinic
bifurcations which mark the abrupt disappearance of the oscillating solutions.
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MATHEMATICAL MODEL

The equations describing the evolution of flames can be written as [16, 18, 17]:

∂T

∂ t
=

∂ 2T

∂x2 +w−RD
(
T 4−T 4

o

)
(1)

L
∂Yo

∂ t
=

∂ 2Yo

∂x2 −w (2)

L
∂Yf

∂ t
=

∂ 2Yf

∂x2 −w, (3)

where T = T (x, t) is the temperature, Yo is the oxidizer mass fraction and Yf denotes the fuel mass fraction of the
mixture. L is the Lewis number (same for both the fuel and the oxidizer), and R is the ratio of the characteristic
chemical and radiation time scales. The nondimensional reaction term w for the one-step reaction is given by:

w = DYoYf e−Ta/T . (4)

Above D is the Damköhler number, and Ta is the activation temperature. The following boundary conditions are
assumed at the porous walls:

at x =−1 : T = To Yf = 1, Yo = 0 (5)
at x =+1 : T = To Yf = 0, Yo = 1. (6)

COMPUTATION OF LIMIT CYCLES

Limit cycles are computed as fixed points of a Poincare map using a shooting formulation. We employ a well-tested
initial value solver (LSODE) [19], for which numerical accuracy for the time integration of the system, as well as
variational equations (which are important for bifurcation detection and continuation), can be easily adjusted [20]. If
the evolution of the system is described through an autonomous non-linear system:

dx(t)

dt
= f (x(t),λ ), (7)

with λ a system parameter, which serves as the bifurcation parameter, to compute a periodic solution one seeks for
solutions which satisfy:

R≡ x(0)− x(T ) = 0, (8)

where T the period of oscillation. Newton-Raphson iteration is employed to solve the non-linear set of equations
above, and the Jacobian matrix is:

∂R
∂x(0)

= I− ∂x(T )

∂x(0)
, (9)

where I is the identity matrix and ∂x(T )/∂x(0) is the state transition matrix of the system, describing the sensitivity of
the “final” state x(T ) with respect to the “initial” state x(0). The state transition matrix is computed from the variational
matrix V(t)≡ ∂x(t)/∂x(0), the evolution of which is given by:

d
dt

V =

[
∂ f

∂x

]
·V, (10)

with initial conditions:

V(0) =
∂x(t)

∂x(0)

∣∣∣
t=0

= I (11)
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FIGURE 1. Parametric dependence of temperature at x = 0 with respect to the Damköhler parameter. Parameter set values:
R = 0.2, Ta = 1.0.

In its current form the Newton-Raphson problem is ill-posed. Due to the translational (in time) invariance of the
periodic solutions any point on the limit cycle satisfies Eq.8; it is possible to single out one point on the limit cycle by
applying an additional algebraic constraint (also called pinning condition), which has the general form:

g(x,λ ,T ) = 0, (12)

and allows the computation of the unknown period of oscillation T .
Furthermore, one can examine the dependence of the obtained periodic solutions on the system parameter λ , through

the application of parameter continuation techniques. Here we report the pseudo arc-length continuation method,
which traces a branch of periodic solutions, using a linearized arc-length condition:

N(x,λ ,T ) ≡ x1− x0

δ s

T

· (x− x1)+
T1−T0

δ s
· (T −T1)+

λ1−λ0

δ s
· (λ − x1)−δ s = 0, (13)

where δ s is the pseudo arc-length continuation step, and (x0,λ0,T0), (x1,λ1,T1) represent to two already computed
periodic solutions.

RESULTS

In past investigations, the complete characterization of branches of limit cycles solutions has never been obtained.
Oscillations have been computed through numerical simulation for only a few selected points. A typical example is
reported in Fig.14 of paper [16], for the case R = 0.2 and Ta = 1 which is reproduced in Fig.1.

Here, some new features are computed and identified. In particular, the full branch of stable periodic solutions
between the Hopf points at D = 1823.9 and D = 10471 has been successfully traced. Stable and unstable branches of
steady state solutions are depicted with solid and broken lines respectively. The periodic solution branch is represented
by the solid line with empty circles. Circles and triangles are used to point out turning and Hopf points respectively.
This diagram clearly reports that no extinction occurs along this interval.

By increasing the value of R while keeping constant the value of Ta = 1, the region between the Hopf bifurcation
point and the turning point reduces up to completely disappearance at R = 0.233. The dependence of T [0] on D for
Ta = 1 and R = 0.233 is detailed in Fig.2. The corresponding bifurcation diagram shows again the existence of a region
of D values, where stable periodic solutions can be admitted.

This region is located within a homoclinic bifurcation point at D = 2742 and a supercritical Hopf point at D = 5957.
The homoclinic bifurcation is a global bifurcation which occurs when a periodic orbit collides with a saddle point.

At the bifurcation point the period of oscillations tends to infinity and becomes a homoclinic orbit. In the vicinity
of D = 2742 the period tends to infinity signaling the existence of a homoclinic bifurcation and the abrupt loss of
oscillations.
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FIGURE 2. Parametric dependence of temperature at x = 0 with respect to the Damköhler parameter. Stable and unstable
branches of steady state solutions are depicted with solid and dashed lines respectively. The periodic solution branch is represented
by a solid line with empty circles. Full circles and triangles are used to point out turning and Hopf points respectively. The
homoclinic bifurcation point is illustrated with a star. Parameter set values: R = 0.233, Ta = 1.0.

CONCLUSIONS

We constructed the complete bifurcation diagram (including the branches of limit cycles) of the dynamics of a planar
counterflow flame model with radiative heat losses with respect to the Damköhler coefficient which served as our
continuation parameter. Based on the computational approach, bifurcation and limiting points have been accurately
determined. We showed that for certain values of the parameter space there are homoclinic bifurcations that are
responsible for the sudden disappearance of flame oscillations. To our knowledge this is the first time that these results
are reported for the particular model using the full set of the governing partial differential equations. As the model
is rich of nonlinear behavior, the proposed approach can be efficiently used to reveal the mechanisms responsible for
the abrupt loss of stability, which is crucial in combustion engineering. Future research is targeted to more detailed
chemical kinetics, thus obtaining the bifurcation diagram of more realistic models.
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