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ABSTRACT
Star formation rates (SFRs) are crucial to constrain theories of galaxy formation and evolution.
SFRs are usually estimated via spectroscopic observations requiring large amounts of telescope
time. We explore an alternative approach based on the photometric estimation of global
SFRs for large samples of galaxies, by using methods such as automatic parameter space
optimisation, and supervised machine learning models. We demonstrate that, with such
approach, accurate multiband photometry allows to estimate reliable SFRs. We also investigate
how the use of photometric rather than spectroscopic redshifts, affects the accuracy of derived
global SFRs. Finally, we provide a publicly available catalogue of SFRs for more than 27
million galaxies extracted from the Sloan Digital Sky Survey Data Release 7. The catalogue
will be made available through the Vizier facility.

Key words: methods: data analysis – techniques: photometric – catalogues – galaxies: dis-
tances and redshifts – galaxies: photometry.

1 IN T RO D U C T I O N

During the last few year, multiwavelength surveys have led to a
remarkable progress in producing large galaxy samples that span
a huge variety of galaxy properties and redshift. All together,
these data provided us with reliable information for many hundred
thousand galaxies (Abazajian et al. 2009; Salvato et al. 2009, 2011;
Cardamone et al. 2010; Matute et al. 2012; Marchesi et al. 2016) and
have triggered similar improvements in the determination of physi-
cal parameters crucial to understand and constrain galaxy formation
and evolution. Among these parameters, the global star formation
rate (SFR; Madau & Dickinson 2014) provides a luminosity-
weighted average across local variations in star formation history
and physical conditions within a given galaxy.

Broadly speaking, SFR estimators are usually derived from
measured fluxes, either monochromatic or integrated over some
specific wavelength ranges, selected in order to be sensitive to
the short-lived massive stars present in a given galaxy. In the
literature, there is a large variety of such estimators spanning
from the UV/optical/near-IR range (∼0.1–5 μm), which probes
the stellar light emerging from young stars, to the mid/far-IR (∼5–
1000μm), which instead probes the stellar light reprocessed by dust
(Kennicutt 1998; Kennicutt & Evans 2012). Other estimators rely
on the gas ionized by massive stars (Calzetti et al. 2004; Hong et al.
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2011), hydrogen recombination lines, forbidden metal lines, and
in the millimetre range, the free–free (Bremsstrahlung) emission
(Schleicher & Beck 2013). Finally, other estimators can, at least in
principle, be derived in the X-ray domain, from X-ray binaries,
massive stars, and supernovae via the non-thermal synchrotron
emission, following early suggestions by Condon (1992).

An ample literature, however, shows that the correct derivation
of SFRs from optical/FIR broad-band data is a highly non-trivial
task, due to the complex and still poorly understood correlation ex-
isting between the SFR and the broad-band photometric properties
integrated over a whole galaxy (Rafelski et al. 2016; Fogarty et al.
2017; Cooke et al. 2018; Pearson et al. 2018).

Each estimator is sensible to a specific and different SFR time-
scale and thus a proper understanding of the SFR phenomenology
requires a combination of different estimators; in particular, UV
and total IR radiations are sensible to the longer time-scales,
∼108 yr, while the ionizing radiation is sensitive to the shortest
time-scales, ∼106 yr. Furthermore, optical and UV estimators often
need corrections to account for dust presence and, for this reason,
they are not used on their own, but in combination with other
estimators (Calzetti et al. 2007). Another methodology suitable
to estimate SFRs for large samples of objects is the so-called
spectral energy distribution (SED) template fitting, which compares
an observed galaxy spectrum with a large data base of template
spectra, generated by stellar population synthesis models (Conroy
2013). This method, however, suffers from the age–dust–metallicity
degeneracy and, in order to reliably measure ages and hence SFRs,
high-quality data are required and, due to the choice of template
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spectra, severe biases are often introduced in the resulting ages. In
a seminal paper Wuyts et al. (2011), SFRs for galaxies at zspec ∼
3 were derived using all the methods previously explained, finding
that all estimators agree with no systematic offset, providing that an
extra attenuation towards H II regions is included when modelling
the H α SFRs. Nevertheless, the same paper also concluded that,
at high redshift, nebular emission lines may introduce a systematic
uncertainty affecting the derived specific SFRs by a factor of 2.
This work takes place in the framework of the new discipline of
Astroinformatics, which aims at allowing the scientific exploitation
of large data sets produced by the modern digital, panchromatic and
multi-epoch surveys, using a variety of techniques largely derived
from, but not restricted to, the statistical learning domain. In this
framework, a new viable approach to obtain SFR estimates for large
samples of objects was recently presented by Stensbo-Smidt et al.
(2017), who transformed the SFR estimation into a machine learning
(ML) non-linear regression problem. With this method, the only
prerequisite is the availability of a sufficient amount of objects with
well-measured SFRs, to be used as the training/validation sample.
We follow a similar approach and use exactly the same data in order
to compare our results with those in Stensbo-Smidt et al. (2017).
A parallel and independent ML approach was used in Bonjean
et al. (2019) to solve the SFR regression problem with three main
differences with respect to our approach: (1) they use shallow-IR
instead of our optical features, (2) they employ a classical feature
selection technique [embedded in their Random Forest (RF) model],
and (3) they include spectroscopic information into the training
parameter space. In particular, we investigate how effective ML-
based methods can be in deriving SFRs in large samples of galaxies,
paying special attention to feature selection, i.e. to the selection of
the most suitable parameter space. As we shall demonstrate, the
selection of the optimal set of features, in addition to a more accurate
prediction, can also be used to derive an insight into the physics of
the phenomenon (Brescia et al. 2017).

In Section 2, we introduce the data and in Section 3 all algorithms
and ML methods used. In Section 4, we describe our campaign of
experiments and related results. Finally, in Section 5, we discuss
the results and draw some conclusions.

2 DATA

Since we were also interested in comparing our results with those
presented in Stensbo-Smidt et al. (2017), the same data, derived
from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7),
have been used (Abazajian et al. 2009). Such data release has also
been used by Brinchmann et al. (2004) to derive reliable SFRs
for a subsample of ∼106 galaxies, through a full analysis of the
emission and absorption line spectroscopy, available in the SDSS
spectroscopic data set (hence not based on the Hα flux alone). The
reliability of this study was confirmed in Salim et al. (2007), who
carried out an independent study using optical photometry from the
SDSS and near UV measurements from GALEX, thus bypassing
some uncertainties inherent the spectroscopic Hα aperture correc-
tions. The local SFRs (normalized to z = 0.1) from the two studies
(Brinchmann et al. 2004; Salim et al. 2007) turned out to agree
within the errors.

The final catalogue contains several types of magnitudes1:
psfMag, fiberMag, petroMag, modelMag, expMag, and deVMag
in the u, g, r, i, and z bands; it includes also the spectroscopic

1http://classic.sdss.org/dr7/algorithms/photometry.html

redshift (zspec), the photometric redshift (photoz), derived using
an hybrid combination of a template fitting approach with an
empirical calibration using objects with both observed colours and
spectroscopic redshift (Csabai et al. 2007), as well as the average
specific star formation rate (hereafter SFR). Starting from this
data set, we performed a pre-processing, in which the following
constrains were applied to improve the reliability of the final
knowledge base:

(i) We required high-quality estimations of SFR, i.e. objects for
which the quality flag is equal to 0 (see Brinchmann et al. 2004 for
further details).

(ii) We required high-quality spectroscopic redshifts (i.e. with
zWarning = 0; see Abazajian et al. 2009 for further details).

(iii) All objects affected by missing information, namely objects
with at least one feature having a ‘Null value’, were removed from
the knowledge base, since our chosen ML methods are not capable
of handling missing features.

The final knowledge base consists of 603 680 galaxies, respec-
tively, 362 208 for training and 241 472 as blind test set, extracted
through a random shuffling and split procedure. Furthermore, for
each magnitude type we derived the related colours, i.e. u − g, g − r,
r − i, and i − z, thus reaching a total of 56 features, 55 photometric
(magnitudes, colours, and photoz) and one spectroscopic (zspec).
Finally, we added the SFR, used as target variable. The distribution
of spectroscopic redshifts and SFRs for the knowledge base is shown
in Fig. 1.

3 TH E M E T H O D S

In this work, we make use of two supervised ML methods: RF
(Breiman 2001) and Multi-Layer Perceptron trained by the Quasi
Newton Algorithm (MLPQNA; Brescia et al. 2012). Furthermore,
in order to optimize their performances, we apply k-fold cross-
validation (cf. Kohavi 1995) and a novel feature selection model
called Parameter handling investigation LABoratory (�LAB; Bres-
cia et al. 2018). These methods are shortly described in the following
sections.

3.1 Random Forest

The RF (Breiman 2001) operates by generating an ensemble of
decision trees during the training phase, based on different subsets
of input data samples. For each decision tree, a random subset of
input features is selected and used to build the tree. By imposing
a sufficient number of trees (depending on the parameter space
complexity and input data amount), all given features will, with
high probability, be examined within the produced forest (Hastie,
Tibshirani & Friedman 2009). In our experiments, we make use
of the RF implementation from the PYTHON library scikit-learn
(Pedregosa et al. 2011). For our purposes, we heuristically choose
an ensemble of 1000 trees, trying to reach a good trade-off between
performance and training computing time. Each tree was created
by a random shuffling of the full set of features available and with
a minimum split at each node equal to two.

3.2 MLPQNA

The MLPQNA is a model in which the learning rule is based on the
Quasi Newton rule, one of the Newton’s methods aimed at finding
the stationary point of a function and based on an approximation
of the Hessian of the training error through a cyclic gradient
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SFR estimation with machine learning 1379

Figure 1. Spectroscopic redshift (left-hand panel) and SFR (right-hand panel) distributions of the knowledge base.

calculation. MLPQNA makes use of the known L-BFGS algorithm
(Limited memory – Broyden Fletcher Goldfarb Shanno, Byrd,
Nocedal & Schnabel 1994). Our multilayer perceptron architecture
consists of two hidden layers with, respectively, 2N + 1 and N −
1 neurons, where N is the number of input features. All further
details of the MLPQNA implementation, as well as its performance
in different astrophysical contexts, have been extensively discussed
elsewhere (Brescia et al. 2012, 2014b; Cavuoti et al. 2013, 2015,
2017; Brescia, Cavuoti & Longo 2015; D’Isanto et al. 2016). With
respect to the RF, our actual implementation of the MLPQNA model
is generally more computationally intensive and thus some of the
experiments performed later on in this paper are referred to the RF
model only.

3.3 K-fold cross-validation

Within the context of the supervised ML paradigm, it is common
practice to exploit the available knowledge base by deriving three
disjoint subsets: one (training set) to be used for learning purposes,
namely to acquire the hidden correlation among input features and
the output target; a second (validation set) to check the training
status, in particular, to measure the learning level and to verify the
absence of any loss of generalization capabilities (a phenomenon
also known as overfitting); and the third one, the test set is used
to evaluate the overall performance of the trained and validated
model. The latter two data sets are blind or, in other words, they
do not contain input patterns already used during the training phase
(Brescia et al. 2013).

In some cases, especially in presence of a limited amount of
samples available within the knowledge base, a valid alternative
approach, also applied in this work, is the so-called k-fold cross-
validation technique (Kohavi 1995). This is an automatic cross-
validation procedure, based on k different training sessions, spec-
ified as it follows: (i) random splitting of the training set into
k random subsets, each one composed by the same fraction of
the knowledge base; (ii) each of the k subsets is then, in turn,
used as test set, while the remaining k − 1 subsets are used for
training/validation.

The purpose of k-fold cross-validation is, in part, to test the
model’s performance stability on different subsets of the data, thus
making sure that a chosen training/test set was neither particular
favourable or unfavourable, and to minimize the risk of any training
overfitting occurrence. In our case, we heuristically choose k = 10,
representing a good compromise between computing efficiency and
data amount within the folds.

3.4 Feature selection

Not all input features contain the same amount of information for
a particular problem domain, and discovering the most informative
variables may, on the one hand, drastically reduce the computing
time and, on the other hand, it can provide useful insights into
the physical nature of the problem. In this work, we used a novel
feature selection method, called Parameter handling investigation
LABoratory (�LAB; Brescia et al. 2018).

The choice of an optimal set of features is connected to the
concept of feature importance, based on the measure of a feature’s
relevance. Formally, the importance of a feature is its percentage of
informative contribution to a learning system.

We approach the feature selection task on two complexity levels:
(a) the minimal-optimal feature selection, which consists of a
selection of the smallest parameter space able to obtain the best
learning performance; and (b) the all-relevant feature selection,
able to extract the most complete parameter space, i.e. all features
considered relevant for the solution to the problem. The second level
is appropriate for problems with highly correlated features, as these
features will contain nearly the same information. With a minimal-
optimal feature selection, choosing any one of them (which could
happen at random if they are perfectly correlated) means that the
rest will never be selected.

We investigated the possibility to find a method able to optimize
the parameter space, by solving the all-relevant feature selection
problem, thus indirectly improving the physical knowledge about
the problem domain. The method presented, �LAB, includes
properties of both embedded and wrappers categories of feature
selection (see Guyon & Elisseeff 2003 for an introduction to
feature selection). The details of the method are presented in the
Appendix A.

3.5 Evaluation metrics

In order to evaluate the performance of our experiments, we use the
quantity �SFR, defined as

�SFR ≡ SFRphotometric − SFRspectroscopic,

where SFRphotometric is the estimated SFR, SFRspectroscopic is the target
value obtained from spectroscopy. We indicate also Sm as the blind
test set. Then we use the following metrics:

(i) RMSE =
√

1
|Sm|

∑
n∈Sm

[�SFR]2, the root-mean-square error

of the residuals.
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1380 M. Delli Veneri et al.

Table 1. Performance comparison of the RF and MLPQNA
models, calculated on the blind test set, using all the 54
photometric features available and the full training set.

Model RMSE Median η

RF 0.252 −0.021 1.99
MLPQNA 0.261 −0.016 1.76

(ii) Median (�SFR), the median of the residuals.

(iii) σ =
√

1
|Sm−1|

∑
n∈Sm

[�SFR − �SFR]2, the standard devia-

tion of the residuals.
(iv) η, the percentage of catastrophic outliers. According to the

definition by Stensbo-Smidt et al. (2017), we consider an outlier
to be catastrophic if �SFR > 3σ . Consequently, the percentage of
outliers depends on the value of σ .

The RMSE and σ turned out to be almost identical in all of our
experiments; the mathematical relation between the two estimators

is: RMSE =
√(

�SFR
2 + σ 2

)
. This means that the mean of �SFR

is negligible. We decided to report only the RMSE in each table.
Nevertheless, we will use both estimators since the RMSE is used
to evaluate the model performance, while the σ is used to compute
the fraction of catastrophic outliers.

4 EXPER IMEN TS AND RESULTS

In order to optimize the procedure in terms of SFR accuracy, we
performed a series of experiments.

As first step we evaluated the performance of our regression
models on the entire set of available features. Afterwards we
evaluated the usefulness of the k-fold cross-validation, by verifying
if such time-consuming operation (in our case it extends the training
time of the network by almost a factor of ten) is effectively required
to minimize overfitting and to check how the models perform
on different data sets. In other words, how stable are the results
across the whole data sets. Subsequently, we performed a feature
selection to optimize the parameter space, indirectly suitable also
for a comparison with the feature selection described in Stensbo-
Smidt et al. (2017). Then we performed a series of experiments to
evaluate the most appropriate size of the training set. After that we
analysed the relationship between the photometric redshift quality
and the accuracy of SFRs. Finally, we compared the SFR prediction
performance between the methods RF and MLPQNA on the best
set of features found by �LAB.

4.1 RF and MLPQNA performances on the full set of
photometric features

As said above, we performed a preliminary performance test using
the full set of available features (i.e. the 54 photometric features
described in Section 2). The results are summarized in Table 1.

The results of Table 1 show that RF performs better than
MLPQNA.

4.2 k-fold cross-validation

As a preliminary step of the training phase, and accordingly to what
was done in Stensbo-Smidt et al. (2017), we decided to verify if
the k-fold cross-validation technique is required to avoid overfitting
in this particular use-case. Therefore, we replicated the RF and
MLPQNA performance tests on the full set of 54 photometric

Table 2. Experiments result with and without k-fold cross-validation. The
statistics are calculated on the blind test set only.

Model Cross-validation No cross-validation
RMSE Median η RMSE Median η

RF 0.252 −0.021 1.99 0.252 −0.021 2.07
MLPQNA 0.261 −0.016 1.76 0.261 −0.016 1.78

Table 3. Effect of the cross-validation on the experiments of
Table 2. Each column represents the standard deviation across 10
different experiments for a statistical estimator. In this case, our
spectroscopic SFRs span in the range ∼[−14, −17]. This shows how,
in this case, the cross-validation can be considered as negligible.

Model σRMSE σMedian σσ ση

RF 0.001 0.00003 0.001 0.041
MLPQNA 0.002 0.00051 0.002 0.002

features (see Section 4.1), but this time implementing the k-fold
cross-validation using k = 10.

The results of the experiment can be seen in Table 2 where we
compare the RF and MLPQNA performances with and without
k-fold cross-validation. Experiments with cross-validation, while
increasing the computing time by almost an order of magnitude,
do not show any significant improvement in terms of accuracy. In
Table 3, the standard deviations of the used statistical estimators
computed over the ten folds are shown. As it can be seen, the
results show that the cross-validation contribution is negligible,
thus confirming that the information in the Knowledge Base is well
distributed and, as a consequence, that both models are capable
to work in a stable way across different data sets, as well as the
fact that they are intrinsically robust against overfitting. For such
reasons, we decided to perform all further experiments without the
k-fold cross-validation technique.

4.3 Feature selection results

To perform the feature selection, we made use of our model �LAB
using the full knowledge base available (see Section 2). The 34
features selected by the method are shown in Fig. 2 and listed in
Table 4.

Concerning the excluded features, as it can be seen from Fig. 2,
�LAB marks as ‘unimportant’ all the z- band magnitudes, five out
of six g-band magnitudes (retaining only fiberMag g but with a very
low ranking), three out of six u-band magnitudes, four out of six
i-band magnitudes and two in the r band. Conversely, all colours
were retained with the exception of devMag u-g and petroMag u-g.

In particular, from Fig. 2, we can notice that all the exponential
and de Vaucouleurs magnitudes are excluded (while their colours
are retained) in favour of the modelMag.2 For the other types of
magnitudes only two or three are dropped (i and z for fiberMag, g,
z, and i for modelMag, u, g, and z for the petroMag and g, i, and
z for the psfMag). All together this leads to a total of 22 rejected
features.

The optimized parameter space identified by �LAB (i.e. the
32 selected features of Fig. 2, excluding the two redshifts) was
employed to perform a comparison between the two ML regression
models used to estimate the SFR, starting from the same knowledge

2http://classic.sdss.org/dr7/algorithms/photometry.html
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SFR estimation with machine learning 1381

Figure 2. Feature importance percentages derived by applying the �LAB
method to the full knowledge base and parameter space available, described
in Section 2. In blue are marked the selected features, while in red those
rejected by the method. The vertical black line is the noise threshold
computed through the shadow feature technique embedded in the �LAB
algorithm (see Section 3.4 for details). The noise threshold corresponds to
an importance value of ∼0.062 per cent.

Table 4. List of features selected by �LAB running on the full knowledge
base available.

Feature model fiber psf exp petro deV

u − g � � � �
g − r � � � � � �
r − i � � � � � �
i − z � � � � � �
u � � �
g �
r � � � �
i � �

zspec photoz
redshift � �

Table 5. Comparison between MLPQNA and RF
models using the 32 photometric features identified
by �LAB. Both models have been applied to the same
training and blind test sets.

ID RMSE Median η

RF�LAB 0.252 −0.021 2.03
MLPQNA�LAB 0.248 −0.017 1.99

Figure 3. SFRsspectroscopic versus SFRsphotometric scatter plot related to the
MLPQNA�LAB experiment, selected to produce the final SFR catalogue
(see Appendix B).

base. Table 5 reports the results, while the distribution of photo-
metric versus spectroscopic SFRs for MLPQNA is shown in Fig. 3.
The MLPQNA obtains the best performance (∼1.5 per cent better
accuracy than the RF on the same data). However, this comes at the
cost of a much higher computational time, since using 32 features
the RF takes ∼0.05 per cent of the computational time required by
MLPQNA and this ratio further decreases for an increasing number
of features. In spite of this, we decided to use the MLPQNA model
to produce the SFRs catalogue presented in Appendix B.

In principle, a robust feature selection method should be able
to identify the most relevant features in a way as independent
as possible from the specific ML model used to subsequently
approach the regression problem. Furthermore, in order to verify
that the selected feature space is the best choice, a supplementary
set of regression performance tests should be performed by using
alternative subsets of features. In what follows we discuss these two
aspects.

In order to verify the independence of the feature selection on
the two regression methods, we iteratively trained the RF and
MLPQNA, using always the entire training set, starting with just
one feature and adding, at each iteration, a new feature (in the order
of importance selected by �LAB). until all the 32 photometric
features selected by �LAB were used. Fig. 4 shows the RMSE as
function of the number of used features for both RF and MLPQNA
methods. As it can be seen, the RMSE decreases steadily with the
number of features in both cases, reaching the minimum value when
the all 32 features are considered.

To further investigate the capability of the �LAB method to
identify the optimal parameter space, we performed the following
additional experiments with the RF:

(i) RND: We performed 10 experiments all using the same
number of features (32) found by �LAB, but randomly extracted
from the original parameter space (excluding the redshifts). These

MNRAS 486, 1377–1391 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/486/1/1377/5420450 by FAC
O

LTA' D
I LETTER

E E FILO
SO

FIA user on 09 N
ovem

ber 2022



1382 M. Delli Veneri et al.

experiments were performed in order to compare, fixed the number
of features selected by �LAB, the performances achieved by the
best all-relevant features experiment (RF�LAB experiment) with
those obtained via a random extraction.

(ii) B+W (Best plus Worst): This experiment was performed in
order to confirm the lack of relevance of the rejected features and
also to investigate why the method rejected some features which
at least should have conveyed relevant information. Therefore, we
used the best 10 features selected by �LAB (excluding redshift)
plus the 22 features rejected by �LAB, in order to maintain fixed
to 32 the amount of used feature.

The results of these experiments are reported in Table 6. The ex-
periment reaching the best performance is RF�LAB, thus confirming
the reliability of the �LAB method in optimizing the parameter
space by selecting the all-relevant subset of features best suited to
solve the regression problem. Nevertheless the �LAB and B+W ex-
periments show a very similar performance. Such behaviour seems
to indicate that most of weak relevant and rejected features bring the
same amount of contribution to solve the regression problem and
that �LAB rejects those features considered as redundant. For the
reasons already mentioned and related to the computational cost of
MLPQNA, these experiments were performed using the RF only.
Anyway, the fact that MLPQNA using the 32 features selected by
�LAB (MLPQNA�LAB experiment) achieves better performances
than when the entire set of 54 photometric features is used (Table 1),
indirectly confirms the reliability of the set of features selected by
�LAB.

4.4 Completeness analysis of the training set

In order to investigate the complexity and completeness of the
data set, we performed three experiments using, as training sets,
the full data and two randomly extracted samples from the original
training set, consisting of 36 000 and 100 000 objects, respectively.
We used the 32 features selected by �LAB for these experiments.
As shown in Table 7, the RF performance, always calculated on
the same blind test set (241 472 objects), worsens less than that for
MLPQNA with the shrinking of the training set size (see Table 8).
Therefore, we use the full amount of data available in the training
set in all further experiments.

4.5 Redshifts and analysis of dependence from photo-z
accuracy

Looking at the feature importance ranking computed by �LAB in
Fig. 2, as it could be expected, the spectroscopic redshifts (zspec)
carries crucial information to estimate the SFRs. Due to the intrinsic
uncertainty carried by photometric redshifts, this feature (label
photoz) has a lower rank (11th out of 56) and does not seem to
carry any particular information contribution to boost the prediction
performance. Even if the photoz does not improve the accuracy
of the SFR estimation, the presence of both features within the
parameter space selected by �LAB can be justified by considering
that photoz is seen as a noisy version of the more accurate z spec.

In order to evaluate the single contribution of both types of
redshift, we performed a set of experiments, reported in Table 9,
by imposing, respectively, a parameter space composed by all 54
photometric features available without any redshift (experiment
PHOT), and the same parameter space in which we alternately added
the z spec (experiment ZSPEC) and photoz (experiment ZPHOT).
As it can be seen by looking at the statistical results of Table 9,

Figure 4. Performance variation of the RF (upper panel) and MLPQNA
(lower panel) models with respect to the number of features used in the
training. On the y-axis, we report the RMSE value computed on the blind
test set, while on the x-axis the incremental number of features included in
the training.

Table 6. Performance of the RF model, calculated on
the blind test set, applied to different subsets of features.
RF�LAB uses the 32 features selected by �LAB, RND uses
a set of 32 features randomly extracted from the original
parameter space (best value over the 10 extractions), while
B+W uses the best 10 features plus the 22 excluded by
�LAB. In all such four parameter spaces, both spectroscopic
and photometric redshifts were excluded.

ID RMSE Median η

RF�LAB 0.252 −0.021 2.03
RND 0.269 −0.018 1.87
B+W 0.253 −0.022 2.03

Table 7. RF performance against training set size varia-
tion. As features we used the best 32 found by the �LAB
method and as target the given SFRs. The statistics is
calculated on the blind test set.

Number of RMSE Median η

training objects

36 000 0.278 −0.022 1.99
100 000 0.265 −0.022 1.97
362 208 0.252 −0.021 2.03

the inclusion of z spec obtains, as expected, better performances,
while the presence of photoz seems to be negligible in terms of
prediction improvement. However, although the zspec appears as a
relevant feature, we dropped it from the used parameter space, since
we were interested in predicting SFR via photometric information
only.
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Table 8. MLPQNA performance against training set size
variation. As features we used the best 32 found by the
�LAB method and as target the given SFRs. The statistics
is calculated on the blind test set.

Number of training
objects RMSE Median η

36 000 0.337 −0.015 1.53
100 000 0.281 −0.017 1.62
362 208 0.248 −0.017 1.99

Table 9. RF performance over the full set of features. The experiment
named PHOT (which contains only magnitudes and colours) is performed
using all the 54 photometric features (i.e. colours and magnitudes); ZSPEC
and ZPHOT are two additional experiments, performed by adding to the
M+C parameter space, respectively, the spectroscopic and photometric
redshift.

ID Features RMSE Median η

PHOT 54 0.252 −0.021 1.99
ZSPEC 55 0.232 −0.018 2.00
ZPHOT 55 0.252 −0.021 2.18

Table 10. Prediction results of the RF model applied on the blind
test set, obtained, respectively, on the parameter space selected by
�LAB (ID label RF�LAB) and with the addition of the feature zspec

(i.e. spectroscopic redshifts, ID label RF�LAB + zspec) or photoz (i.e.
photometric redshifts, ID label RF�LAB + zphot).

ID Features RMSE Median η

RF�LAB 32 0.252 −0.021 2.03
RF�LAB+zspec 33 0.233 −0.017 2.24
RF�LAB+zphot 33 0.252 −0.021 2.04

To further verify the feature selection made by �LAB, we
repeated the experiments outlined in Table 9 only using the 32
all-relevant features selected by �LAB:

(i) RF�LAB: experiment using the features identified by �LAB
(excluding both types of redshift).

(ii) RF�LAB + zspec: experiment with the features identified by
�LAB including the spectroscopic redshift.

(iii) RF�LAB + zphot: experiment with the features identified by
�LAB including the photometric redshift.

These experiments were performed only with the RF, by exclud-
ing MLPQNA due to the much longer training time of this model,
assuming also a very similar effect of such additional features on
both regression models, by considering our previous analysis done
on the �LAB feature selection (see Section 3.4).

The results, summarized in Table 10, confirm that the spectro-
scopic redshifts bring a higher contribution than the photometric
redshifts to estimate SFRs. However, since the two redshifts
should in principle represent the same information, we expect
that sufficiently accurate photometric redshifts could replace the
spectroscopic information and that any residual prediction error
would be dominated by other sources of noise. Therefore, to get
an estimate of how accurate photometric redshifts need to be to
obtain a SFR prediction with the same accuracy as reached by
including spectroscopic redshifts, we decided to proceed through
the following steps:

Figure 5. Distribution of redshift residuals �znorm (coloured in blue) with
the superimposed best-fitting Laplacian distribution (coloured in grey).

Table 11. Photometric redshift accuracy estimation ex-
periments. The first four experiments are referred to the
SFR RF�LAB + zphot estimations varying the photoz mea-
surement precision. While in the last one the photometric
redshifts were replaced by spectroscopic redshifts.

Redshift used RMSE Median η

σ = 0.022 0.249 −0.019 2.08
σ = 0.015 0.244 −0.019 2.11
σ = 0.007 0.238 −0.018 2.18
σ = 0.005 0.236 −0.018 2.21
RF�LAB + zspec 0.233 −0.017 2.24

(i) identification of the distribution that fits the �znorm distribu-
tion, where �znorm = (zspec − photoz)/(1 + zspec);

(ii) Simulation of several �znorm distributions of the same shape,
but with different accuracy;

(iii) Application of the different �znorm to the zspec in order to
simulate photoz with increasing accuracy;

(iv) Testing the SFR estimation using simulated photoz.

We started by calculating the �znorm distribution of the photoz
used for the RF�LAB + zphot experiment, obtaining a distribution
with a bias of −0.000 79 and a σ of 0.022. We then estimated through
a Kolmogorov–Smirnov test (Oliphant 2007) the distribution that
best fits the �znorm distribution of the photoz. We tried to fit the data
with all the continuous distributions implemented in the scipy.stats
module.3 A Laplacian distribution with a standard deviation of 0.015
and a bias of 0.0077 was found to be the best fit (see Fig. 5). This
distribution was then used to generate random noise that we added
to the original zspec distribution in order to simulate the photoz’s (and
thus its measurement error). The process of noise generation and
addition was repeated 10 times in order to compare the resulting SFR
estimation statistics and to make sure that the correlation between
the simulated error and the corresponding statistics was consistent.
Afterwards, we repeated the RF�LAB + zphot experiment using this
new photometric redshift distributions finding an average RMSE
variation along the 10 extractions of ∼0.001.

As reported in the first row of Table 11, the statistical performance
is very similar to the RF�LAB + zphot experiment (Table 10), thus
proving that our simulation is able to reproduce the behaviour of
photometric redshifts (the slight difference in performance may be

3https://docs.scipy.org/doc/scipy/reference/stats.html
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due to the presence of systematic errors, ignored by the simulation).
We then proceeded to an iterative decrease of the σ of the Laplacian
distribution, in order to simulate an increasing quality of photoz
estimations; at each step we repeated (ten times) the RF�LAB +
zphot experiment with the new distribution of photoz. The results
are reported in Table 11 and show that, in order to obtain an
efficiency comparable with the one obtained using the spectroscopic
redshifts, an accuracy of at least σ = 0.005 is required for the
photoz estimation. We want to underline that this is simply an
indication of the photometric redshift accuracy required to become
indistinguishable from the SFR prediction accuracy reached with
spectroscopic redshifts. This standard deviation value is lower than
what can be found in literature; see for instance Brescia et al. 2014b
(σ = 0.028 in the range 0 < zspec ≤ 1) or Laurino et al. 2011 (σ =
0.015 in the range 0 < zspec ≤ 0.65) or Ball et al. 2008 (σ = 0.021 in
the range 0 < zspec ≤ 0.5), motivated by the smallest redshift range
considered in this particular case (0 < zspec ≤ 0.33).

4.6 Catastrophic outliers

As already mentioned, due to the higher accuracy, we decided
to use the MLPQNA model to create our SFRs catalogue (see
Section 4.3), so in order to detect possible issues with the model and
gain insights into the nature of the physical problem, we analysed
the nature of the catastrophic outliers (i.e. those objects whose SFR
prediction error resulted higher than 3σ ) distribution relative to the
MLPQNA�LAB experiment. In Fig. 6, it is shown the distribution
of catastrophic outliers in the SFRsspectroscopic versus SFRsphotometric

space, resulting from the MLPQNA�LAB experiment reported in
Table 6. We estimated the pixel density through a kernel density
estimation method (Scott 1992) and coloured the pixels on the basis
of their density. As shown in the scatter plot of Fig. 6(a), most of the
point are clustered in a small region (highlighted in yellow) hereafter
called the overdensity region (that is confirmed also using the RF
results). In order to understand why these objects are outliers, we
selected all the objects belonging to the overdensity region through
cuts in their local density. The scatter plots of Figs 6(b) and (c) show
highlighted in orange all the objects with a density, respectively, six
and eight times higher than the average point density. Depending on
the cuts, the overdensity region contains 1877 objects (six times the
average density) or 1277 objects (eight times the average density)
out of the total number of 4840 objects classified as catastrophic
outliers. We then investigated the possibility that these objects
could form a cluster in some bi-dimensional projections of the
parameter space. We tried all the possible magnitudes, colours,
and redshifts combinations without finding any obvious clustering
(some of these combinations are shown in Appendix C). We also
checked whether the group could correlate with a specific (high)
error measure associated with any of the used features, but no any
evident correlations were found. The nature of the objects in the
overdensity region is still under further investigation.

4.7 Comparison with a recent work

In order to compare our regression models with the k-NN used
by Stensbo-Smidt et al. (2017) and their feature selection, we
performed an experiment using the full training set and the set
of 8 features found by Stensbo-Smidt et al. (2017). In Table 12, we
present the statistical results, which show a comparable performance
among the three methods, although with a lower RMSE obtained
by RF and MLPQNA. Using the features found by �LAB, the RF
and MLPQNA can achieve even better performance, as shown in

Table 6. This is not surprising as k-NN is much more sensitive to
the dimensionality of the parameter space (the so-called curse of
dimensionality) than other two models. These latter can, therefore,
take advantage of the information carried by a larger number of
features than a k-NN model.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, based on our preliminary analysis of the problem
presented at the ESANN-2018 conference (Delli Veneri et al. 2018),
we estimated star formation rates for a large subset of the SDSS-
DR7 and produced a catalogue of SFRs derived using photometric
features only (magnitudes and colours) and the MLPQNA ML
model (see Appendix B) trained on a knowledge base of spectro-
scopically determined SFRs. By looking at Fig. 3 and the statistics
in Table 6, the regression results appear very promising. This is
particularly true, considering that the dynamical range of SFR is
between −12 and −7, and also that we have ∼5000 outliers out
of the 242 000 objects of the blind test set and, finally, taking into
account the low percentage of outliers (∼2 per cent). However, from
the results obtained by varying the size of the model training set
(Tables 7 and 8), we think that a larger knowledge base of SFRs
would further improve the performances.

Furthermore, the residual scatter is likely to be an artefact of the
photometry. The fig. 5(a) in Stensbo-Smidt et al. (2017) shows a
scatter plot for the predictions obtained with SED fitting. It appears
qualitatively similar to the current work and could suggest that
there is a more fundamental limit to the accuracy we can expect
from optical photometry only. This is not an obvious issue; for
example in Brescia et al. (2014b) it was demonstrated, in the case
of estimation of photometric redshifts, that the model performance,
over a certain amount of data, does not scale with the size of the
training set.

By considering the median estimator, in all our experiments its
values are always negative. This is a consequence of the presence
of the overdensity described in Section 4.6 and shown in Fig. 4. We
intend to perform a deeper investigation on such objects, which will
focus on the characterization of objects in the overdensity region
in terms of their spectroscopic, morphological, and evolutionary
properties.

By applying the �LAB method, we found the all-relevant set of
features and were able to discard almost half of the initial set of
features without any loss in precision over the full set, but with a
great gain in computing time. We tested the �LAB method several
times, confirming the reliability of its feature selection.

Since in future surveys, it is likely that no large spectroscopic
samples will be available, we run a simulation to find the minimum
accuracy required for photometric redshifts in order to effectively
replace spectroscopic estimates, finding that SFRs can be predicted
with the same accuracy under the condition to provide photo-z with
an error smaller than 0.005 (see Table 11).

From our results on the SDSS-DR7, we think that our ML
methods could be applied to other surveys to reliably calculate
SFRs. On this note, we intend to expand our photometric knowledge
base to the UV, X-ray, and infrared in order to

(i) use the full spectrum to identify and constrain outliers and
potential issues in the methods (i.e. AGN selection through X-ray
photometry);

(ii) incorporate the UV and infrared information to derive SFRs.

Moreover, we intend to apply our methods to derive photometric
SFRs from the ESO-KiDS-DR4 (Kuijken et al., in preparation). We
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Figure 6. The scatter plot in the top left corner (a) shows the distribution of outliers in the SFRsspectroscopic versus SFRsphotometric space with a superimposed
density map, while the diagrams int the top right (b) and bottom left (c) corners show highlighted in orange all the objects with a density, respectively, six and
eight times higher than the average point density. The histogram in the bottom right corner (d) shows the outliers density distribution.

Table 12. Comparison between our RF and MLPQNA
against (Stensbo-Smidt et al. 2017) k-NN using the full
train set and the best eight features found by Stensbo–
Smidt.

Model RMSE Median η

RF 0.264 −0.020 1.86
k-NN 0.274 0.013 1.85
MLPQNA 0.265 −0.021 1.85

wish to conclude by saying that the natural evolution of this work
will be to expand our knowledge base above zspec = 0.33. In this
case, on one hand, redshifts would have a bigger impact on galaxy
emission and thus magnitudes; on the other hand, we should be able
to produce high-quality SFRs for larger samples of objects.
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APPEN D IX A : �L A B ME T H O D

�LAB is based on the combination of two components: shadow features and Naı̈ve LASSO statistics. The term shadow features arises from the
idea to extend the given parameter space with artificial features (Kursa & Rudnicki 2010). Given a data set of N samples, represented through
a D-dimensional parameter space, we introduce a shadow feature for each real one, by randomly shuffling its values among the N samples,
thus doubling the original parameter space. Shadow features are, thus, random versions of the real ones and their importance percentage can
be used as a threshold for when a real feature is containing actual information. Such a threshold is important since feature selection methods
only provide a ranking of the features, never an absolute important/not important decision. The second component of �LAB is based on
the Naı̈ve LASSO statistics. The LASSO (Least Absolute Shrinkage and Selection, Tibshirani 2013) performs both a variable selection and a
regularization of a ridge regression (i.e. a shrinking of large regression coefficients to avoid overfitting), enhancing the prediction accuracy
of the statistical model. The regularization is a typical process exploited within ML, based on the addition of a functional term to a loss
function (e.g. a penalty term). LASSO performs the so-called L1 regularization (i.e. based on the standard L1 norm), which has the effect
of sparsifying the weights of the features, effectively turning off the least informative features. In particular, we included two Naı̈ve LASSO
techniques in �LAB. One is the A-LASSO (Alternate-LASSO; Hara & Maehara 2017a), able to find all weakly relevant features that could
be removed from the standard LASSO solution. Such method calculates a list of features alternate to those selected by the standard LASSO,
each one associated with a calculated score, reflecting the performance degradation from the optimal solution. In �LAB, we select only the
alternate features that achieve the lowest score difference from the best features, trying to reach the best trade-off between feature selection
performance and flexibility in the analysis of the parameter space. Such alternate features smoothly degrade the solution score, but may
potentially infer more flexibility, by relaxing the intrinsic stiffness of the best solution system. The second version of the standard LASSO
is E-LASSO (Enumerate-LASSO; Hara & Maehara 2017b), which enumerates a series of different feature subsets, considered as solutions
with a decreasing level of approximation. The main concept behind is that an optimal solution to a mathematical model is not necessarily the
best solution to any physical problem. Therefore, by enumerating a variety of potential solutions, there is a chance to obtain better solutions
for the problem domain task. For instance, Hara and Maehara demonstrate that E-LASSO solutions are good approximations to the optimal
solution, by also improving the flexibility for the selection of the parameter space, covering a wide spectrum of variations within the problem
domain (i.e. by helping to find the all-relevant set of features). The shadow features and Naı̈ve LASSO are then combined by selecting the
candidate weak relevant features through the shadow feature noise threshold and by extracting the final set of weak relevant features through
a filtering process, based on the A-LASSO and confirmed by E-LASSO. To summarize, we find the list of candidate features through the
shadow features technique and then we use the LASSO operator to explore the parameter space and verify the effective contribution carried by
those features considered as weak relevant to the solution of the problem. The loss function based on L1 regularization is crucial to quantify
the degradation of performance when other features subsets are replacing the best one, by also automatically identifying the exact redundancy
of some features that the shadow features technique is unable to disentangle in terms of individual importance.

The pseudo-code of the features selection method can be summarized by the following steps (see also Fig. A1):

(i) Let the set {x1, x2, ..., xD} be the initial complete parameter space composed by D real features;
(ii) Apply the shadow feature selection (SFS method) and produce the following items:

– SF = xs1 ...xsD , the list of shadow features, obtained by randomly shuffling the values of real features;
– max(IMP[parameter space, SF]) ∀x ∈ parameter space & ∀xs ∈ SF, the importance list of all 2D features, original and shadows.
– st: noise threshold, defined as the max{IMP[SF], ∀xs ∈ SF}.
– BR = {x ∈ parameter space with IMP[x] ≥ st}, the set of best relevant real features;
– RF = {x ∈ parameter space, rejected by the SFS}, the set of excluded real features, i.e. not relevant;
– WR = {x ∈ parameter space with IMP[x] < st}, the set of weak relevant real features.

(iii) At this stage, the complete parameter space is now split into BR, WR, and RF. Now we consider the reduced parameter space,
spacered = {BR + WR}, obtained by excluding the rejected features. In principle, it may correspond to the original parameter space if there
is no rejections by the SFS:

(A) If RF==∅ && WR= = ∅, the SFS method confirmed all real features as high relevant, therefore return ALL-RELEVANT (parameter
space), i.e. the full parameter space as the optimized parameter space and EXIT.

(B) If RF 
= ∅ && WR= = ∅, the SFS method rejected some features and confirmed others as high relevant, therefore return ALL-
RELEVANT (BR) as the optimized parameter space and EXIT.

(C) If WR 
= ∅, regardless some rejections, SFS confirmed the presence of some weak relevant features that must be evaluated by LASSO
methods, therefore go to step (iv).

(iv) Apply E-LASSO method on the spacered = {BR + WR} producing:

– EL S: a list of M subsets of features, considered as possible solutions, ordered by decreasing score;
(A) If WR ⊆ EL S, then all weak relevant features are possible solutions, therefore return ALL-RELEVANT(BR + WR) as the optimised

parameter space and EXIT.
(B) Else go to step (v);

(v) Apply A-LASSO method on the spacered = {BR + WR}(set of candidate features) producing:

– AL S, a set of T features, each one with a corresponding list of features List(t) considered as alternate solutions with a certain score;
(A) If AL S = = ∅, then no alternate solutions exist, therefore:

(A.1) If EL S= = ∅, then return ALL-RELEVANT(BR) as the optimized parameter space and EXIT.
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Figure A1. �LAB workflow.
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(A.2) Else if EL S 
= ∅, then return ALL-RELEVANT(BR + EL S) as the optimized parameter space and EXIT.

(B) Else extract ∀t ∈ T the alternate solution with Score(as) = min{Score(y), ∀y ∈ List(t)};
(C) Go to step (vi).

(vi) For each x ∈WR:

(A) If x is alternate solution of at least one feature t ∈ T, with [t ∈ BR || t ∈ EL S], then retain x within WR set;
(B) Else reject x (by removing x from WR);

(vii) Return ALL-RELEVANT(BR + WR) as the final optimized parameter space and EXIT.

A P P E N D I X B: C ATA L O G U E

We produced an SFR catalogue containing SFRs for 27 513 324 galaxies of the SDSS-DR7, which will be available on the Vizier facility.
The catalogue is actually accessible at http://dame.na.astro.it/sfr/Catalogue.csv. To produce the catalogue, we started by querying the Galaxy
View4 of the SDSS-DR7 for all the needed photometric features of galaxies with a ‘good’ photometry (see PhotoFlags) and containing no
Missing Values. We then applied the magnitudes cuts of our knowledge base (in order to keep the photometric features within the ranges of
our knowledge base) and cross-matched the resulted data set with the photoz catalogue derived by Brescia et al. (2014b), in order to use them
as a quality flag. The final catalogue contains the following columns:

(i) Identifiers: dr9objid, objid, ra, dec, i.e. respectively, the object identifier in the SDSS DR9 and DR7 and their ascension and declination
coordinates;

(ii) Quality flags: photoz and Quality Flag, i.e. the photometric redshifts measured by Brescia et al. (2014b) and the associated flag. The
Quality Flag can assume three values 1, 2, and 3; 1 stands for the best photo-z accuracy, 2 and 3 for decreasing accuracy;

(iii) SFR: It is computed by the MLPQNA model with the 32 best features selected by the φLAB method (excluding redshifts).

In order to select only SFRs with high-quality (i.e. only select sources inside the training set parameter space constrains), the user should
impose photoz ≤ 0.33 and Quality F lag = 1. This is due by considering that in our knowledge base there are only objects with spectroscopic
redshift less than 0.33, thus we are able to predict SFRs only for objects within such redshift range. These constraints will select ∼6.6 million
objects. Since we do not have any spectroscopic redshifts for the catalogue objects, we must use photometric redshifts (where available)
to perform these cuts. Nevertheless using photometric redshifts instead of spectroscopic ones may introduce some contamination in the
catalogue, i.e. a source may be inside the photoz ≤ 0.33 cut when in reality it has a spectroscopic redshift higher than 0.33. To estimate the
number of such contaminants, we verify that among the 871 784 objects with photoz ≤ 0.33 and a spectroscopic redshift only ∼1.33 per cent
resulted to have a true redshift higher that 0.33.

APP ENDIX C : BI -DIMENSIONA L PRO JECTI ONS TO I SOLATE THE OV ERDENSI TY REGI ON

In this section, we show some examples of bi-dimensional projections in the parameter space, among the most relevant features, done in
order to isolate the objects in the overdensity region. As stated in Section 4.6, no projections were found able to achieve such separation. See
Fig. C1.

4http://skyserver.sdss.org/dr7/en/help/browser/browser.asp?n=Galaxy&t = U

MNRAS 486, 1377–1391 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/486/1/1377/5420450 by FAC
O

LTA' D
I LETTER

E E FILO
SO

FIA user on 09 N
ovem

ber 2022

http://dame.na.astro.it/sfr/Catalogue.csv
http://skyserver.sdss.org/dr7/en/help/browser/browser.asp?n=Galaxy\&t=U


1390 M. Delli Veneri et al.

Figure C1. Some examples of bi-dimensional projections of the parameter space, done in order to isolate the objects of the overdensity region shown in Fig. 6.
In particular, all the combinations of the most relevant colours are shown. The objects belonging to the overdensity region are highlighted in green colour.
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APPEN D IX D : EXAMPLE O F QUERIES US ED TO OBTA I N GALAXI ES FROM THE SDSS-DR7

SELECT
p.objid, p.ra, p.dec,
p.modelMag u, p.modelMag g, p.modelMag r, p.modelMag i, p.modelMag z,
p.devMag u, p.devMag g, p.devMag r, p.devMag i, p.devMag z,
p.expMag u, p.expMag g, p.expMag r, p.expMag i, p.expMag z,
p.petroMag u, p.petroMag g, p.petroMag r, p.petroMag i, p.petroMag z,
p.fiberMag u, p.fiberMag g, p.fiberMag r, p.fiberMag i, p.fiberMag z,
p.psfMag u, p.psfMag g, p.psfMag r, p.psfMag i, p.psfMag z,
q.objid as dr9objid

INTO
mydb.p75p90

FROM
Galaxy as p,
dr9.PhotoPrimaryDR7 as s,
dr9.Galaxy as q

WHERE
p.mode = 1 AND
p.dec > = 75 AND p.dec < 90 AND
s.dr7objid = p.objid AND
s.dr8objid = q.objid AND
p.modelMag u > -9999 AND p.modelMag g > -9999 AND
p.modelMag r > -9999 AND p.modelMag i > -9999 AND
p.modelMag z > -9999 AND p.devMag u > -9999 AND
p.devMag g > -9999 AND p.devMag r > -9999 AND
p.devMag i > -9999 AND p.devMag z > -9999 AND
p.expMag u > -9999 AND p.expMag g > -9999 AND
p.expMag r > -9999 AND p.expMag i > -9999 AND
p.expMag z > -9999 AND p.petroMag u > -9999 AND
p.petroMag g > -9999 AND p.petroMag r > -9999 AND
p.petroMag i > -9999 AND p.petroMag z > -9999 AND
p.fiberMag u > -9999 AND p.fiberMag g > -9999 AND
p.fiberMag r > -9999 AND p.fiberMag i > -9999 AND
p.fiberMag z > -9999 AND p.psfMag u > -9999 AND
p.psfMag g > -9999 AND p.psfMag r > -9999 AND
p.psfMag i > -9999 AND p.psfMag z > -9999 AND
dbo.fPhotoFlags(’PEAKCENTER’) ! = 0 AND
dbo.fPhotoFlags(’NOTCHECKED’) ! = 0 AND
dbo.fPhotoFlags(’DEBLEND NOPEAK’) ! = 0 AND
dbo.fPhotoFlags(’PSF FLUX INTERP’) ! = 0 AND
dbo.fPhotoFlags(’BAD COUNTS ERROR’) ! = 0 AND
dbo.fPhotoFlags(’INTERP CENTER’) ! = 0

This paper has been typeset from a TEX/LATEX file prepared by the author.
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