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A B S T R A C T

In this note we show that for each positive integer 𝑎 ⩾ 2 there exist infinitely many trees whose spectral
radius is equal to

√

2𝑎. Such trees are obtained by replacing the central edge of the double star 𝑆(𝑎, 2𝑎 − 2)
with suitable bidegreed caterpillars.
1. Introduction

Let 𝐺 = (𝑉𝐺 , 𝐸𝐺) be a simple graph with vertex set 𝑉𝐺 = {𝑣1,… , 𝑣𝑛}
and edge set 𝐸𝐺, and let 𝐴𝐺 denote the adjacency matrix of 𝐺. The
spectrum of 𝐺 is by definition the spectrum of 𝐴𝐺 and is denoted by
sp(𝐺). The spectral radius 𝜌(𝐺) is the number max{|𝜆| ∣ 𝜆 ∈ sp(𝐺)}. As
consequence of the Perron–Frobenius Theorem for nonnegative matri-
ces (P–F Theorem for short), 𝜌(𝐺) is always equal to max sp(𝐴𝐺), i.e.
the largest root of the characteristic polynomial 𝜑𝐺(𝑥) = det(𝑥𝐼𝑛 −𝐴𝐺).
We denote by  and  the class of all connected graphs and of all
trees respectively. We refer the reader to [1] for basic results on graph
spectra and for notation not given here.

For each nonnegative real number 𝑡, we consider the sets of graphs

𝛷 (𝑡) = {𝐺 ∈  ∣ 𝜌(𝐺) = 𝑡},

𝛷 (𝑡) = {𝐺 ∈  ∣ 𝜌(𝐺) = 𝑡}

and

𝛷⧵ (𝑡) = {𝐺 ∈  ⧵  ∣ 𝜌(𝐺) = 𝑡}.

We recall that an algebraic number 𝑎 is said to be totally real if it
is a root of a real-rooted monic polynomial with integer coefficients
(see, for instance, [2]), whereas it is said an almost Perron number if it
satisfies 𝑎 ⩾ |𝑏| for each conjugate 𝑏 of 𝑎 (see [3]). We denote the set of
algebraic numbers which are totally real (resp. almost Perron) by TR
(resp. AP). Establishing the cardinalities of 𝛷 (𝑡) and 𝛷 (𝑡) is a hard
and fascinating problem in spectral graph theory.

The symmetry of 𝐴𝐺 and the P-F Theorem yield the following
implication:

𝛷 (𝑡) ≠ ∅ ⟹ 𝑡 ∈ TR ∩ AP, (1)
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and although Estes proved that for every 𝑎 ∈ TR, there exists a graph
𝐺 such that 𝑎 ∈ sp(𝐺) [4], and Salez later showed that every 𝑎 ∈ TR
is also a tree eigenvalue [2], it is still dubious whether the implication
(1) can be reversed.

In [5] the authors proved that whenever 𝛷⧵ (𝑡) is nonempty, then
it contains infinitely many graphs, and posed the following question:

∙ Besides 𝑡 = 2, is there another 𝑡 ∈ R such that card(𝛷 (𝑡)) = ∞?
In this note we answer positively to this question, by showing that

card(𝛷 (
√

2𝑏)) = ∞ for all integers 𝑏 ⩾ 2. (2)

The infinite families of graphs we detect in 𝛷 (
√

2𝑏) specialize for 𝑏 = 2
to the graphs known as double snakes, which are precisely the trees
whose spectral radius is 2 (see [6]).

2. Main results

The tree 𝑆(𝑎, 𝑏, 𝑐; 𝑘) depicted in Fig. 1 is defined for every 4-tuple
(𝑎, 𝑏, 𝑐, 𝑑) of nonnegative integers. Clearly, the parameter 𝑐 is significant
only if 𝑘 > 0.

Theorem 2.1. Let 𝑏 a positive integer larger than 1. For each 𝑘 ⩾ 0, the
trees 𝑆(2𝑏 − 2, 𝑏, 𝑏 − 2; 𝑘) all share the same spectral radius, which is

√

2𝑏.

Proof. The graph 𝑇 = 𝑆(2𝑏 − 2, 𝑏, 𝑏 − 2; 𝑘) contains 𝑛 = 3𝑏 + 𝑘(𝑏 − 1)
vertices. We start by labelling the vertex set 𝑉𝑇 as in Fig. 2.

Clearly, the uppermost vertices 𝑣𝑖,𝑗 in Fig. 2 only exist if 𝑘 > 0 and
𝑏 > 2. We could write an adjacency matrix 𝐴𝑇 associated to 𝑇 once we
order 𝑉𝑇 , for instance, with respect to the lexicographic ordering, i.e.

𝑢𝑖 < 𝑢𝑗 if 𝑖 < 𝑗; 𝑢𝑖 < 𝑣𝑗,𝓁 for all 𝑖, 𝑗 and 𝓁
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Fig. 1. The tree 𝑆(𝑎, 𝑏, 𝑐; 𝑘).

Fig. 2. A vertex labelling for the tree 𝑆(2𝑏 − 2, 𝑏, 𝑏 − 2; 𝑘).

and

𝑣𝑗1 ,𝓁1 < 𝑣𝑗2 ,𝓁2 if either 𝑗1 < 𝑗2 or 𝑗1 = 𝑗2 and 𝓁1 < 𝓁2.

We now denote by 𝑧𝑖 (resp. 𝑦𝑗,𝓁) the component of an 𝑛-tuple 𝐱⊤
correspondent to the vertex 𝑢𝑖 (resp. 𝑣𝑗,𝓁), and set

𝓁(𝑖) =

⎧

⎪

⎨

⎪

⎩

2𝑏 − 2 if 𝑖 = 1,
𝑏 − 2 if 1 < 𝑖 < 𝑘 + 2,
𝑏 if 𝑖 = 𝑘 + 2.

The number
√

2𝑏 actually belongs to the spectrum of 𝑇 ; in fact, the
eigenvalue equations

𝜆𝑧1 = 𝑧2 +
2𝑏−2
∑

𝓁=1
𝑦1,𝓁 ;

𝜆𝑧𝑖 = 𝑧𝑖−1 + 𝑧𝑖+1 +
𝑏−2
∑

𝓁=1
𝑦1,𝓁 for 1 < 𝑘 + 2;

𝜆𝑧𝑘+2 = 𝑧𝑘+1 +
𝑏
∑

𝓁=1
𝑦1,𝓁 ;

𝜆𝑦𝑖,𝓁 = 𝑧𝑖 for all 1 ⩽ 𝑖 ⩽ 𝓁(𝑖);

are all satisfied if 𝜆 =
√

2𝑏,

𝑧𝑖 = 𝑏

(
√

2
𝑏

)𝑖

, and 𝑦𝑖,𝓁 =

(
√

2
𝑏

)𝑖−1

(3)

for 1 ⩽ 𝑖 ⩽ 𝑘+ 2 and 1 ⩽ 𝓁 ⩽ 𝓁(𝑖). We have just shown that
√

2𝑏 admits
an all-positive eigenvector; namely, the one with components given in
(3). By the P–F Theorem, the number

√

2𝑏 is the spectral radius of
𝐴(𝑇 ) (the relevant part of the P-F Theorem is extracted in [7, Theorem
8.3.4]).

As already announced in Section 1, Theorem 2.1 specialized to the
case 𝑏 = 2 allows to retrieve the infinite family of graphs originally
detected by Smith whose spectral radius is 2 (see [6]). The trees
𝑆(2, 2, 0; 𝑘), which can be structurally identified as the bidegreed trees
with just two vertices of degree 3, are precisely the double snakes.

The reader may be understandably curious about the way we dis-
covered the families 𝑏 ∶= {𝑆(2𝑏 − 2, 𝑏, 𝑏 − 2; 𝑘) ∣ 𝑘 ⩾ 0} for 𝑏 ⩾ 2. Since
we were searching for families of trees all having the same spectral
radius, and the only existing example we knew was the family of double
snakes, we started to focus on double stars, i.e. the trees with diameter
3, and tried to replace their central edge with caterpillars, since this
replacement turned out to be fruitful in order to find, for instance,
several unicyclic graphs with the same adjacency or signless Laplacian
spectral radius (see [8,9]).

The following result has been the intermediate step leading us to
Theorem 2.1.
2

Fig. 3. The double star 𝑆(𝑎, 𝑏) and the tree 𝑆(𝑎, 𝑏, 𝑐; 1).

Theorem 2.2. For 𝑎 ⩾ 𝑏 ⩾ 2 and 𝑐 ⩾ 0, let 𝑆(𝑎, 𝑏) and 𝑆(𝑎, 𝑏, 𝑐; 1) be
the graphs depicted in Fig. 3. Then 𝜌(𝑆(𝑎, 𝑏)) = 𝜌(𝑆(𝑎, 𝑏, 𝑐; 1)) if and only if
𝑎 = 2𝑏 − 2 and 𝑐 = 𝑏 − 2.

Proof. It is not hard to prove that the double star 𝑆(𝑎, 𝑏) has just four
nonzero eigenvalues and

𝜌(𝑆(𝑎, 𝑏)) =

√

𝑠 +
√

𝑠2 − 4𝑎𝑏
2

(4)

where 𝑠 = 𝑎 + 𝑏 + 1 (see [10]). By working with the several eigenvalue
equations, it is also straightforward to check the following fact: if 𝜆
is an eigenvalue of 𝑆(𝑎, 𝑏, 𝑐; 1) admits an eigenvector with a nonzero
component in correspondence of the vertex 𝑣 of vertex degree 𝑎 + 1
(see Fig. 3), then

𝜆6 − (𝑎 + 𝑏 + 𝑐 + 2)𝜆4 + (𝑎𝑏 + (𝑎 + 𝑏)(𝑐 + 1))𝜆2 − 𝑎𝑏𝑐 = 0. (5)

The P-F Theorem ensures that 𝜌(𝑆(𝑎, 𝑏, 𝑐; 1)) is the largest root of (5).
Now, the ‘if’ part of the statement comes from Theorem 2.1; since

𝑆(𝑎, 𝑏, 𝑐; 0) = 𝑆(𝑎, 𝑏). In order to prove the ‘only if’ part, we assume
𝜌(𝑆(𝑎, 𝑏)) = 𝜌(𝑆(𝑎, 𝑏, 𝑐; 1)). In this case, the number (4) is also a root of
(5). This happens if and only if

(𝑐 + 1)
(
√

𝑡 + 𝑎 + 𝑏 + 1
)

− 2𝑎𝑏 = 0, (6)

where 𝑡 = 𝑎2 − 2𝑎(𝑏 − 1) + (𝑏 + 1)2.
From the first equality of (6), we immediately deduce that the

number 𝑡 must be a perfect square, whereas the second equality is
instead equivalent to

𝑎 = 𝑏 − 1 +
√

𝑡 − 4𝑏. (7)

An arithmetic argument shows that 𝑡 and 𝑡−4𝑏 are both perfect squares
if and only if 𝑡 = (𝑏 + 1)2. If this is the case, 𝑎 is equal to 2𝑏 − 2 by (7),
and 𝑐 = 𝑏 − 2 by (6), ending the proof.
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