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Abstract
The paper aims to introduce a multigroup approach to assess group effects in quan-
tile regression. The procedure estimates the same regression model at different 
quantiles, and for different groups of observations. Such groups are defined by the 
levels of one or more stratification variables. The proposed approach exploits a com-
putational procedure to test group effects. In particular, a bootstrap parametric test 
and a permutation test are compared through artificial data taking into account dif-
ferent sample sizes, and comparing their performance in detecting low, medium, and 
high differences among coefficients pertaining different groups. An empirical analy-
sis on MOOC students’ performance is used to show the proposal in action. The 
effect of the two main drivers impacting on performance, learning and engagement, 
is explored at different conditional quantiles, and comparing self-paced courses with 
instructor-paced courses, offered on the EdX platform.

Keywords Quantile regression · Multigroup approach · Testing heterogeneity

1 Introduction

Testing if a given model is different across groups of observations is relevant in 
many contexts. Groups’ membership is usually coded in the dataset through one or 
more stratification variables, whose levels denote the different classes, introducing 
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an heterogeneity that must be considered in analyzing and modeling data. For exam-
ple, in education, the impact of students’ socioeconomic characteristics on their per-
formance and learning achievement may differ by geographic origin (Hansen and 
Gustafsson 2016) or gender (Baye and Monseur 2016).

The classical approach estimates a single model on the whole dataset, introducing 
dummy variables to distinguish the different group effects (Gujarati 1970). Follow-
ing this approach, an F-test is exploited to assess if groups are significantly different. 
Chow test (Chow 1960) and the Lebart test (Lebart et al. 1979) are two commonly 
used solutions. The two F-tests consist in comparing the restricted deviance with 
the unrestricted deviance, the former being related to a single model estimated on 
the whole sample, the latter related to a separate model for each group of obser-
vations associated with the source of heterogeneity. However, it is necessary to 
consider that there are two main drawbacks in pursuing such an approach. Firstly, 
these tests implicitly assume normality, independence, and homoscedasticity among 
groups. Furthermore, the specific impact of regressors is not immediate, especially 
in the case of multiple regression models. This unless interaction terms are included 
in the model, terms not always straightforward to interpret. A different approach, 
named multilevel modeling (Gelman 2006; Raudenbush and Bryk 2002; Snijders 
and Bosker 2011), estimates an additional coefficient, the between-cluster variabil-
ity, to capture the hierarchical structure of the data, but is more suited to the case 
of a large number of groups induced by the stratification variable(s). An alternative 
to the analysis of group effects in statistical models has been recently introduced in 
the context of composite-based path modeling (Vinzi et al. 2013; Hair et al. 2016; 
Wold 1985). This approach exploits a multigroup perspective, separating data into 
segments according to the levels of the stratification variable(s), and estimating a 
separate model for each segment. Resampling and permutation methods are then 
used to test differences among the separate models (Hair et al. 2018). Since com-
posite-based path modeling essentially consists of simple and multiple regressions 
aimed to estimate latent variables, the multigroup approach has been also used in the 
framework of ordinary least squares (OLS).

This paper extends the multigroup approach to quantile regression (QR), a class 
of models aiming to assess the effects of a set of explicative variables at different 
locations of the conditional distribution of a response variable. QR (Koenker and 
Bassett 1978; Davino et  al. 2013; Furno and Vistocco 2018) provides a different 
model for each conditional quantile of interest, without introducing any parametric 
assumption on the response. The use of the multigroup approach in QR is promis-
ing, since it offers simple and interpretable tools to assess if and how heterogeneity 
impacts at different parts of the response distribution. Notwithstanding, the prob-
lems engendered from the use of separate models for each group of observations 
are amplified in the QR framework, since comparisons must be carried out both for 
models related to different groups at a given conditional quantile, and for models 
related to different conditional quantiles for a given group.

This paper focuses on two tests popular in composite-based path modeling, the 
parametric t-test (Keil et  al. 2000), and the permutation test (Chin and Dibbern 
2010), adapting and comparing them for the case of quantile regression. The two 
tests are detailed in Sect.  3, once the basic notation and the essential toolkit has 
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been introduced in Sect.  2. Section 4 validates the proposed multigroup approach 
through a study on artificial data whose design takes into account possible effects 
of different sample sizes, as well as the performance of the two tests in detecting 
low, medium, and high differences among coefficients pertaining different groups. 
The practical implications and the relevance of the approach is shown on real data 
in Sect. 5 through an empirical analysis on MOOC students’ performance, one of 
the major challenges in learning analytics (Siemens and Long 2011). The empirical 
application allows to evaluate if and how the effect of learning and engagment, the 
two main drivers of student’s performance (Carannante et al. 2020; de Barba et al. 
2016; Moore and Wang 2021), changes according to the way the courses are offered, 
namely distinguishing self-paced courses and instructor-paced courses (Fianu et al. 
2018; Goopio and Cheung 2020). Finally, a discussion on the main results, and the 
conclusions with some further research developments to be explored are included in 
Sect. 6.

2  The basic notation and the essential toolkit

The multigroup approach consists in testing statistical differences among coeffi-
cients of a given model estimated on different groups of observations. The different 
groups are associated with the levels of one or more stratification variables, making 
it possible to take into account heterogeneity corresponding to an a priori partition 
of the whole sample. The approach has been widely used for comparing OLS regres-
sion models, especially in the case of composite-based path modeling (Eslami et al. 
2013; Hair et al. 2018). This section introduces the basic notation for extending the 
multigroup approach to compare QR models.

Let y denote a response variable observed on i = 1,… , n observations. Let X be 
the matrix storing the explicative variables. Data are row-partitioned in G groups 
according to the levels of one or more stratification variables:

where the subscripts I and J refer to two generic groups. Finally, let ng be the cardi-
nality of the generic group g, with n =

∑G

g=1
ng . The multigroup approach allows to 

evaluate if the impact of the explicative variables is different across groups through 
a comparison of the coefficients estimated for each group. The number of possible 
pairwise comparisons clearly depends on the number G of groups, and on the num-
ber of coefficients included in the model, i.e. the number of explicative variables.

This paper introduces the multigroup approach to compare coefficients of QR 
models. QR extends classical regression to a set of quantile functions of a response 
variable y , conditional on a set of covariates X . QR, originally proposed by Koenker 
and Bassett (1978), is a a distribution free regression approach, since it does not 
pose any parametric assumption on the response distribution. It aims to estimate the 
effects of a set of regressors on the quantiles of a response variable. In particular, QR 
estimates separate models for different � ∈ (0, 1) , where � denotes the conditional 

yT =
[
y1,… , yI ,… , yJ ,… , yG

]

XT =
[
X1,… ,XI ,… ,XJ ,… ,XG

]
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quantile of interest. Unlike the classical regression model, where the conditional 
mean of the error E(� ∣ X) = 0 , in QR the �-quantile of the error term is 0, namely 
Q�(�(�) ∣ X) = 0 where Q�(. ∣ . ) is the conditional quantile function. The separate 
models provided by QR, one for each quantile of interest, are interpretable in terms 
of regression models for the associated conditional quantiles of the response. The 
QR model for a given conditional quantile � can be formulated as follows:

The conditional quantile estimator minimizes the sum of absolute deviations, asym-
metrically weighting positive and negative residuals. The bootstrap procedure is typ-
ically used for inference (Koenker et al. 2017), so to avoid the assumptions required 
by asymptotic theory. Bootstrap offers the flexibility to obtain standard errors and 
confidence intervals for any estimates and combinations of estimates, keeping the 
distribution free nature of QR. The reader interested in the machinery of QR can 
refer to Koenker and Bassett (1978), Davino et  al. (2013), Furno and Vistocco 
(2018) for details.

Since QR provides separate models for each conditional quantile, the number of 
possible pairwise comparisons in the multigroup approach is amplified. The multi-
group approach tests the null hypothesis H0 ∶ �I(�) = �J(�) versus the presence of a 
significant difference, H1 ∶ �I(�) ≠ �J(�) , where �I(�) and �J(�) are the coefficients 
of a generic explicative variable related to group I and group J, respectively. As has 
been pointed out above, the parametric t-test and the permutation test are the two 
most widely used tests in such framework. The parametric t-test (Keil et al. 2000) 
exploits a bootstrap resampling procedure to compare coefficients. In particular, the 
bootstrap samples are used to approximate the sampling distributions of the coef-
ficient estimators for each segment, providing a reasonable solution if sample size is 
sufficiently large. Instead, the permutation test (Chin and Dibbern 2010) evaluates 
differences between the coefficients of different segments through a permutation 
procedure: data of the two groups are permuted preserving the initial group sizes 
to obtain the sampling permutation distribution of the difference between groups. 
The difference observed on the two samples is then compared with such permutation 
distribution to test the null hypothesis of no significant differences between groups. 
Details on the two tests adapted to the QR context are offered in Sect. 3.

3  The multigroup approach for quantile regression

Starting from the QR model (1), the aim is to assess if units corresponding to two 
different groups I and J share the same dependence structure, namely if the impact of 
the regressors on the response is different with respect to different segments of units. 
Moreover, since the QR model provides estimates at different conditional quantiles, 
the comparison can be carried out also for different locations. Starting from two QR 
models estimated for group I and J, respectively, the multigroup approach tests if 
the observed difference between coefficients 𝛽I(𝜃) and 𝛽J(𝜃) is significant for a given 
conditional quantile � . The two following subsections extend to QR the two main 

(1)Q𝜃(ŷ ∣ X) = X𝛽(𝜃).
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tests proposed in multigroup literature. To simplify the notation, in the following 
we refer to a generic �(�) coefficient for a given conditional quantile. Clearly, the 
tests can be carried out for any of �p(�) coefficient in case of multiple regression, 
as shown in the application in Sect. 5. The null and alternative hypotheses can be 
defined as follow for both the tests:

Furthermore, following the QR logic, comparisons for different conditional quan-
tiles are carried out separately for each quantile � of interest.

3.1  The parametric test

The parametric t-test (Keil et al. 2000) combines a classical test statistic for com-
paring the means of two groups, with a bootstrap procedure used to estimate its 
standard errors. Bootstrap (Efron and Tibshirani 1998) does not pose distributional 
assumptions but entails a higher computational cost with respect to the standard par-
ametric procedure. Computational costs can be reduced using newest efficient boot-
strapping methods (Kleiner et al. 2014; Sengupta et al. 2016). Bootstrap estimates 
are unbiased, even if they introduce additional sources of variability in the process, 
i.e. sample variability, being based on one single sample from a given population, 
and resampling variability, exploiting a finite number of replications (Davino et al. 
2013).

To our ends, the resampling procedure is simultaneously applied to the vector 
of response variable and to the matrix of regressors, resampling with replacement 
B times, separately for the two groups I and J, holding fixed the cardinality nI and 
nJ of the original groups. This paired resampling allows to preserve the dependence 
structure among the variables.1

The QR model  (1) is estimated separately for group I and J, for each boot-
strap sample and for each conditional quantile of interest. Therefore, a vector 
𝜷boot(𝜃) = [𝛽1(𝜃), 𝛽2(𝜃),… , 𝛽B(𝜃)] is obtained in correspondence of each coefficient 
and each quantile of interest. Such vectors are used to estimate the standard errors 
of the cofficients SE𝛽boot

(𝜃) , exploited in the usual t-test statistic for comparing the 
means of the two groups:

H0 ∶ �I(�) = �J(�)

H1 ∶ �I(�) ≠ �J(�).

t(𝜃) =
𝛽I(𝜃) − 𝛽J(𝜃)

√
(nI−1)

nI
SE

2

𝛽Iboot

(𝜃) +
(nJ−1)

nJ
SE

2

𝛽Jboot

(𝜃)

.

1 In the QR literature this procedure is called xy-pair method (Kocherginsky et al. 2005) and it is used to 
estimate parameter standard errors without requiring any assumption on the error distribution.
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The statistic is asymptotically t-distributed and the degrees of freedom (df) are 
determined by means of the Welch–Satterthwaite equation. The formula is derived 
following Sarstedt et al. (2011):

Algorithm 1 outlines the steps for carrying out the test.

3.2  The permutation test

The permutation test (Chin and Dibbern 2010) evaluates the differences between 
the coefficients of two groups exploiting a permutation procedure. The original 
difference DIF =

‖‖
‖
𝛽I(𝜃) − 𝛽J(𝜃)

‖‖
‖
 between the coefficients estimated on the two 

groups I and J at a given conditional quantile � is compared with the permuta-
tion distribution of the differences, PDIF, computed on P permuted samples. 
The actual aim is to appraise how extreme DIF is under the null hypothesis. The 
two samples [yI ∣ XI] and [yJ ∣ XJ] , corresponding to the two groups, are merged. 
Then, P samples of size nI and nJ are obtained permuting data. The assumption 
of exchangeability holds, and the units can be rearranged without substantially 
alterating the process under H0 . That is done by randomly assigning these units 
to one group or the other, preserving the cardinalities of the two initial seg-
ments. Starting from the two new groups of units, the permutation difference is 

(2)df =
‖‖
‖
‖
‖

(
(nI−1)

nI
SE

2

𝛽Iboot (𝜃)
+

(nJ−1)

nJ
SE

2

𝛽Jboot (𝜃)

)2

(nI−1)

n2
I

SE
4

𝛽Iboot (𝜃)
+

(nJ−1)

n2
J

SE
4

𝛽Jboot (𝜃)

− 2

‖‖
‖
‖
‖
.
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computed: PDIF(i) =
‖
‖
‖
𝛽Iperm(𝜃) − 𝛽Jperm(𝜃)

‖
‖
‖
 (for i = 1,… ,P ). Fixing a quantile of 

interest, model (1) is estimated after each permutation, and the differences 
between coefficients are calculated. Finally, the vector PDIF of permuted differ-
ences is compared with the original differences, computing p-value as 1 minus 
the proportion of times in which the original difference is larger than the per-
muted one. The steps of the permutation test procedure are summarized in 
Algorithm 2.

Following Hair et al. (2012), to guarantee the stability of the results, should 
be convenient to maintain the number of permutations large (500 or 1000 per-
mutations are commonly employed thresholds (Kherad-Pajouh and Renaud 
2010). However, depending also on the number of comparisons, a larger number 
of permutations could produce an increase in the computation time.
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4  Simulation study

This section presents a simulation study aimed to show the proposed quantile mul-
tigroup approach in action, and to compare the parametric and the permutation test 
varying sample size, and evaluating the ability to capture group differences of dif-
ferent magnitude2. We focus here on the case of one regressor and two groups, I and 
J. This setting represents a first step in investigating the behavior of the two tests 
in the context of quantile regression. For the considered simple regression model, 
the focus is on possible effects of the quantile of interest, the sample size and the 
separability of the groups. The introduction of additional variables would require an 
extremely complicated simulation design, considering both the case of independent 
and correlated predictors. Indeed, the problem of multicollinearity must be consid-
ered also for QR (Davino et  al. 2022). Therefore, a study that considers multiple 
correlated regressor is postponed to a future work. Besides, just considering a multi-
ple regression model under the assumption of uncorrelated regressors would not be 
relevant to any issues for a first investigation on the response performance of the two 
tests regarding sample size, quantile of interest, and difference between coefficients. 
Furthermore, in order to study the asympotic distributions in case of multiple QR, 
we plan to compare classical QR with composite QR (Zou and Yuan 2008).

The data generating process exploits a uniform distribution U(a = 0, b = 4) 
for the regressor, generated independently for the two segments. Error terms, �I 
and �J , were generated exploiting a normal standardized distribution, a skew nor-
mal distribution with shape parameter � equal to 4, and a uniform distribution 
U(a = 0, b = 4) , assuming homoschedasticity within the two subgroups. This 
allowed us to consider three different scenarios of normal, asymmetrical, and no 
normal residuals. Finally, since it is well known that QR is very useful in the case 
of heteroschedasticity, the error component was introduced in the model through a 
multiplicative term with the regressor. Different scenarios have been considered in 
order to assess the effect of the sample size, the degree of overlapping between the 
groups (namely, magnitude of the difference between the coefficients of the two seg-
ments), and the quantile of interest. More specifically, the design of the simulation 
study considers the following factors and levels:

Sample size The effect played by the cardinality of each group is explored by 
hypothesizing both equal group sizes {50, 100, 250, and 500}, and unbalanced seg-
ments {75 vs 25, 150 vs 50, 375 vs 125, and 750 vs 250}.

Difference between coefficients Following Lamberti et al. (2016a, b), this study 
considers the case of no difference between the coefficients estimated in groups I 
and J, and the cases of small, medium, or large differences. Table 1 shows these four 
levels specifying the size of the differences (second column) and the value of the 
coefficients in the two groups (last two columns) used to simulate data.

Quantile of interest The sensitivity of the tests is evaluated for the QR model esti-
mated at � = {0.1, 0.25, 0.50, 0.75, 0.9}.

2 All computations and simulations were developed using the statistical software R (Team 2002), along 
with the quantreg package (Koenker 2022). The source code is available upon request.
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Error term distribution Error terms were generated exploiting a normal standard-
ized distribution, a skew normal distribution with shape parameter � equal to 4, and 
a uniform distribution U(a = 0, b = 4).

Considering all possible combinations of sample sizes (balanced and unbal-
anced), differences between coefficients, quantile of interest, and error term distribu-
tion, 480 scenarios (2 × 4 × 4 × 5 × 3) results.. Concerning the number of permuta-
tions, we employed 100 permutations to control the computation time.

In order to show the different degrees of separability between the segments, Fig. 1 
provides the graphical visualizations of the models estimated for both groups (I and 
J) for the case of two balanced sample of 500 observations and normal errors. Each 
panel refers to a given coefficient difference (equal, small, medium, large, top-left by 
row). Different colors/grey levels distinguish the two segments, while different lines 
are used for each of the five considered QR models. Analyzing the graphs starting 
from the top-left, it is evident that the effect of the regressor on both the mean and 
the conditional quantiles of y is the same in the two segments in the case of equal 
differences, and becomes increasingly different moving towards large differences. 
Therefore, it becomes important to extend the comparison between segments to 
parts other than the conditional mean of the dependent variable.

The performance of the parametric and permutation tests is evaluated through the 
p-values obtained on 100 replications for each experimental condition.

Figures  2,  3, and  4 show the results obtained using the two tests with unbal-
anced samples, and considering the different quantiles of interest for the three dif-
ferent scenarios (normal, asymmetrical normal, and not normal errors, respectively). 
The results with balanced samples are almost similar and therefore not shown. Each 
panel reports the boxplots of the p-values (vertical axis) for both the parametric test 
(first four columns) and the permutation test (last four columns), in case of small, 
medium, and large differences between coefficients (horizontal axis). The case of no 
differences between the coefficients of the two groups is reported in Appendix. The 
rows of each graph refer to the different quantile of interest (0.1, 0.25, 0.5, 0.75, and 
0.9, from top to bottom), the columns to the different sizes considered for the unbal-
anced groups. A dotted horizontal line is drawn at the conventional significance level 
� = 0.05. In all the cases, the parametric test provides a better performance than the 
permutation test. More generally, the effect of sample size is evident since the tests 
detect medium and large differences for smaller samples (100 observations). When 
sample size increases, the sensitivity of the tests improves, even in presence of small 
differences between the coefficients. Furthermore, the two tests show a good per-
formance even in the case of extreme quantiles. Results do not substantially differ 

Table 1  Different profiles 
according to the coefficient 
differences between group I 
and J 

Difference between coefficients �
I
(�) �

J
(�)

Equal (0) 0.6 0.6
Small (± 0.2) 0.7 0.5
Medium (± 0.4) 0.8 0.4
Large (± 0.6) 0.9 0.3
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in case of normal errors (Fig. 2), asymmetrical normal errors (Fig. 3), and uniform 
errors (Fig. 4). Finally, results suggest that at least one of the two samples must have 
an adequate size to identify also small differences.

5  A real data analysis

The proposed multigroup approach in QR is shown in action through a case study 
based on real data. The aim is to model students’ performance in a particular type 
of course, the Massive Open Online Courses, also known as MOOCs. The data and 
model have recently been published by Carannante et al. (2020).

MOOCs are an increasingly common type of course in education, especially in 
higher education. The structure and delivery of such courses has a strong impact on 
the way students attend MOOCs and, inevitably, on their final performance. In the 
learning analytics framework (Siemens and Long 2011), predicting students’ perfor-
mance in MOOCs can be considered one of the main challenges. Indeed, there are 

Fig. 1  Two artificial datasets of 500 observations, with normal errors. Different panels refers to the dif-
ferent magnitude of the difference between coefficients: equal, small, medium, and large, top-left, clock-
wise. The different lines correspond to the five QR models ( � = 0.1, 0.25, 0.5, 0.75, and 0.9)
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several elements affecting students’ performance. Some are specifically related to 
the learning experience (student motivation, learning attitude, engagement), others 
can be defined as external, being related to personal characteristics of the student or 
to the specific features of the course.

In this study, we considered two main drivers of students’ performance related 
to the learning experience: the learning attitude and the students’ involvement in 
the planned MOOC activities (engagement), and one external factor describing the 
course type. In particular, the aim is to analyse if and how much the effects of learn-
ing and engagement on students’ performance vary according to the course type. To 
this end, QR allows us to investigate whether the effect of this relationship varies for 
low, medium, or high performing students, and the proposed multigroup approach 
allows us to assess whether these effects vary by course type.

5.1  Data and measurements

Data refer to 3578 students who attended two courses in Political Science on the 
FedericaX platform, the EdX MOOC platform of the “Federica WebLearning” 
Center at University of Naples Federico II.3 Each course was offered in two ver-
sions: an instructor-paced version and a self-paced version. The instructor-paced 
course is strictly scheduled, with specific dates for assignments, course materials, 
exams, and a deadline for learners to complete the course and get a certification. 
Usually, this modality is integrated into an in-site course delivered in blended mode. 
Instead, the self-paced version provides all course materials as soon as the course 
starts, assignments and exams do not have due dates, and therefore a learner can pro-
gress through the course at its own speed and pass grade in the course, even without 
completing all of the course materials. Of the 3578 students, 73.1% followed in the 
self-paced modality, and 26.9% in instructor-paced modality.

The considered model uses performance as response variable, and learning and 
engagment as explicative variable. This in line with the model proposed in Caran-
nante et al. (2020). Performance was measured as the proportion of correct answers 
to a set of questions. Learning was quantified by considering the quantity of actions 
undertaken to acquire knowledge. In particular, we exploit three dimensions for its 
measurement: frequency-based actions (count of activities spent studying), time-
based actions (duration of time spent studying) and interactions (discussion on 
forums and social learning aspects). Engagement was analysed through two sub-
dimensions: regularity (how a learner spends her/his time on the platform and how 
she/he organizes the learning road map), and no-procrastination (the ability of the 
learner in organizing the learning processes). For more details, consult Carannante 
et al. (2020), de Barba et al. (2016), Moore and Wang (2021).

Figure 5 shows the presence of a severe left-hand skewness both for the response 
and the regressors. In particular, the strong asymmetry of the response could lead to 
problems in using OLS, keeping in mind the classical assumptions of such a model. 

3 https:// www. feder ica. eu.

https://www.federica.eu
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A comparison of the response distribution between the two groups of students by 
course type is offered in Fig. 6 through violin plots (Hintze and Nelson 1998). They 
are a combination of a boxplot and a density plot, realized rotating and placing sym-
metrically on each side two density plots. The length of the horizontal axis allows to 
appreciate the range of the observed values, while the shape highlights how values 
are distributed in terms of variability and skewness. In particular, Fig. 6 reveals dif-
ferences especially in the right tail of the distribution, showing a larger concentra-
tion of higher performance students in the group of instructor-based course.

5.2  Main results

The effect of engagement and learning on students’ performance is explored com-
paring the results of classical regression and quantile regression both on the whole 
sample and on the two subgroups defined considering the course type. Results are 
reported in Table 2 and graphically summarized in Fig. 7. The first key to interpret 
such results lies in the comparison of OLS and QR coefficients estimated on the 
whole sample (third column of Table 2). Then, it is important to compare results 
obtained on students attending instructor-paced courses (fourth column) with stu-
dents attending self-paced courses (fifth column). In all the three cases above, it is 
important to assess the sign and size of the coefficients but also their significance. 
The multigroup analysis then highlights any differences between the groups, for each 
regressor and for each model (sixth and seventh column of Table 2 report p-values 
for the parametric test and the permutation test, respectively).

The comparison of OLS and QR results on the whole sample shows different 
effects of engagement and learning on students’ performance, although always with 
a positive sign. Considering the three conditional quartiles, this effect is increas-
ing for learning (0.245, 0.420, 0.886,respectively), and particularly differentiated in 
the tails of the distribution when compared to the effect on the conditional mean, 
which is equal to 0.734. Regarding engagement, we have an inverse trend. The effect 
is decreasing (0.194, 0.183, 0.082), and not very dissimilar from the conditional 
mean, which is equal to 0.169. All coefficients are significant except the engagement 
estimated in correspondence of the quantile 0.75. From a practical perspective, this 
means that on the lower performing students, engagement plays an important role, at 
least more important than it does for the high performing students.

To analyse possible differences regarding course type, the same model is esti-
mated separately on the two subgroups of students. The learning component has 
always a greater effect on performance than engagement, even if the impact is 
stronger among students who have chosen an instructor-paced course, and who 
perform better. Most of the coefficients are significant, especially at the consid-
ered extreme quantiles, which are very important for the practical use of the study. 

Fig. 2  Boxplots of p-values obtained on 100 replications of the parametric and permutation test. Hori-
zontal panels refer to quantiles (0.1, 0.25, 0.5, 0.75, 0.9), vertical panels to sample sizes (75 vs 25, 150 vs 
50, 325 vs 125, and 750 vs 250). Each boxplot describes a different degree of overlapping among groups 
(small, medium, and large difference between coefficients). Simulations consider standard normal errors 
and unbalanced segments

▸
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Coefficients are compared by using both parametric and permutation test employing 
500 permutations. The p-values reported in the last two columns of Table 2 high-
light how QR can usefully complement OLS results. As an example, considering 
the effect of learning, OLS coefficients are affected by the high asymmetry of per-
formance and hide a significant difference between the two groups which emerges 
looking at the QR results at the quantile 0.5.

Figure  7 provides an overview of the most important results, allowing a more 
immediate assessment. The two plots on the left column refer to the learning dimen-
sion, the two plots on the right column to engagement. Th first row summarizes 
results of the parametric test, the second row results of the permutation tests. The 
coefficients are depicted on the vertical axis, the considered conditional quantiles 
on the horizontal axis. QR results on the whole sample is represented through solid 
lines, while results on specific groups using dashed lines. OLS results are depicted 
through three dots: the cross-shaped dots correspond to the coefficients estimated 
on the whole sample, triangle-shaped points correspond to coefficients estimated for 
the two groups of students, triangle with the vertex at the bottom refer to self-paced 
courses, while square-shaped dot to instructor-paced courses. Filled points indicate 
significant coefficients (p-value < 0.05) according to the permutation or the para-
metric tests. The four panels exploit a common scale, so as to make possible to visu-
ally appreciate the predominant impact of the learning component compared to the 
engagement component, pattern that becomes more relevant moving from lower to 
higher quantiles. However, both the t-test and the permutation test show that there 
is no significant difference between the two groups in the effect of learning on per-
formance in the lowest 25% of students. The opposite occurs at the top of the per-
formance distribution. The lower performing students in the two groups differ more 
with respect to engagement and, as already pointed out, engagement is more impor-
tant among lower performing students that attend self-paced course.

6  Concluding remarks

Modelling is not an easy task both because of the possible complexity of the rela-
tionships among the components of the phenomenon under investigation, and 
because of the presence of possible heterogeneity in the dependency relationship. In 
some cases, this heterogeneity is known and defined through one or more stratifica-
tion variables that identify groups of observations, each requiring different model-
ling. Obviously, for such different models it is necessary to test differences between 

Fig. 3  Boxplots of p-values obtained on 100 replications of the parametric and permutation test. Hori-
zontal panels refer to quantiles (0.1, 0.25, 0.5, 0.75, 0.9), vertical panels to sample sizes (75 vs 25, 150 vs 
50, 325 vs 125, and 750 vs 250). Each boxplot describes a different degree of overlapping among groups 
(small, medium, and large difference between coefficients). Simulations consider asymmetrical normal 
errors and unbalanced segments

▸
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the dependence structure. The problem is amplified in case of QR, because we do 
not have a unique model, but separate models for each conditional quantile � of 
interest. The challenge becomes larger with the analysis of group effects on different 
parts of the conditional distribution of the dependent variable.

In this paper, we extend the traditional approaches for handling heterogeneity 
from OLS regression to QR. In particular, we focus on two tests popular in the liter-
ature for multigroup analysis, introduced in composite-path modeling: the paramet-
ric t-test (Keil et al. 2000), and the permutation test (Chin and Dibbern 2010). The 
aim is to assess whether the presence of heterogeneity in the sample involves dif-
ferent effects at different parts of the conditional distribution of the response. Mul-
tigroup approach provides results easy to interpret, even if the number of compari-
sons is strictly related to the number of levels of the stratification variable. Indeed, 
such comparisons grow exponentially with the number of levels. Obviously, in case 
of more stratification variables, the number of comparisons is equal to the number 
of possible combinations of the levels of all the involved variables. Thus, we rec-
ommend to use the multigroup approach in case of stratification variables with a 
reduced number of levels.

The effectiveness of the parametric t-test and the permutation test has been illus-
trated through a real data application. Empirical analysis of MOOC students’ perfor-
mance showed that both engagement and learning are important drivers to explain 
the final performance. However, the effect of these variables is not uniform, but 
varies according to the conditional quantile of interest, and to the different ways in 
which the course is offered (self-paced and instructor-paced). Simulations confirm 
the ability of the proposed quantile multigroup approach in detecting differences in 
models. As expected, the sensitivity of both the considered tests was guaranteed by 
larger sample size and clearer differences between groups.

The multigroup approach focuses on observed heterogeneity, namely when the 
groups are defined a priori by the levels of one or more stratification variables. How-
ever, there are situations in which an a priori segmentation of the observations is not 
available. In such a case, we need to find some criterion to identify the comparisons 
to consider. The pathmox tree (Lamberti et al. 2016a) and MOB procedure (Zeileis 
et  al. 2008) are possible procedures to identify the most important comparisons 
through the use of a recursive approach. They exploit multiple comparisons, and 
ranks the variables that produce differences in the model coefficients revealing the 
most significant comparisons. We postpone the feasibility of a recursive approach to 
the context of quantile regression to a future study.

Fig. 4  Boxplots of p-values obtained on 100 replications of the parametric and permutation test. Hori-
zontal panels refer to quantiles (0.1, 0.25, 0.5, 0.75, 0.9), vertical panels to sample sizes (75 vs 25, 150 vs 
50, 325 vs 125, and 750 vs 250). Each boxplot describes a different degree of overlapping among groups 
(small, medium, and large difference between coefficients). Simulations consider not normal errors and 
unbalanced segments

▸
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Fig. 5  Histogram and density plot for student’s performance (left), engagement (middle) and learning 
(right)

Fig. 6  Student’s performance by course type
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Table 2  Comparison of the QR and OLS coefficients (rows) for the global model (third column) and the 
two models according to the course type (fourth and fifth column). The p-values for the multigroup com-
parison using the parametric and the permutation test are in the last two columns

∗∗∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05, NS not significant

Predictor Coefficient p-value

Global Instructor Self Parametric Permutation

Paced Paced Test Test

� = 0.25 Learning 0.245 ∗∗∗ 0.365 ∗∗∗ 0.294 ∗∗∗ 0.339 0.495

Engagement 0.194 ∗∗∗ 0.081 NS 0.231 ∗∗∗ 0.017 0.016

� = 0.5 Learning 0.420 ∗∗∗ 0.705∗∗∗ 0.348 ∗∗∗ 0.095 0.028

Engagement 0.183 ∗∗∗ −0.033 NS 0.267 ∗∗∗ 0.013 0.002

� = 0.75 Learning 0.886∗∗∗ 1.156 ∗∗∗ 0.610 ∗∗∗ 0.018 0.012

Engagement 0.082NS −0.056 NS 0.185 ∗∗∗ 0.111 0.034

OLS Learning 0.734∗∗∗ 0.962 ∗∗∗ 0.702 ∗∗∗ 0.070 0.180

Engagement 0.169∗∗∗ −0.014 NS 0.253 ∗∗∗ 0.018 0.070

Fig. 7  Coefficient comparison of QR on the whole sample and on the two subgroups of students accord-
ing to course type (different lines), the three conditional quartiles on the horizontal axis. The OLS coef-
ficients are depicted using symbol at the conditional median for the sake of comparison. First row refers 
to parametric test, second row to permutation test; first column refers to learning component, second 
column to engagement
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Appendix: Simulation results for equal coefficients between groups

See Figs. 8, 9 and 10.

Fig. 8  Boxplots of p-values obtained on 100 replications of the parametric (first four columns) and per-
mutation test (last four columns). Horizontal panels refer to quantiles (0.1, 0.25, 0.5, 0.75, 0.9), vertical 
panels to sample sizes (75 vs 25, 150 vs 50, 325 vs 125, and 750 vs 250) by quantiles (form 0.1, 0.25, 
0.5, 0.75, up 0.9), sample size (75 vs. 25, 150 vs. 50, 325 vs. 125, and 750 vs. 250). Simulations consider 
standard normal errors and unbalanced segments
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Fig. 9  Boxplots of p-values obtained on 100 replications of the parametric (first four columns) and per-
mutation test (last four columns). Horizontal panels refer to quantiles (0.1, 0.25, 0.5, 0.75, 0.9), vertical 
panels to sample sizes (75 vs 25, 150 vs 50, 325 vs 125, and 750 vs 250) by quantiles (form 0.1, 0.25, 
0.5, 0.75, up 0.9), sample size (75 vs. 25, 150 vs. 50, 325 vs. 125, and 750 vs. 250). Simulations consider 
skew normal errors and unbalanced segments
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Fig. 10  Boxplots of p-values obtained on 100 replications of the parametric (first four columns) and per-
mutation test (last four columns). Horizontal panels refer to quantiles (0.1, 0.25, 0.5, 0.75, 0.9), vertical 
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0.5, 0.75, up 0.9), sample size (75 vs. 25, 150 vs. 50, 325 vs. 125, and 750 vs. 250). Simulations consider 
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