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Abstract: Legionella is a pathogen that colonizes soils, freshwater, and building water systems. People
who are most affected are those with immunodeficiencies, so it is necessary to monitor its presence
in hospitals. The purpose of this study was to evaluate the presence of Legionella in water samples
collected from hospitals in the Campania region, Southern Italy. A total of 3365 water samples were
collected from January 2018 to December 2022 twice a year in hospital wards from taps and showers,
tank bottoms, and air-treatment units. Microbiological analysis was conducted in accordance with
the UNI EN ISO 11731:2017, and the correlations between the presence of Legionella and water
temperature and residual chlorine were investigated. In total, 708 samples (21.0%) tested positive.
The most represented species was L. pneumophila 2–14 (70.9%). The serogroups isolated were 1 (27.7%),
6 (24.5%), 8 (23.3%), 3 (18.9%), 5 (3.1%), and 10 (1.1%). Non-pneumophila Legionella spp. represented
1.4% of the total. Regarding temperature, the majority of Legionella positive samples were found in the
temperature range of 26.0–40.9 ◦C. An influence of residual chlorine on the presence of the bacterium
was observed, confirming that chlorine disinfection is effective for controlling contamination. The
positivity for serogroups other than serogroup 1 suggested the need to continue environmental
monitoring of Legionella and to focus on the clinical diagnosis of other serogroups.

Keywords: Legionella; environmental monitoring; Campania region; hospital; residual chlorine; temperature

1. Introduction

Legionella is an aerobic, non-spore-forming, and Gram-negative pathogen [1], which
was discovered in 1976 in Philadelphia following an outbreak of cases of pneumonia in a
hotel [2]. Over 65 species belong to this genus [3], about 20 of which can cause disease in
humans [4]. Moreover, Legionella pneumophila includes 15 serogroups, and serogroup 1 is
the most dangerous to humans. Thus, the attention focused on this serogroup is high [4].
Furthermore, previous studies demonstrated human infections with serogroup 3 [5–7],
serogroup 9 [7,8], and serogroup 6 [7,9].

Favourable factors to the growth of this bacterium are temperatures between 25 ◦C
and 45 ◦C (but ranges between 5.7 ◦C and 63.0 ◦C can determine its survival); stagnant
water [10], in which Legionella in amoebae copiously reproduces [11]; low flow [12]; pH
values between 5.5 and 9.2; biofilm and protozoa [2]; inorganic elements (iron, zinc and
potassium) and organic and inorganic compounds [13]; existence of water systems of old
facilities [14]; dead branches in complex water structures [15]; low total chlorine levels [16];
and low free residual chlorine levels [17]. In addition, man-made disasters [18], natural
disasters, flooding [19], water system interruptions, changes in disinfection methods of
water systems, and water network breaks [11] are risk factors for Legionella growth.

Construction activities (such as demolition, repressurization, excavation, underground
utility connections, commissioning at building opening, and water efficiency challenges)
have been associated with healthcare-associated Legionella infections and deaths [20].
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Hospitals need a water safety plan (WSP) to control Legionella proliferation, which
includes the implementation of safety measures to ensure the water quality of facilities dur-
ing demolition and construction activities and reduce the risk of exposure of patients [21].
Furthermore, hospitals need a WSP not only during construction or demolition activities.
In fact, the World Health Organization (WHO) in 2004 recommended the creation of WSPs
by all water suppliers: each of them should engage a group of water experts to assess
the risks associated with water exposure, develop and implement strategies to prevent
damage to public health, and evaluate the strategies’ effectiveness [22]. Such a plan aims
to minimize colonization of Legionella from the source of water supply to the devices in
contact with users [23].

Chlorine-based disinfection is the most common active measure used worldwide, and
in Italy, against Legionella growth and spread in building water systems [24,25]. Levels
of free residual oxidant (FRO), within 0.20 ppm and 4.0 ppm in potable water, have been
correlated with reduced risks of growth and spread of disease outbreaks [26].

The presence of Legionella can be detected in soil and water sources, such as showers,
hot tubs, air-conditioning systems [3], cooling towers, whirlpools, baths, fountains, ice
machines, medical equipment such as aerosols from respiratory devices, eye-wash sta-
tions, dental units [27], hot-water recirculation systems [28], hot- and cold-water systems,
faucets [29], heater–cooler units, and heater units for cardiac procedures [30].

Legionella infection occurs through inhalation or aspiration of droplets released from
contaminated water [3]. In addition, potting soil can also transmit the bacterium, but
the mechanism still remains unknown [27]. People who are most affected by Legionella
infections are smokers [31], alcohol abusers [32], males, those of advanced age [33], and
people with previous diseases, such as acquired immunodeficiency syndrome, hematologic
malignancy [34], and diabetes mellitus [35]. Consequently, it is necessary to monitor the
presence of Legionella in hospitals as these are places where immunocompromised patients
reside [36]. In healthcare settings, the presence of Legionella has been linked to contaminated
water reservoirs, cooling towers and air-conditioning systems [37–39]. The occurrence
of Legionella spp. in the water distribution systems of hospitals and healthcare facilities
is a possible concern for hospital populations, due to the vulnerable nature of patients
admitted to specific wards, including intensive care, hematology, cardiology, hemodialysis,
and pulmonology [40].

The objective to be achieved in healthcare facilities is to minimize colonization by
Legionella or, in the case of facilities housing immunocompromised individuals, its total
absence (not detectable with the analytical method used) [41].

Legionella infection may have several consequences: it may cause Legionnaires’ disease
(LD) (a severe pneumonia), Pontiac fever (a flu-like condition), or it may remain asymp-
tomatic. Because of the lack of specific symptoms and the absence of severity associated
with this entity, Pontiac fever is often undiagnosed and under-notified [42].

There is a difference between patients who are hospitalized for LD [43] and others
who acquire the infection in hospital due to susceptible medical conditions [44]. LD can be
the cause of CAP (community-acquired pneumonia) and pneumonias that are acquired
in situations other than travel, domestic environments, and hospitals, and it can be the
cause of up to 30% of these types of pneumonias that require hospitalization [43]. Legionella
infection can also be acquired in hospitals (hospital-associated infection): individuals most
at risk from such an infection are those with prior situations that render them vulnerable,
such as immunodeficiency, stem cell or organ transplantation, and obstructive pulmonary
disease [44].

Legionella infections are becoming a public health problem due to their incidence
and costs [45]. In order to prevent and control Legionella infections sourced from the
colonization of water systems, many countries have developed guidelines or regulations.
Several organizations, including the American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE), the WHO, the Centers for Medicare and Medicaid
Services (CMS), and the Centers for Disease Control and Prevention (CDC), recommend
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the creation of water management programs aimed at preventing the growth and spread of
Legionella [46].

In the COVID-19 era, it was reported that 20% of patients had a Legionella co-infection
during hospitalization [47]. COVID-19 patients have an increased risk for both hospitaliza-
tion and residual lung impairment [48].

In 2021, the number of Italian individuals affected by Legionellosis was 2726, and its
incidence was 46.0 cases per million population [49]. The incidence increased compared
to 2020, when the value was 34.3 cases per million population. Of the 2726 notified cases,
83.6% had a community origin, 9.4% were associated with travel, 3.7% had a nosocomial
origin, 3.1% were associated with closed communities (nursing homes for elderly people,
and healthcare or rehabilitation facilities), and 0.2% had another exposure (prison or
communities). Infections of nosocomial origin increased from 68 to 102 cases from 2020 to
2021 [49]. However, Legionella infections are underestimated, and it is reported that less
than 5% are diagnosed [50].

Legionellosis is a condition that can be avoided if the bacterium is not present in the
environment, so monitoring and preventing its presence is important [51]. Environmental
monitoring of Legionella is an approach performed on several occasions in hospitals in Italian
regions by Deiana et al. [40], Ditommaso et al. [52], Vincenti et al. [53], De Giglio et al. [54],
Laganà et al. [14], Arrigo et al. [55], Pasquarella et al. [56], and Torre et al. [57]; in non-
hospital facilities by Totaro et al. [58,59], Sabatini et al. [60], and De Filippis et al. [61];
and in both hospital and non-hospital facilities by Felice et al. [62], Leoni et al. [63], and
Mazzotta et al. [64]. Moreover, several studies were also conducted using air samples by
Montagna et al. [65–67].

To our knowledge, very few studies performed environmental monitoring of Legionella
in the Campania region, Southern Italy. In particular, a study by Torre et al. monitored
the bacterium in 50 hospitals in the Campania region during the period 2008–2014 [39].
As the new Italian National Guidelines [41] were published in 2015, it was decided to
conduct this study to assess the effectiveness of the application of the new Guidelines in
preventing Legionella colonization in water systems. Thus, the aim of this study was to
analyze hospital environmental monitoring of Legionella in the Campania region over the
5-year study period. In detail, the purposes of the study were (i) to evaluate the presence of
Legionella in tested water samples; (ii) to estimate the prevalence of species and of individual
L. pneumophila serogroups; and (iii) to assess the influence of several parameters, such as
temperature and free residual chlorine, on the presence of this bacterium.

2. Materials and Methods
2.1. Study Area and Hospital Characteristics

The water sample collection was conducted from January 2018 to December 2022 in
two provinces of the Campania region, Southern Italy (Naples and Caserta) (Figure 1). The
samples were collected in hospitals which ask us to routinely perform Legionella testing
every six months as part of WSPs as required by the Italian regulatory system for validation
of a well-maintained building water system. The water samples were collected from
26 hospitals, all of which possessed the following characteristics: the presence of a single
building, construction between 1970 and 1980, the presence of a maximum of five floors,
and the presence of the number of beds served ranging between 20 and 200. These hospitals
all have WSPs in place to respond to positive samples. We monitored 26 hospitals compared
to the 50 hospitals in the study by Torre et al. [39], because some of the 50 hospitals were
excluded since monitoring had not been carried out for all the years of the study, or these
facilities were not comparable to the others (in terms of number of beds served, number of
buildings, number of floors, construction period, or water treatment disinfection methods).

Water provided to the hospitals (which contains free chlorine as residual drinking
water disinfectant) comes from the public supply system of the cities of Naples and Caserta,
and it reaches the hospitals via a single pipeline. The hospital sites within the present study
included buildings hosting patients considered at increased risk (Medicine, Pneumology,
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Geriatrics, Surgeries, etc.) [41] over the study period, inclusive of the time during the
COVID-19 pandemic.
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Samples were collected every six months, as required by the Italian National Guide-
lines for hospitals with this type of wards. If a sample tested positive, according to the
Italian National Guidelines, the sampled point was decontaminated and re-sampled 1, 3,
and 6 months later (these mandatory follow-up lab samples and corresponding data were
excluded from the present study’s analysis, as the purpose of the work was to monitor
Legionella during routine monitoring activities). Therefore, we included the initial positive
samples and excluded the follow-up samples. The water treatment disinfection methods
used in these hospitals are based on the application of hypochlorite.

2.2. Sample Collection

We chose the sampling locations described in the Italian National Guidelines [41].
In addition, this study used similar sampling locations (i.e., faucets, showers, and tank
bottoms) within the building premise plumbing system of the study by Torre et al. [39].
Our study, in addition to the previous sampling locations, also analyzed samples collected
from the cold-water circuit, as mentioned in the new Guidelines.

In detail, for each hot-water system, as described in the Italian National Guidelines [41],
the following sampling locations were carried out: supply, recirculation, and tank bottoms,
with at least 3 representative points (furthest in the water distribution and coldest). Tank
bottom refers to a hot- or cold-water storage tank. For each cold-water system, the following
sampling locations were carried out: tank bottoms, with at least 2 representative points
(furthest in the water distribution and hottest). In addition, water was collected from
air-treatment units (ATUs). Following the observation of the positivity rate for Legionella,
it was decided to increase the sampled points. The COVID-19 pandemic prompted us
to further increase the number of samplings, and with its end, we decided to decrease
the number of sampled points. Of the total of 3365 water samples, 2065 originated from
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manual taps and showers (1485 from hot water and 580 from cold water), 780 from tank
bottoms (in particular, 520 from hot water and 260 from cold water), and 520 from ATUs.
The water samples were collected during the day (later in the morning, when the hospital
was already in action). There were no point-of-use (POU) filters at any point of sampling.

According to the Italian National Guidelines, 1 L of water was collected by the lab-
oratory staff in sterile polyethylene bottles enriched with 0.01% sodium thiosulfate to
neutralize chlorine action [60]. All samples were collected without flushing and flaming
or disinfecting at the point of discharge to simulate the common use of water, i.e., the
exposure of a user. The water samples were univocally identified on a spreadsheet at the
time of collection. At sampling, water temperature and residual chlorine were measured
by our laboratory staff. Water temperature (expressed in ◦C) was obtained using a cali-
brated thermometer (TFA Digitales Einstichthermometer, TFA-Dostmann, GmbH & Co.
KG, Wertheim-Reicholzheim, Germany), and free residual chlorine (expressed in mg/L)
was monitored using a colorimetric diethyl-p-phenylenediamine (DPD) method (MQuant;
Merck, Darmstadt, Germany). In detail, the test was based on a semi-quantitative measure-
ment of free chlorine by visual comparison of the color of the measurement solution and a
set of colors contained in a color card comparator.

The samples were transported, divided between hot- and cold-water samples at room
temperature, and protected from light.

Calibrations (kits and equipment) and microbiological analysis were performed in
our laboratory, which is accredited according to the ISO 17025 and periodically performs
proficiency tests.

No samples were damaged during transport or showed a suspect appearance, such as
different coloring or the presence of sediment or soil. Therefore, all samples collected were
included and analyzed in the study.

2.3. Microbiological Analysis and Identification

The microbiological analysis was conducted within 2 hours after the collection of
the samples, in accordance with the UNI EN ISO 11731:2017 [55,64]. Briefly, the samples
were filtered on polycarbonate membrane filters with a pore size of 0.2 µm (Sartorius).
The membrane was kept in 10 mL of the original water sample and vortexed. A total of
200 µL of water previously treated at (50 ± 1) ◦C for (30 ± 2) min. and the same volume of
untreated water were inoculated on Petri plates containing Legionella Agar Base (Oxoid)
medium and being supplemented with Legionella Growth Supplement (BCYE) (Oxoid) and
Legionella Selective Supplement (GVPC) (Oxoid). The plates were incubated at (36 ± 2) ◦C
with 2.5% CO2 and under a humid atmosphere. After 10 days, the presence or absence of
colonies was evaluated. The presumed Legionella colonies were cultured both on BCYE
agar and BCYE agar without L-cysteine (BCYE-cys agar). The growth of colonies on the
BCYE agar and not on the BCYE-cys agar suggested Legionella positivity of the samples.
Determination of species and serogroups was conducted by the latex agglutination test
(Oxoid) and the anti-Legionella pneumophila monovalent serum (Biogenetics). The colony
counts were reported in terms of CFU (colony-forming units)/L.

The test results were sent to the hospitals.

2.4. Statistical Analysis

A descriptive statistical analysis was performed as previously described [39]. It
included, for bacterial load values of positive samples, detection of geometric mean (Log10
CFU/L), standard deviation, median, percentile range, and interquartile range [39]. This
analysis was conducted using Microsoft Excel.

Normality tests were conducted using the Shapiro–Francia test to check for data distri-
bution. The non-parametric Mann–Whitney U test was used to determine the connections
between the presence of Legionella and residual chlorine (expressed in mg/L) and water
temperature (expressed in ◦C) [68]. The statistical results were interpreted at the level of
significance p < 0.05. The χ2 was calculated using Doornik–Hansen test. Multiple linear
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regression analysis (MLRA) was used to confirm the results of the Mann–Whitney U test.
The statistical calculations were performed using the STATA MP v14.0 statistical software
program (College Station, TX, USA).

3. Results
3.1. Positivity of Analyzed Samples

During the 5-year study period, the laboratory analyzed a total of 3365 water samples.
Among these samples, positivity for Legionella was detected in 708 samples, representing
21.0% of the total. The number of samples per year, along with the number of positive
samples per year, is shown in Figure 2 and Table 1. Specifically, the number of positive
samples decreased from 164 (34.2%) to 111 (14.7%).
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Table 1. Summary of the total number of samples collected during the 5-year study period (2018–2022)
with the number of positive samples and related percentages.

Sampling Year Total Number of Samples Number of Positive Samples (%)

2018 479 164 (34.2)
2019 625 147 (23.5)
2020 840 142 (16.9)
2021 667 144 (21.6)
2022 754 111 (14.7)

Table 2 shows the number of total samples, the number of positive samples, and the
percentage for different sampling locations. Of the total number of cold-water samples
(840), 37 (4.4%) tested positive. In particular, 11 originated from tank bottoms and 26 from
taps and showers. In the hot-water samples, out of the 2005 total samples, 652 (32.5%) were
positive. A total of 143 samples came from tank bottoms and 509 from taps and showers.
In the ATU samples, a positivity rate of 3.7% was observed (19 positive samples out of a
total of 520).

Table 2. Total samples, positive samples, and percentages for different sampling locations.

Tank Bottoms Taps and Showers ATUs

Cold Hot Cold Hot

N. (%) N. (%) N. (%) N. (%) N. (%)

11/260 (4.2%) 143/520 (27.5%) 26/580 (4.5%) 509/1485 (34.3%) 19/520 (3.7%)
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3.2. Distribution of Species and Serogroups among Positive Samples

Figure 3 exhibits the percentage of positivity of Legionella species and serogroups in
the years 2018–2022. In detail, L. pneumophila was the most represented (98.6% versus 1.4%
of non-pneumophila Legionella spp.). Serogroups 2–14 had a positivity percentage of 70.9%,
and serogroup 1 has a positivity percentage of 27.7%. Among serogroups 2–14, out of the
total number of isolated species and serogroups, the most represented were serogroups 6
(24.5%), 3 (18.9%), and 8 (23.3%). Serogroups 5 and 10, on the other hand, were detected at
a rate of 3.1% and 1.1%, respectively (Figure 3).
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In addition, in 27 samples of the 708 positive samples, the simultaneous presence of
two species or serogroups was found. Particularly, out of these 27 samples, 22 samples
tested positive for both serogroups 1 and 3 (3.1%), 1 sample tested positive for serogroups
1 and 6 (0.1%), 2 samples tested positive for serogroups 1 and 8 (0.3%), 1 sample tested
positive for serogroups 1 and 10 (0.1%), and 1 sample tested positive for serogroup 5 and
non-pneumophila Legionella spp. (0.1%).

3.3. Water Temperature and Residual Chlorine

Of the 3365 analyzed samples, 520 were taken from the ATUs in which the tem-
perature and residual chlorine parameters were not carried out, while the remaining
2845 samples were divided into hot-water samples (≥26.0 ◦C, n. 2,005) and cold-water
samples (≤25.8 ◦C, n. 840), with a mean temperature of 37.5 ◦C (range of 11.0–91.0 ◦C) for
all the samples collected.

Table 3 shows different ranges of temperature and, for each interval, the number of
analyzed samples, the number of positive samples, the minimum Legionella concentration,
the maximum Legionella concentration, and the geometric mean of the positive samples. The
majority of Legionella positive samples were found in the temperature ranges of 26.0–30.9 ◦C,
31.0–35.9 ◦C, and 36.0–40.9 ◦C (57.4%, 46.9%, and 48.8%). The percentage of positive
samples decreased with increasing temperatures (from 48.8% for the temperature range of
36.0–40.9 ◦C to 19.4% for temperatures ≥56.0 ◦C).
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Table 3. Number of analyzed samples, number of positive samples, percentage of positive samples,
minimum and maximum values, and geometric mean of Legionella concentration of positive samples
for different ranges of temperature.

Legionella Concentration
(Log10 CFU/L)

Temperature
(◦C)

Analyzed
Samples

Positive
Samples (%) Min Max Geometric

Mean

Cold-water
samples (n. 840)

≤20.9 382 19 (5.0%) 1.70 3.81 2.81
21.0–25.9 458 18 (3.9%) 1.70 4.00 2.83

Hot-water
samples
(n. 2005)

26.0–30.9 54 31 (57.4%) 1.70 4.18 3.10
31.0–35.9 179 84 (46.9%) 1.70 4.23 2.98
36.0–40.9 240 117 (48.8%) 1.70 4.30 3.00
41.0–45.9 558 170 (30.5%) 1.70 4.30 2.96
46.0–50.9 549 153 (27.9%) 1.70 4.36 2.87
51.0–55.9 296 72 (24.3%) 1.70 3.96 2.67
≥56.0 129 25 (19.4%) 1.70 3.97 2.73

Regarding the bacterial concentration of the positive samples, a minimum value corre-
sponding to 1.70 Log10 CFU/L was observed at all temperature ranges, while the highest
maximum value was observed at the temperature range of 46.0–50.9 ◦C (4.36 Log10 CFU/L).

In addition, the minimum value of the geometric mean was 2.81 Log10 CFU/L in
temperatures ≤20 ◦C, and it increased with increasing temperature, up to the range of
26.0–30.9 ◦C (3.10 Log10 CFU/L). For the temperature range of 41.0–45.9 ◦C and above,
there was a decrease in the geometric mean value as temperature increased. At tempera-
tures higher than 62 ◦C, no positivity for Legionella was observed.

3.4. Statistical Analysis

The results of the statistical analysis carried out to examine the bacterial load values of
the positive samples are shown in Table 4. This table reports the number of total samples,
the number of positive samples and percentage of positivity, the geometric mean (Log10
CFU/L), the standard deviation, the median, the percentile range, and the interquartile
range. Moreover, the results show the normality of all data collected, and the Doornik–
Hansen test for multivariate normality provides a χ2 = 1.09 × 105.

The lowest Legionella concentration value recorded during the analysis was 1.70 Log10
CFU/L in all years, while the highest value was 4.36 Log10 CFU/L in 2019.

Table 4. Number of total samples, number of positive samples and percentage of positivity, geometric
mean (Log10 CFU/L) of positive samples, and descriptive statistics. Descriptive statistical analysis
was conducted for the positive samples (N = 708).

Year Pos./Tot. (%) Mean (±SD 1) Min 25th Percentile Median 75th Percentile Max

2018 164/479 (34.2) 3.02 ± 0.72 1.70 2.54 3.12 3.63 4.28
2019 147/625 (23.5) 2.71 ± 0.80 1.70 2.00 2.60 3.35 4.36
2020 142/840 (16.9) 2.82 ± 0.74 1.70 2.18 2.81 3.38 4.30
2021 144/667 (21.6) 2.96 ± 0.73 1.70 2.40 3.02 3.62 4.23
2022 111/754 (14.7) 3.14 ± 0.58 1.70 2.78 3.20 3.62 4.04

1 SD: standard deviation.

The results of the MRLA (Table 5) indicated that no statistically significances were
recorded for the water samples’ temperature (p-value = 0.526), in contrast with residual
chlorine (p-value < 0.05).
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Table 5. Results of linear multiple regression.

Unstandardized Coefficients Standardized Coefficients

T Standard
Error t p-Value

Dependent Variable: Bacterial
Concentration (CFU/L)
Water Temperature (◦C) 0.0005 0.0008 0.63 0.526

Residual Chlorine (mg/L) −0.4844 0.0782 −6.19 <0.05
N = 2845.

Furthermore, the MRLA results revealed the statistically significant correlation be-
tween residual chlorine and Legionella concentration, in which was negative, as suggested
by the t-value (−6.19) and p-value (<0.05).

The boxplot regarding the influence of residual chlorine is shown in Figure 4.
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4. Discussions

Legionella is a bacterium that colonizes soils, freshwater, and building water sys-
tems [51]. The aim of this paper was to analyze the prevalence of Legionella and its individ-
ual species and serogroups in hospitals of the Campania region over the period 2018–2022
and to assess the effectiveness of the Italian National Guidelines of 2015 in preventing
Legionella colonization in water systems. In addition, the purpose was to test whether there
was a relationship between the presence of Legionella with two variables, residual chlorine
and water temperature.

In this study, we observed a 21.0% positivity rate. The positivity rate for Legionella
decreased from 2018 (34.2%) to 2022 (14.7%). The number of positive samples gradually
decreased, and this explains the decrease in the positivity percentage for this microorganism
(Figure 2). Deiana et al. [40], on the other hand, monitored the presence of Legionella
from 2010 to 2020 in a university hospital in the Sardinia region, Italy. Regarding the
period 2018–2020, they also observed a decrease in the percentage of Legionella positivity in
this region.
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The authors posit that the decrease in Legionella positivity over the course of the study
is likely attributed to the hospitals receiving the study’s results and performing environ-
mental hazard controls. The COVID-19 pandemic in 2020 and 2021 decreased attention to
environmental Legionella prevention, leading to an increase in Legionella positivity in 2021.
This increase was not observed in 2020 because the increase in hospitalization led to the
need to implement hygiene rules (e.g., hand washing) [69], which could have promoted
water flow and prevented stagnation. Stagnation is known to be responsible for the disap-
pearance and poor stability of residual disinfectant and microbial growth of Legionella [70].
Moreover, the monitored hospitals were all in constant activity during the pandemic. The
pandemic also directed our attention to new locations to monitor for Legionella: monitoring
more locations in hospitals meant preventing Legionella infections in patients.

The percentage of positivity observed at the different sampling locations was 19.7% for
tank bottoms, 25.9% for taps and showers, and 3.7% for ATUs. This study, in general, used
similar sampling locations (i.e., faucets, showers, and tank bottoms) within the building
premise plumbing system of the study by Torre et al. [39], conducted in the years 2008–2014
in hospitals in the Campania region, which showed a percentage of positivity of 27.2% for
tank bottoms, 31.9% for taps and showers, and 4.0% for ATUs. The authors supposed that
this decrease could be explained by the publication of the Italian National Guidelines in
2015 and the implementation of a WSP by hospitals, which resulted in the collaboration
of different personnel (laboratory staff, technical office, water disinfection staff, etc.) in
order to ensure water safety. In addition, the highest percentage of Legionella detection
was observed in taps and showers, which are a source of exposure for patients (taps and
showers can generate aerosols containing the bacterium that can be inhaled) [71].

Out of a total of 840 cold-water samples (temperature range of 11.0–25.9 ◦C), 37 (4.4%)
tested positive. The presence of Legionella in cold-water samples was also found in the study
by Arvand et al., 2011 [72], who detected a percentage of positivity of 40% in cold-water
samples (temperature range of 7–29 ◦C) [72]. Our results are not surprising, since out of
the total number of cold-water samples taken (840), 458 (54.5%) showed a temperature
between 21.0 and 25.9 ◦C, which are values near the range of temperatures that can create
favorable conditions for Legionella multiplication.

The results indicated that L. pneumophila was the most isolated species. The serogroups
2–14 showed a positivity rate of 70.8% for the positive samples, which was similar to that
found in Turkish hospitals (70.8%) by Yilmaz and Orhan [73], in Italian non-hospital facili-
ties (71.7%) by Sabatini et al. [60], in hospital samples (68.7%) collected by Deiana et al. [40],
and in Polish non-hospital samples (64.3%) collected by Stojek and Dutkiewicz [74].

Regarding the individual serogroups, the highest percentage of positivity was found
for serogroup 1. This finding is congruent with what is found in clinical diagnosis,
according to which the L. pneumophila type 1 is the serogroup that most commonly af-
fects humans [7,75,76]. Amemura-Maekawa et al., in fact, isolated an 80.2% percentage
of serogroup 1-positive samples in Japanese clinical specimens collected from 1980 to
2008 [77].

Regarding serogroups 2–14, the presence of serogroups different from serogroup 1 (6,
8, and 3) was the same as found previously [39]. Serogroups 3 and 6 were also among the
serogroups isolated from humans in Italy during 1987 and 2009 [78], so these results had
correspondence with what was previously reported in humans. These findings were also in
agreement with the results determined by Perola et al., who, through a genotyping analysis,
found an association between the isolates from two Legionella serogroup 5-positive patients
residing for several days in a hospital and the environmental isolates from the hospital’s
water supply [79].

Serogroups 3 and 6 were found in environmental water samples in several studies [54,80–83].
Particularly, serogroup 3 was isolated in hospitals in Iran [84], while Pignato et al. revealed
the prevalence of this serogroup in Italian hospitals, which was sometimes associated with
serogroup 6 [85]. Isolated serogroup 8 was reported by De Giglio et al. [54], Papadakis
et al. [83], and Sakhaee et al. [84].
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The presence of serogroups different from serogroup 1 suggests that attention should
be focused on the clinical diagnosis of other serogroups, considering that the most widely
used test for Legionella diagnosis in human specimens (the urinary antigen test) shows
a low sensitivity for non-L. pneumophila type 1, resulting in underreporting of Legionella
infections [76,86].

Regarding temperature, in our study, we observed that more hot-water samples
were positive than cold-water samples (32.5% vs. 4.4%). This finding is consistent with
that observed in the work by Stojek et al. conducted in Poland, who observed a higher
frequency of Legionella isolation in hot-water samples (88.6%) [87]. In addition, the highest
percentages of positive samples were found at temperatures ranging from 26.0 to 40.9 ◦C,
which are temperatures corresponding to the optimal growth range of Legionella. For
temperatures above this range, the percentage decreased. With regard to the bacterium’s
concentrations, the highest values were found at a temperature range of 46.0–50.9 ◦C,
and above this temperature range, these values decreased. In the study by Boppe et al.
conducted in a hospital where the correlation between the concentration of L. pneumophila
and the maximum water temperature at the point of use was investigated, a significant
decrease in the bacterium’s concentrations was observed at temperatures ≥55 ◦C [88].

Our analysis revealed a Legionella concentration minimum value of 1.70 Log10 CFU/L in
all years, and the highest value of 4.36 Log10 CFU/L was observed in 2019. In the study by
Torre et al., the minimum and maximum values observed were 2.00 and 7.45 Log10 CFU/L [39].
On the other hand, in the study by Girolamini et al., the minimum and maximum concen-
tration values observed in a hospital in the Emilia-Romagna region, Italy, which water was
treated with a biocide, were between <1.70 and 5.80 Log10 CFU/L [89].

The Italian National Guidelines for the prevention and control of Legionellosis indicate
the types of interventions required to be conducted in healthcare facilities, depending on
the positivity rate, the Legionella concentration (expressed in CFU/L), and the presence or
absence of clinical cases [41].

In addition, procedures must be performed to obtain non-detection of Legionella in
air-treatment systems and water in wards housing profoundly immunocompromised and
very high-risk patients (transplant centers, oncology, and hematology) and in the water for
tank births.

If a sample tested positive, according to the Italian National Guidelines, the sam-
pled point is decontaminated and re-sampled one, three, and six months later (these
mandatory follow-up lab samples and corresponding data were excluded from the present
study’s analysis).

Regarding the trends of Legionella concentration found, this study revealed a statisti-
cally significant negative correlation with residual chlorine. This finding was in agreement
with D’Alessandro et al. [90], who observed a statistically significant reduction in positive
samples following the increase in free chlorine in water. Furthermore, Totaro et al. found a
moderate relationship between the presence of Legionella and a decrease in total chlorine
concentration [58]. The same result was reported by Masaka et al., who found a weak
statistically significant negative correlation with both L. pneumophila serogroups 1 and
2–14 [91]. A statistically significant negative correlation between Legionella concentration
and total chlorine residual concentration was reported by Zhang et al. [92]. Moreover, in
their study, Rafiee et al. argued that there was proportionality between residual chlorine
content and the presence of Legionella [93]. The mechanism by which chlorine combats the
presence of Legionella involves it interaction with the pathogen’s cell membrane [94]. This
results in a dispersion of the cell’s macromolecules and subsequent modification of the
cell’s chemical, physical, and biological processes [94].

Furthermore, no statistically significant correlation was found with water temperature,
as reported by Masaka et al. [91] and Pierre et al. [46], and in contrast to the evidence found
by Rakić et al. [68], who found a correlation with L. pneumophila. In addition, De Giglio et al.
observed a weak correlation between Legionella concentrations and water temperature [95].
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In summary, the results of the study confirm that chlorine disinfection is an effective
method to control Legionella; this is in accordance with the results reported by Paranjape
et al., who found that continuous application of chlorine inhibits the presence of Legionella in
cooling towers, and by Orsi et al., who found that shock and continuous hyperchlorination
significantly reduce the number of Legionella positive samples [16,96].

5. Limitations

The limitations of this study were that sampling covered only two provinces of the
Campania region in the South of Italy. Thus, in the future, it would be interesting to expand
the study to other provinces in order to have a complete overview of the situation in the
study area. Moreover, the sampling covered only one type of facility. Consequently, a
future goal could be to expand the analysis to other types of facilities, such as recreational
centers, tourist sites, military bases, schools, and others, since it is possible to identify
the bacterium in these structures [62]. In addition, only two variables were analyzed to
evaluate the relationship with the presence of Legionella (water temperature and residual
chlorine). Furthermore, we did not collect information about cases of Legionella infections
in the monitored hospitals, and it would be interesting to investigate this aspect in future
studies and assess whether there is a correlation between these two variables, as performed
in the study by Perola et al. [79].

Finally, the circumstance that, in a high percentage of samples (79.0%), Legionella is
not detected by the culture method does not mean that all samples are really negative
for Legionella. There may be a percentage of samples that have viable but non-culturable
(VBNC) Legionella, and the culture method cannot detect them. VBNC is a state of Legionella
that can be established under unfavorable environmental conditions and retain virulence.
Under favorable conditions and in free-living amoebae, the bacterium can resuscitate and
become pathogenic again [97]. For example, a study conducted from 2010 to 2015 in an
Italian university hospital subjected to continuous monochloramine treatment determined
that 34.5% of the negative samples, as determined by the culture method, tested positive
for the VBNC state. In addition, 18% of 22 tested samples were positive based on the
resuscitation test [97]. This situation could occur in some of our negative samples. Future
goals will include testing for the VBNC state.

This paper could be a starting point for future analyses, given the importance of
environmental monitoring and the number of studies monitoring this bacterium in the
Campania region in South of Italy.

6. Conclusions

Our environmental monitoring revealed bacterial contamination of water in this region,
even though its presence decreased in percentage positivity from 2018 to 2022. Despite this
decline, attention should not be reduced, especially in facilities housing immunocompro-
mised individuals who are more susceptible to Legionella infection. The most represented
species was confirmed to be L. pneumophila. Serogroups 2–14 were found at a high rate.
Regarding total serogroups, the most represented was serogroup 1, followed by serogroups
6, 3, and 8. These results suggest the need for continuous environmental monitoring of
Legionella and highlight the importance of focusing on the clinical diagnosis of serogroups
different from serogroup 1 as well, since the most widely used test on human samples
shows a high sensitivity only for this serogroup.

The highest concentration of positive samples was observed in the temperature range
corresponding to the optimal growth temperature of the bacterium. In addition, the
negative correlation between residual chlorine and the presence of Legionella confirmed
that chlorine disinfection is an effective method for preventing Legionella contamination.

The implementation of a WSP, through the collaboration of different groups of profes-
sionals, is one of the main approaches to control Legionella contamination in hospitals and
prevent infections.
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