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Abstract: New nanocomposites containing zirconium were synthesized using microwave irradiation.
Their structure was confirmed by vibrating sample magnetometer (VSM) curves, X-ray diffrac-
tion (XRD) patterns, scanning electron microscope (SEM) and transmission electron microscopy
(TEM) images, Fourier transform infrared spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET)
N2 adsorption/desorption isotherms. After the structure confirmation of the zirconium magnetic
nanocomposite, the catalytic properties in the synthesis of pyrazole derivatives were investigated.
Next, the biological activities of the zirconium magnetic nanocomposite, such as the antibacterial and
antifungal activities, were investigated. The research results showed that the zirconium magnetic
nanocomposite has high catalytic properties and can be used as a magnetic nanocatalyst for synthe-
sizing heterocyclic compounds such as pyrazole derivatives in addition to having high biological
properties. The unique properties of the nanoparticles can be attributed to their synthesis method
and microwave radiation.

Keywords: zirconium magnetic nanocomposite; bioactive agent; green catalyst; four-component
reaction; pyrazole derivatives; antibacterial activity; antifungal activity

1. Introduction

Cyclic organic compounds withwith at least one heteroatom, such as nitrogen, sulfur,
and phosphorus, are called heterocycles. Heterocycles have many biological properties.
There are heterocyclic compounds in the structures of many drugs. So far, biological proper-
ties such as antibacterial, antifungal, anticancer, and antioxidant properties of heterocyclic
compounds containing nitrogen, sulfur, and phosphorus have been reported [1–7]. One of
criticalheterocyclic compounds’ critical applications is their use as ligands in complexes.
The use of heterocycles as ligands makes the final product retain the biological properties
of the heterocycle and the metal, thus having high biological properties. There have been
reports of using heterocycles as ligands and synthesizing novel complexes containing
various metals such as Cr, Mo, W, gold, and silver. These have unique properties, including
anticancer properties [8–12].
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The heterocyclic compound of pyrazole with two nitrogen atoms in its structure
has many biological properties. This heterocyclic ring is found abundantly in nature,
and its valuable derivatives with biological properties have been extracted from natural
compounds [13]. Biological properties, such as anticancer [14,15], anti-diabetic [16], antimi-
crobial [17,18], and antioxidant [19] of heterocyclic compounds containing pyrazole, have
been reported. Considering their importance, it is necessary to provide new methods for
its synthesis.

Recently, developments in green chemistry and multi-component reactions (MCRs)
in synthesizing heterocyclic compounds, particularly for drugs, have increased dramati-
cally. The factors driving this increase include the prevention of environmental pollution,
economic efficiency, and high efficiency [20,21]. Another advantage of MCRs is that they
perform the reaction in one step, reducing the products’ synthesis time. In multi-component
reactions, choosing a suitable catalyst is very important, and recently, nanocatalysts have
proven to be effective in these reactions. Nanocatalysts have the added benefit of being
recyclable and compatible with green chemistry. [22]. There have been several reports of
various nanocatalysts, including metal oxide nanoparticles [23–25], magnetic nanoparti-
cles [2,26], supported nanoparticles [27], and metal-organic framework nanoparticles [28],
in the synthesis of organic and heterocyclic compounds.

Metal-organic framework nanoparticles are compounds with unique capabilities. High
specific surface area and porosity are the main capabilities of these nanostructures, which
have resulted in their application as flexible supercapacitors [29] and electrochemical biosen-
sors for biomedical analysis [30,31]. There have been reports of these compounds being effi-
cient and recyclable catalysts in synthesizing organic and heterocyclic compounds [32,33].

This study synthesized a new zirconium magnetic nanocomposite using Fe3O4
nanoparticles, dipicolinic acid, ZrCl4, and a microwave-assisted method. The final prod-
uct’s structure was identified and confirmed using VSM, XRD, SEM and TEM images,
FT-IR, and BET. The final product was used as a catalyst candidate to synthesize new
pyrazole derivatives and antimicrobial agents.

2. Materials and Methods
2.1. Solvents and Raw Materials

The high-purity solvents and raw materials used in this study were purchased from
Merck and Sigma-Aldrich. The Fe3O4 nanostructures were prepared from Sigma-Aldrich.
No purification of the raw materials was carried out (Merck KGaA, St. Louis, MO, USA).

2.2. Zirconium Magnetic Nanocomposite Synthesis

For the zirconium magnetic nanocomposite synthesis, Fe3O4 nanoparticles (2 mmol),
dipicolinic acid (4 mmol), and ZrCl4 (2 mmol) were added to 30 mL double-distilled water
and stirred at 80 ◦C. After 10 min, the solution was put into a microwave and irradiated
at a microwave power of 450 W at room temperature. After 10 min, the mixture cooled
(room temperature), and the desired product was isolated using an external magnet. The
synthesized zirconium magnetic nanocomposite was washed several times with a mix of
double-distilled water and ethanol and dried at an ambient temperature.

2.3. Synthesis of 1,4-Dihydropyrano[2,3-c]pyrazole-5-Carbonitrile Derivatives Using Zirconium
Magnetic Nanocomposite as a Catalyst

For the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives, zirco-
nium magnetic nanocomposite (4 mg), aromatic aldehydes (1 mmol), and malononitrile
(1 mmol) were added to 2 mL EtOH:H2O and stirred at 50 ◦C for 5 min. Then, phenyl-
hydrazine (1 mmol) and ethyl acetoacetate (1 mmol) was added and stirred at 50 ◦C. The
reaction was monitored by thin-layer chromatography. After the completion of the reaction,
the zirconium magnetic nanocomposite was separated using an external magnet. The syn-
thesized 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives were purified using
recrystallization in ethanol.
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After separation by the magnet, the zirconium magnetic nanocomposite was washed
several times with a mixture of double-distilled water and ethanol and was reused after
drying at room temperature.

6-amino-3-methyl-1,4-diphenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (5a) FT-
IR (KBr, cm−1): 3402, 3284, 3181, 2203, 1675, 1660, 1529, 1461, 1317, 1240, 1101. 1H-NMR
(250 MHz, DMSO-d6): δ (ppm) 7.64 (s, 1 H), 7.41–7.27 (m, 11 H), 4.73 (s, 1 H), 1.63 (s, 3 H).
13C-NMR (75 MHz, DMSO-d6): δ (ppm) 159.24, 144.86, 143.92, 143.61, 137.01, 128.92, 128.52,
128.07, 127.69, 127.12, 126.34, 119.96, 112.51, 97.96, 58.13, 11.73.

6-amino-4-(4-methoxyphenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-
carbonitrile (5c) FT-IR (KBr, cm−1): 3392, 3342, 3112, 2165, 1673, 1525, 1416, 1341, 12,120,
1114. 1H-NMR (250 MHz, DMSO-d6): δ (ppm) 7.69 (d, 2 H, J = 8.4 Hz), 7.42 (t, 2 H,
J = 8 Hz), 7.35 (t, 1 H, J = 7.8 Hz), 7.19 (d, 4 H, J = 8.4 Hz), 6.95 (s, 2 H), 4.63 (s, 1 H), 3.62 (s,
3 H), 1.82 (s, 3 H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 160.82, 145.62, 144.01, 143.25,
137.82, 129.07, 128.15, 128.52, 127.67, 127.35, 126.73, 119.03, 112.46, 97.34, 57.57, 12.01.

6-amino-4-(4-hydroxyphenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-
carbonitrile (5i) FT-IR (KBr, cm−1): 3381, 3313, 3157, 2189, 1670, 1538, 1402, 1321, 1249, 1157.
1H-NMR (250 MHz, DMSO-d6): δ (ppm) 9.28 (s, 1 H), 7.71 (d, 2 H, J = 8.4 Hz), 7.55–7.49
(t, 2 H, J = 8.7 Hz), 7.29–7.21 (t, 1 H, J = 8.4 Hz), 7.04 (s, 2 H), 7.11–7.14 (d, 2 H, J = 7.5 Hz),
6.71 (s, 2 H), 4.54 (s, 1 H), 1.77 (s, 3 H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm); 160.11,
156.01, 144.98, 143.75, 143.08, 137.21, 133.62, 129.04, 128.66, 126.17, 120.49, 119.34, 114.99,
99.18, 58.61, 12.64.

2.4. Zirconium Magnetic Nanocomposite Antimicrobial Activity

To measure the MIC, MBC, and MFC, a concentration of 1–2048 mg/mL of zirconium
magnetic nanocomposite and the drug were prepared. The Clinical and Laboratory Stan-
dards Institute (CLSI) guidelines (M07-A9, M26-A, M27-A2) were used for the zirconium
magnetic nanocomposite antimicrobial activity. Based on the reported methods, relevant
tests on the desired Gram-positive, Gram-negative species, and desired fungal species
were performed [34–36].

3. Results
3.1. Results of Synthesis and Confirmation Structure of Zirconium Magnetic Nanocomposite

A new zirconium magnetic nanocomposite using Fe3O4 nanoparticles, pyridine-2,6
dicarboxylic acid, and zirconium (IV) chloride was synthesized under microwave irradi-
ation. Various techniques and analyses, such as vibrating sample magnetometer curves
(VSM, Magnetic Daghigh Danesh Pajoh Co, Iran, Kashan), X-ray diffraction patterns
(XRD, Philips XPERT PRO, Netherlands, Eindhoven), scanning electron microscope im-
ages (SEM, Hitachi S-4800 FESEM, Japan, Tokyo) and transmission electron microscopy
images (TEM, Philips EM 208S, Netherlands, Eindhoven), Fourier transform infrared
spectroscopy (FT-IR, Thermo Scientific Nicolet-6700, Waltham, MA, USA), and Brunauer–
Emmett–Teller N2 adsorption/desorption isotherms (BET, Micromeritics, TriStar II 3020
analyser, Norcross, GA, USA), were used to identify and confirm the structure of the
zirconium magnetic nanocomposite.

The magnetic saturation of the zirconium magnetic nanocomposite, as shown in the
VSM curve in Figure 1, was 0.014 emu/g.

The magnetic property of the zirconium magnetic nanocomposite was compared
with the magnetic property of the Fe3O4 nanoparticles. According to previous reports,
the saturation value of the Fe3O4 nanoparticles was 0.055 emu/g [2]. The decrease in
the magnetic saturation of the zirconium magnetic nanocomposite shows that the Fe3O4
nanoparticles were covered in groups.
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Figure 1. Magnetic saturation curve of zirconium magnetic nanocomposite.

The XRD pattern of the zirconium magnetic nanocomposite (Figure 2) confirmed the crys-
talline structure and the presence of Fe3O4 nanoparticles in the final product’s structure [37].
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Figure 2. X-ray diffraction pattern of zirconium magnetic nanocomposite.

The SEM and TEM images of the zirconium magnetic nanocomposite (Figure 3)
confirmed the uniformity of the structure and the morphology of the final product. In
addition, the SEM and TEM images proved that the structure of the compound was in the
nano-sized range.
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The FT-IR spectrum of the zirconium magnetic nanocomposite, as shown in Figure 4,
proved the desired absorptions of the final product’s structure.
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Figure 4. Fourier transform infrared spectroscopy of zirconium magnetic nanocomposite.

The Fe3O4 nanoparticles showed absorption in the region of 526 cm−1. The peaks in
areas 617 cm−1 and 667 cm−1 were related to Zr-O [38]. The peak observed in the region
1124 cm−1 corresponded to the C-O group. The C=C and C=O groups showed absorption
in areas 1548 cm−1 and 1651 cm−1, respectively. The absorption of the C-H group was
observed in areas 2930 cm−1 and 2970 cm−1. Finally, the absorption of the O-H group was
observed in the 3400 cm−1.

The N2 adsorption/desorption isotherms of the zirconium magnetic nanocomposite
were the fourth type of the classical isotherm series [39]. The specific surface area of the
zirconium magnetic nanocomposite was about 1850 m2/g (Figure 5).
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Figure 5. N2 adsorption/desorption isotherms of zirconium magnetic nanocomposite.

As an overall finding, it can be stated that the synthetic compound had magnetic
properties and could be easily separated in catalytic reactions. The desired elements and
functional groups were observed in the structure of the synthesized compound. The
synthesis method and microwave radiation caused uniform morphology and nano-sized
particles. In addition, the synthesis method increased the specific surface area, which led to
its use as an efficient catalyst and bioactive agent.

Based on the observations and spectral analysis, the following structure was suggested
for the zirconium magnetic nanocomposite (Figure 6).
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3.2. Results of Four-Component Synthesis of Multi-Ring Compound Containing Pyrazole Using
Zirconium Magnetic Nanocomposite

From the four-component reaction of the aromatic aldehyde derivatives, malononi-
trile, phenylhydrazine, and ethyl acetoacetate in the presence of the zirconium magnetic
nanocomposite as a catalyst, 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives
were synthesized (Scheme 1).
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Scheme 1. Synthesis of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile using aromatic aldehyde
derivatives, malononitrile, phenylhydrazine, and ethyl acetoacetate.

To synthesize the derivatives, we first optimized the reaction conditions, such as the
solvent, amount of catalyst, and temperature. Different solvents, such as EtOH, EtOH: H2O
(1:1), MeOH, and CH3CN, were tested during optimization. Based on the obtained results,
the highest efficiency was obtained using EtOH: H2O.

To optimize the catalyst amount, the reactions in amounts of 1–5 mg were tested.
Based on the obtained results, high efficiency was observed in using 4 mg as the catalyst.
Finally, temperature optimization was performed, and the reaction at 50 ◦C had the highest
yield. The optimization results are given in Table 1.

Table 1. Optimization of solvent, amount of catalyst, and temperature in the four-component
synthesis of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile.

Product Solvent Catalyst (mg) Temperature (◦C) Time (min) Yield (%)

5a EtOH 2 50 25 80

5a H2O:EtOH (1:1) 2 50 25 87

5a MeOH 2 50 45 34

5a CH3CN 2 50 60 21

5a H2O:EtOH (1:1) 1 50 30 75

5a H2O:EtOH (1:1) 3 50 25 90

5a H2O:EtOH (1:1) 4 50 20 95

5a H2O:EtOH (1:1) 5 50 20 93

5a H2O:EtOH (1:1) 4 r. t 45 71

5a H2O:EtOH (1:1) 4 40 30 89

5a H2O:EtOH (1:1) 4 60 20 94

5a H2O:EtOH (1:1) 4 80 25 86

5a H2O:EtOH (1:1) 4 reflux 25 83

The structures of the 16 derivatives of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile
(5a–o) synthesized in this study under optimal conditions are given in Table 2.

For synthesizing the 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives stud-
ied in this research using the zirconium magnetic nanocomposite as a catalyst, the Scheme 2
mechanism was proposed.
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Table 2. 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives synthesized using zirconium
magnetic nanocomposite as a catalyst.

Product Structure Time (min) Yield (%)
Mp (◦C)

Found Reported

5a
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Table 3 shows a comparison of the recently reported synthesis methods of 1,4-
dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives such as triazine-based function-
alized HY zeolite [40], SBA-15/hydrotalcite/heteropoly acid (phosphotungstic acid) [50],
tungstic acid immobilized on zirconium-L-aspartate amino acid metal-organic framework-
grafted L-(+)-tartaric acid-stabilized magnetic Fe3O4 nanoparticles [51], yttrium iron gar-
net [52], triphenylphosphine [53], sugarcane bagasse ash-based silica-supported boric
acid [54], and 1,3-dimethyl-2-oxo-1,3-bis(4-sulfobutyl) imidazolidine-1,3-diium hydrogen
sulfate[DMDBSI]2HSO4 [55] as a catalyst.

As a result, the zirconium magnetic nanocomposite synthesized the desired product
with better results, including higher efficiency, a shorter time, and a lower temperature.

As mentioned earlier, the favorable conditions of the zirconium magnetic nanocom-
posite as a catalyst can be attributed to its high specific surface area.

Another essential advantage of the catalyst studied in this study was its recycling ability.
Figure 7 shows that the zirconium magnetic nanocomposite can be reused up to six

times (for 5a), which does not significantly reduce the efficiency of the product.
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Table 3. Comparison of synthesis methods of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile with
the method studied in this research.

Product Condition Time (min) Temperature (◦C) Yield (%)

5a triazine-based functionalized HY zeolite 50 80 95 [40]

5a SBA-15/hydrotalcite/heteropoly acid (phosphotungstic acid) 20 reflux 93
[50]

5a
tungstic acid immobilized on zirconium-L-aspartate amino

acid metal-organic framework-grafted L-(+)-tartaric
acid-stabilized magnetic Fe3O4 nanoparticles

45 60 92
[51]

5a yttrium iron garnet 20 80 90
[52]

5a triphenylphosphine 2h reflux 87
[53]

5a sugarcane bagasse ash-based silica-supported boric acid 35 75 86
[54]

5a 1,3-dimethyl-2-oxo-1,3-bis(4-sulfobutyl)
imidazolidine-1,3-diium hydrogen sulfate[DMDBSI]2HSO4 15 60 85

[55]
5a This work 20 50 95

Nanomaterials 2022, 12, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 7. The results of recycling the catalyst in the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole-
5-carbonitrile. 

3.3. Results of Biological Activity of Zirconium Magnetic Nanocomposite 
The high specific surface area of the zirconium magnetic nanocomposite synthesized 

in this study significantly affected the Gram-positive, Gram-negative, and fungal species. 
Zirconium magnetic nanocomposite’s antimicrobial effects were tested based on the MIC 
(minimum inhibitory concentration), MBC (minimum bactericidal concentration), and 
MFC (minimum fungicidal concentration) parameters (Table 4). 

Table 4. Results of antibacterial and antifungal activity of zirconium magnetic nanocomposite com-
pared to commercial drugs. 

Zirconium Mag-
netic Nanocompo-

site and Drugs 

Gram-Positive Bacteria 
Species 

Gram-Negative Bacteria 
Species 

Fungi Spe-
cies 

Staphylococcus 
epidermidis 

Bacillus ce-
reus 

Klebsiella 
pneumoniae 

Shigella  
dysenteriae 

Candida albi-
cans 

MIC MBC MIC MBC MIC MBC MIC MBC MIC MFC 
Zirconium mag-

netic nanocompo-
site 8 16 64 128 32 64 128 256 64 128 

Antibacterial drug 2 4 - - 4 8 - - * * 
Antifungal drug * * * * * * * * - - 

Antibacterial drug: Cefazolin; Antifungal drug: Terbinafine. Values are in μg/mL. * Not checked. 

The antibacterial effects of nanoparticles were examined on Staphylococcus epidermidis 
and Bacillus cereus (Gram-positive), Klebsiella pneumonia and Shigella dysenteriae (Gram-
negative), and Candida albicans (fungi). 

Furthermore, the antimicrobial effects of some commercial drugs (Cefazolin as an 
antibacterial drug and Terbinafine as an antifungal drug) on the studied species were 
tested to compare their effectiveness to the zirconium magnetic nanocomposite. 

The results of the antimicrobial tests proved that the zirconium magnetic nanocom-
posite positively affected all studied Gram-positive, Gram-negative, and fungi species. 
The MBC value was 16 μg/mL on Staphylococcus epidermidis, 128 μg/mL on Bacillus cereus, 
64 μg/mL on Klebsiella pneumonia, and 128 μg/mL on Shigella dysenteriae, and the MFC 
value on Candida albicans was 128 μg/mL. 

95 94 94 92 91 89

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6

Y
ei

ld
 (%

)

Run

Figure 7. The results of recycling the catalyst in the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole-5-
carbonitrile.

3.3. Results of Biological Activity of Zirconium Magnetic Nanocomposite

The high specific surface area of the zirconium magnetic nanocomposite synthesized
in this study significantly affected the Gram-positive, Gram-negative, and fungal species.
Zirconium magnetic nanocomposite’s antimicrobial effects were tested based on the MIC
(minimum inhibitory concentration), MBC (minimum bactericidal concentration), and MFC
(minimum fungicidal concentration) parameters (Table 4).

The antibacterial effects of nanoparticles were examined on Staphylococcus epidermidis
and Bacillus cereus (Gram-positive), Klebsiella pneumonia and Shigella dysenteriae (Gram-
negative), and Candida albicans (fungi).

Furthermore, the antimicrobial effects of some commercial drugs (Cefazolin as an
antibacterial drug and Terbinafine as an antifungal drug) on the studied species were tested
to compare their effectiveness to the zirconium magnetic nanocomposite.
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Table 4. Results of antibacterial and antifungal activity of zirconium magnetic nanocomposite
compared to commercial drugs.

Zirconium Magnetic
Nanocomposite and Drugs

Gram-Positive Bacteria Species Gram-Negative Bacteria Species Fungi Species

Staphylococcusepidermidis Bacillus cereus Klebsiella pneumoniae Shigelladysenteriae Candida albicans

MIC MBC MIC MBC MIC MBC MIC MBC MIC MFC

Zirconium magnetic nanocomposite 8 16 64 128 32 64 128 256 64 128
Antibacterial drug 2 4 - - 4 8 - - * *
Antifungal drug * * * * * * * * - -

Antibacterial drug: Cefazolin; Antifungal drug: Terbinafine. Values are in µg/mL. * Not checked.

The results of the antimicrobial tests proved that the zirconium magnetic nanocom-
posite positively affected all studied Gram-positive, Gram-negative, and fungi species.
The MBC value was 16 µg/mL on Staphylococcus epidermidis, 128 µg/mL on Bacillus cereus,
64 µg/mL on Klebsiella pneumonia, and 128 µg/mL on Shigella dysenteriae, and the MFC
value on Candida albicans was 128 µg/mL.

It is noteworthy that Cefazolin was ineffective on Bacillus cereus and Shigella dysente-
riae, and Terbinafine was ineffective on Candida albicans. However, the zirconium magnetic
nanocomposite had a positive effect.

As mentioned earlier, the unique properties of the zirconium magnetic nanocomposite
can be attributed to its high specific surface area, which is the result of its synthesis method.

4. Conclusions

In the present study, a zirconium magnetic nanocomposite was synthesized using
the microwave method. Analyses such as vibrating sample magnetometer curves, X-ray
diffraction patterns, scanning electron microscope and transmission electron microscopy
images, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller N2 ad-
sorption/desorption isotherms to identify and confirm its structure were performed. The
results of the analyses showed that the synthesis method caused uniform morphology
and increased the specific surface area of the zirconium magnetic nanocomposite. The
synthesized zirconium magnetic nanocomposite was used as a catalyst in the synthesis of
1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives due to its unique properties,
including its high specific surface area, which is essential for catalytic applications. The
catalytic activity results compared to the previously reported methods for synthesizing
1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile derivatives were significant. One of the
other advantages of its use as a catalyst is its possible reuse without a noticeable decrease
in efficiency. The high specific surface area of the zirconium magnetic nanocomposite
resulted in biological activity, which was effective on Gram-positive, Gram-negative, and
the studied fungal species. The noteworthy finding of the antibacterial activity was its
higher effectiveness compared to the commercially used drugs.
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