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Dipartimento di Ingegneria Civile
Via Roma, 29

81031 Aversa (CE), Italy
e-mail: giuseppe.cardone@unina2.it

C. D’APICE
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Abstract. In this paper we study the asymptotic behaviour of the Laplace
equation in a periodically perforated domain of Rn, where we assume that
the period is ε and the size of the holes is of the same order of greatness.
An homogeneous Dirichlet condition is given on the whole exterior boundary
of the domain and on a flat portion of diameter ε

n
n−2 if n > 2 (exp(−ε−2),

if n = 2) of the boundary of every hole, while we take an homogeneous
Neumann condition elsewhere.
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1 Introduction

To summarize our homogenization results and related problems we confine
ourselves only to very simple geometries.

Let Cr be a cube of side r, Br a ball of radius r, Ω a bounded open subset
of Rn, n ≥ 2, with Lipschitz boundary ∂Ω and ε be a parameter taking values
in a decreasing sequence of positive numbers which tends to zero. For every ε,
let Ωε be the subset of Ω obtained by removing from Ω closed balls or cubes well
contained in Ω (the “holes”) of size r(ε) < ε, periodically distribuited with period
ε in Rn.

Let us consider the following problem


−∆uε = f in Ωε,
uε = 0 on ∂Ω,
boundary condition on ∂Ωε\∂Ω,

(1)

with f in L2(Ω).
The asymptotic behaviour, as ε tends to zero, of solutions of (1) has been

studied by many authors.
If uε = 0 on ∂Ωε (Dirichlet condition) in the case both of cubic and spherical

holes the problem has been studied by D. Cioranescu and F. Murat in [CM1] and
[CM2]. They proved that, if r(ε) = ε

n
n−2 , if n > 2 (exp(−ε−2), if n = 2) (i.e. holes

smaller and smaller in relation to ε), the solution uε of problem (1), extended to
zero on the holes, converges weakly in H1

0 (Ω) to the solution u of the problem
−∆u+µ0u = f in Ω and u = 0 on ∂Ω, where the “strange term” µ0 is the capacity
of C1 (or B1) in Rn if n ≥ 3 (2π if n = 2) (see also for general cases the large
bibliography contained in [D]).

If ∂uε

∂n = 0 on ∂Ωε\∂Ω (homogeneous Neumann condition), where n denotes
the exterior unit normal vector to ∂Ωε, the asymptotic behaviour of problem (1)
in the case of spherical holes has been studied by D. Cioranescu and J. Saint Jean
Paulin in [CSJP1]. They proved that, if r(ε) is mε (m < 1) (i.e. holes of size ε),
there exists an extension vε ∈ H1

0 (Ω) of the solution uε of (1) converging weakly
in H1

0 (Ω) to the solution of the problem −div(A∇u) = ϑf in Ω and u = 0 on
∂Ω, where ϑ = |C1\Bm1|

|C1| and A is standard homogenized matrix (see (8) for the
definition) (see also for more general cases [AM]).

In this paper, we examine the case where r(ε) = mε (m < 1) and the con-
dition homogeneous Neumann condition is given on the boundary of cubic holes,
but in a flat zone (always the same) of diameter ε

n
n−2 , if n ≥ 3 and exp(−ε−2)

for n = 2 of every hole, the Neumann condition is replaced by Dirichlet condition
(mixed conditions).

We prove that there exists an extension vε ∈ H1
0 (Ω) of the solution of (1)

converging weakly to the solution of the problem{
−div(A∇u) + 1

2µ0u = ϑf in Ω,
u = 0 on ∂ Ω

(2)
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where µ0 is exactly the “strange” term of [CM2], ϑ and A are the constant and
the matrix of [CSJP1]. We emphasize the presence of factor 1

2 before the term µ0:
the simultaneous presence of Dirichlet and Neumann condition on holes at critical
size in the homogenization process gives a result where the single effect add but
the Dirichlet effect appears halved.

We obtain the same results for n > 3 (in this case in a flat zone of ε
n

n−2

diameter of the holes is given the Dirichlet condition), but by smoothing the edges
and vertices of the holes linked to the known regularity results for the solutions
of Neumann problems.

Moreover we examine the case in which holes (obtained by rescaling a refer-
ence hole) of size ε

n
n−2 if n ≥ 3 (exp(−ε−2) if n = 2) with Dirichlet conditions, are

moving towards Neumann holes of size ε remaining at a distance τε
n

n−2 if n ≥ 3
(τ exp(−ε−2) if n = 2). In this case the limit problem is{

−div(A∇uτ ) + 1
2µτu

τ = ϑf in Ω,
uτ = 0 on ∂Ω,

where µτ is the capacity in Rn of a set obtained by doubling the Dirichlet reference
hole by reflection with respect to a hyperplane at a distance τ.

We recall that in [CDG] the authors examine a related problem. Following
[CoD], they consider the condition ∂uε

∂n = gε on ∂Ωε\∂Ω (non-homogeneous Neu-
mann condition), where gε is obtained by rescaling and periodicizing a
L2-function g defined on ∂B1 such that

∫
∂B1

gdx �= 0 and r(ε) = ε
n

n−1 , if n > 1;
but they replace in a flat zone (always the same) of diameter ε

n
n−2 , if n ≥ 3

(exp(−ε−2) if n = 2) of every hole, Neumann condition by Dirichlet condition.

2 Position of the problem
and the main result

Let Ω be a bounded open subset of Rn with Lipschitz boundary, n ≥ 2; let
Y = [−1/2, 1/2]n ⊂ Rn.

Let l > 0 such that the cube R = [0, 2l] × [−l, l]n−1 ⊂
o

Y.
For n > 3, let us consider a domain Q of Rn having C∞ boundary obtained

by smoothing the edges and vertices of R and such that

3
4
R ⊆ Q ⊆ R. (3)

For n = 2 and n = 3, we take Q = R.
Let us pose Y ∗ = Y \Q.
Let K a compact subset of Rn containing the origin; moreover, if n = 2, let

K ∩ {x ∈ Rn : x1 = 0} contain a segment.
Let f ∈ L2(Ω).
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Let ε > 0 and let Yε = Yε(Ω) = ∪{ε(Y + k) : k ∈ Znand ε(Y + k) ⊂ Ω},
Qε = εQ.

Let us define Tε = Tε(Ω) = (∪{Qε + εk : k ∈ Zn}) ∩ Yε and Ωε = Ω\Tε.

Let Sτ
ε =

{
ε

n
n−2 (K + τ), n ≥ 3

exp (−1/ε2)(K + τ), n = 2
, where τ = (τ, 0, . . . , 0) ∈ Rn and

τ ≤ 0; let us observe that there exists ετ > 0 such that if 0 < ε < ετ then Sτ
ε is

well contained in εY .
Let Dτ

ε = Dτ
ε (Ω) = (∪{Sτ

ε + εk : k ∈ Zn}) ∩ Yε if 0 < ε < ετ , Dτ
ε s = ∅

otherwise.
Let Ωτ

ε = Ω\(Tε ∪Dτ
ε ) (see fig. 1).

Let ΓD,τ
ε = ∂Dτ

ε \ o

T ε, ΓN,τ
ε = ∂Tε\Dτ

ε (see fig. 2).
Let Rn

+ = {x ∈ Rn : x1 ≥ 0}, Rn
− = {x ∈ Rn : x1 ≤ 0}.

ε

exp(−ε−2)
(εn/(n−2) if n ≥ 3)

Q ε

(Sε
τ)*

εY

εY

ε

exp(−ε−2)
(εn/(n−2) if n ≥ 3)

Q ε

Sε
τ = exp(−ε−2)K ∩ ∂Q ε, τ = 0

(Sε
τ = εn/(n−2)K ∩ ∂Q ε, if n ≥ 3, τ = 0)

Sε
τ = exp(−ε−2)(K+τ), if n = 2

(Sε
τ = εn/(n−2)(K+τ), if n ≥  3)
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exp(−ε−2)
(εn/(n−2) if n≥3)

ε

ε

Γ ε
D,τ, τ = 0

exp(−ε−2)
(εn/(n−2) if n≥3)

Γ ε
D,τ

Γ ε
N,τ

Γ ε
N,τ, τ = 0

Let us recall the definition of harmonic capacity (see the definition and
remark in Section 4.7.1 of [EG]).

Let K be a compact subset of Rn and Ω an open set such that K ⊂ Ω.
We define the (harmonic) capacity of K with respect to Ω, and we will denote by
cap (K,Ω) the following quantity

cap (K,Ω) = inf
{∫

Ω
|∇ϕ|2dx : ϕ ∈ C∞

0 (Ω), ϕ ≥ χK

}
, (4)

where

χK(x) =
{

1 if x ∈ K,
0 if x /∈ K.

We will moreover denote by cap (K) the quantity cap (K,Rn).
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Let us consider, for every ε > 0, the following problem


−∆uτ
ε = f in Ωτ

ε ,
uτ

ε = 0 on ∂Ω ∪ ΓD,τ
ε ,

∂uτ
ε/∂n = 0 on ΓN,τ

ε .
(5)

The variational formulation for this problem is the following{∫
Ωτ

ε
〈∇uτ

ε ,∇ϕ〉 dx =
∫
Ωτ

ε
fϕdx, for every ϕ ∈ V τ

ε ,

uτ
ε ∈ V τ

ε ,
(6)

where
V τ

ε denote the closure of C1
0 (Ω\ΓD,τ

ε ) in H1(Ωτ
ε ).

We observe that, by the regularity of ∂Ωε, it can be easily proved that V τ
ε is also

equal to the closure of {v ∈ H1(Ωτ
ε ), v = 0 on ∂Ω ∪ ΓD,τ

ε } in H1(Ωτ
ε ).

Let us consider now the following ausiliary problem.
For any λ ∈ Rn, let wλ ∈ H1(Y ∗) be the solution of the following problem


−∆wλ = 0 in Y ∗,
wλ(y) − λ · y Y -periodic,
∂wλ/∂n = 0 on ∂Q.

(7)

Since wλ is linear in λ and the extension operator to zero is linear, we can consider
the matrix A given by (see Theorem 4 of [CSJP])

Aλ = mY (∇̃wλ) =
1

|Y |
∫

Y ∗
∇wλdx, ∀λ ∈ Rn. (8)

where ∇̃wλ denotes the extension to zero of ∇wλ on the whole Y .
Our main result is the following.

Theorem 1 Let ε be a parameter taking values in a sequence going to zero and
let {uτ

ε}ε be the sequence of solutions of problems (6). Then

i) there exists a bounded sequence {vτ
ε }ε ⊂ H1

0 (Ω) extending {uτ
ε}ε such that

vτ
ε → uτ weakly in H1

0 (Ω)

where uτ is the solution of the “homogenized” problem∫
Ω
〈A∇uτ ,∇ϕ〉dx+

1
2
µτ

∫
Ω
uτϕdx

=
∫

Ω
ϑfϕdx, uτ ∈ H1

0 (Ω), for every ϕ ∈ D(Ω), (9)

where A is the constant matrix given in (8), and

µτ =
{
cap(((τ +K) ∩ Rn

−) ∪ (−(τ +K) ∩ Rn
+)), n ≥ 3,

2π if n = 2.
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ii) if {wτ
ε }ε ⊂ H1

0 (Ω) is any bounded sequence extending {uτ
ε}ε, then {wτ

ε }ε

weakly converges in H1
0 (Ω) to the solution uτ of problem (9);

iii) we have the convergence of the energies of problems (6) to the one of
problem (9), i.e.

1
2

∫
Ωτ

ε

|∇uτ
ε |2dx−

∫
Ωτ

ε

fuτ
εdx−→

ε→0

1
2

∫
Ω
〈A∇uτ ,∇uτ 〉dx

+
1
4
µτ

∫
Ω
(uτ )2dx−

∫
Ω
ϑfuτdx.

If K is contained in the set {x ∈ Rn : x1 = 0} and we take τ = 0, we obtain
the case when the zone ΓD

ε , where homogeneous Dirichlet conditions is imposed,
lies exactly on ∂Tε.

If K ∩ Q = {0} and τ < 0 we obtain the case when a hole with Dirichlet
condition of size ε

n
n−2 if n ≥ 3 (exp(−ε−2) if n = 2) is moving towards Neumann

holes of size ε, remaining at distance τε
n

n−2 if n ≥ 3 (τ exp(−ε−2) if n = 2). These
are the cases explicitely described in the introduction.

3 Preliminary results

We now want to prove the existence of a sequence of extensions of solutions of the
problem (6).

Let R a cube in Rn, C ⊂⊂ R be a compact set with Lipschitz boundary
∂C and 1 ≤ p < +∞. By Theorem 1 of Section 4.4 in [EG], there exists a
linear bounded extension operator Φ : W 1,p(R\C) −→ W 1,p(R), i.e. there exists
a constant c such that

‖Φv‖W 1,p(R) ≤ c‖v‖W 1,p(R\C), for every v ∈ W 1,p(R\C). (10)

Let T ′ = Q\(l
o

Y ) and T ′
ε = ∪{εT ′+εk : k ∈ Zns.t. ε (Y +k) ⊂ Ω} and Ω′

ε = Ω\T ′
ε.

For every ε and v ∈ W 1,p(Ωε), we will denote by Rεv the extension by
reflection of v on Ω′

ε defined by

Rεv(x1, x2, . . . , xn) =



v(x1, x2, . . . , xn) on Ωε,
v(2εk1 − x1, x2, . . . , xn)
for a.e. x ∈ ({ε(lY + k) : k ∈ Zns.t.
ε(Y + k) ⊂ Ω}\Ωε) ∩ Ω′

ε.

(11)

We have that

‖Rεv‖Lp(Ω′
ε) ≤ c1‖v‖Lp(Ωε), ‖∇(Rεv)‖Lp(Ω′

ε)

≤ c1‖∇v‖Lp(Ωε), for every p ∈ [1,+∞]. (12)

where the constant c1 is independent on ε.
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Proposition 1 Let Ω ⊂ Rn a bounded open set, ε > 0 and let Y , l, Q, Yε, Qε,
Tε, Ωτ

ε be defined as in problem (5).
Let {uτ

ε}ε ⊂ H1(Ωτ
ε ).

Then there exists a sequence {vτ
ε }ε ⊂ H1(Ω) of extension of {uτ

ε}ε such that

vτ
ε (x1, x2, . . . , xn) = vτ

ε (2εk1 − x1, x2, . . . , xn)
for a.e. x ∈ ({ε(lY + k) : k ∈ Zn s.t. ε(Y + k) ⊂ Ω}\Ωε) ∩ Ω′

ε, (13)

‖∇vτ
ε ‖L2(Ω) ≤ c2‖∇uτ

ε‖L2(Ωτ
ε ) (14)

where the constant c2 is independent on ε and on the particular sequence {uτ
ε}ε.

Proof. Firstly we give a small variation of (10), i.e., if C = Q\lY , we prove that
there exists a linear bounded extension operator Ψ : W 1,p(Y \C) → W 1,p(Y ), such
that

‖∇(Ψv)‖Lp(Y ) ≤ c‖∇v‖Lp(Y\C), for every v ∈ W 1,p(Y\C),with 1 ≤ p <+ ∞. (15)

Let u ∈ W 1,p(Y \C), u the average of u in Y \C and let us define
Ψ(u) = u + Φ(u − u), where Φ is given in (10); we obviously have
Ψ(u) ∈ W 1,p(Y ); therefore Ψ is a linear bounded extension operator from
W 1,p(Y \C) to W 1,p(Y ). We eventually have

‖∇Ψ(u)‖Lp(Y ) = ‖∇Φ(u− u)‖Lp(Y ) ≤ ‖Φ(u− u)‖W 1,p(Y )

≤ c‖u− u‖W 1,p(Y \C) ≤ c‖u− u‖Lp(Y \C)

+c‖∇u‖Lp(Y \C)

≤ c(1 + c′)‖∇u‖Lp(Y \C) = c‖∇u‖Lp(Y \C) (16)

where c is given in (10) and c′ is the Poincaré-Wirtinger constant of Y \C.
Now we prove that there exists a family {Pε}ε of extension operators from

H1(Ωε) to H1(Ω) such that

‖∇(Pεu)‖L2(Ω) ≤
√

1 + 2c2‖∇u‖L2(Ωε) for every u ∈ H1(Ωε) (17)

where c is given in (15), and

Pεu(ε(x1, x2, . . . , xn) + εk) = Pεu(ε(−x1, x2, . . . , xn) + εk),
for every u ∈ H1(Ωε), for every (x1, x2, . . . , xn) ∈ lY

and k s.t. εY + εk ⊂ Ω. (18)

In fact, let u ∈ H1(Ωε) and let us consider k such that the cell εY+εk ⊂ Ω; we
have that u ∈ H1(εY \εQ + εk). Now let us consider Rεu given by (11). Let us
pose

uε,k(y) = Rεu(εy + εk), for every y ∈ Y \C.
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By (15), the function vε,k(εy+εk) = Ψ(uε,k)(y) extends uε,k on Y . Let us denote

Pεu(x) =
{
vε,k(x) in εY + εk
u(x) in Ω\Yε

. (19)

It is straightforward to verify that Pεu ∈ H1(Ω) and (18) follows by (11) and (19).
Moreover we have

‖∇Pεu‖2
L2(Ω) = ‖∇u‖2

L2(Ω\Yε) +
∑

k:εY +εk⊂Ω

‖∇vε,k‖2
L2(εY +εk)

= ‖∇u‖2
L2(Ω\Yε) +

εn

ε2

∑
k:εY +εk⊂Ω

‖∇Ψ(uε,k)‖2
L2(Y )

≤ ‖∇u‖2
L2(Ωε) + c2

εn

ε2

∑
k:εY +εk⊂Ω

‖∇uε,k‖2
L2(Y \C)

= ‖∇u‖2
L2(Ωε) + c2

∑
k:εY +εk⊂Ω

‖∇(Rεu)‖2
L2(ε(Y \C)+εk)

= ‖∇u‖2
L2(Ωε) + 2c2‖∇u‖2

L2(Ωε) = (1 + 2c2)‖∇u‖2
L2(Ωε) (20)

where c is the constant given in (15), and so we obtain (17).
Now we prove the existence of the sequence {vτ

ε }ε ⊂ H1(Ω).
Let uτ

ε ∈ H1(Ωτ
ε ) and let us define

ũτ
ε =

{
uτ

ε in Ωτ
ε

0 in Ωε\Ωτ
ε .

(21)

We observe that ũτ
ε ∈ H1

0 (Ωε).
Then the sequence {vτ

ε }ε given by vτ
ε = Pεũ

τ
ε meets our requirements by

(17) and (18). �

Let us recall now some properties of capacity (see Theorem 2 of Section 4.7.1
of [EG]).

Lemma 1 Let Ω be an open subset of Rn and K be a compact subset of Ω.
Then

i) if {Ωh}h is an increasing sequence of open sets such that ∪h∈NΩh = Ω then
limh cap(K,Ωh) = cap(K,Ω)

ii) if t > 0 then cap(tK, tΩ) = tn−2cap(K,Ω).

Let S′τ
ε = (Sτ

ε ∩ Rn
−) ∪ (−Sτ

ε ∩ Rn
+) and D′τ

ε = (∪ {S′τ
ε + εk : k ∈ Zn}) ∩ Yε

if 0 < ε < ετ , D′τ
ε = ∅ otherwise.

Let B ⊂⊂ Y an open ball centered at the origin, 1 < ν < n
n−2 , if n ≥ 3

(1 < ν < +∞, if n = 2).
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Let Aε = (∪ {ενB + εk : k ∈Zn})∩Yε if 0 < ε < ε1, Aε = ∅ otherwise (let us
observe that there exists ε1 > 0 such that if 0 < ε < ε1 than S′τ

ε ⊂⊂ ενB ⊂⊂ εY ).
Let C∞

0 (Ω, D′τ
ε , 1) be the set of functions v ∈ C∞

0 (Ω) such that v = 1 in a
neighborhood of D′τ

ε .
Let H1

0 (Ω, D′τ
ε , 1) be the closure of C∞

0 (Ω, D′τ
ε , 1) in H1

0 (Ω). Let ψ̂τ
ε be the

unique solution of the problem

min
{∫

Ω
|∇ϕ|2 dx : ϕ ∈ H1

0 (Ω, D′τ
ε , 1), ϕ = 0 on Ω\Aε

}
. (22)

Let us pose ψτ
ε = 1 − ψ̂τ

ε . We can consider ψτ
ε as a function of H1

0 (Ω). Let us
observe that

ψτ
ε = 0 on D′τ

ε

ψτ
ε = 1 in Ω\Aε. (23)

Let us now complete some results of [CM2] and [CDG] in the following lemma.

Lemma 2 Let ψτ
ε the unique solution of (22). Then there exists a unique distri-

bution µτ ∈ W−1,∞, µε and γε ∈ H−1(Ω) such that, if ε takes its values in a
sequence going to zero,

−∆ψτ
ε = µτ

ε − γτ
ε ,

µτ
ε → µτ strongly in H−1(Ω)

〈γτ
ε , vε〉 = 0, ∀vε ∈ H1

0 (Ω\D′τ
ε ) (24)

where

µτ =
{
capDτ , n ≥ 3
2π, n = 2 , with Dτ = ((τ +K) ∩ Rn

−) ∪ (−(τ +K) ∩ Rn
+). (25)

We have also
0 ≤ ψτ

ε ≤ 1 (26)

ψτ
ε → 1weakly in H1(Ω), (27)

ψτ
ε → 1 strongly in Lp(Ω), ∀p ∈ [1,+∞[, (28)

Moreover, if 1 ≤ p < 2

∇ψτ
ε → 0 strongly in Lp(Ω), for ν s.t. 1 < ν < n

n−2 , if n ≥ 3,

for ν ≥ 2
2−p , if n = 2. (29)

Eventually if we restrict ψτ
ε to Ωε, we have

ψτ
ε (x1, x2, . . . , xn) = ψτ

ε (2εk1 − x1, x2, . . . , xn)
for a.e. x ∈ ({ε(lY + k) : k ∈ Zns.t. ε(Y + k) ⊂ Ω}\Ωε) ∩ Ω′

ε. (30)
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Proof. By Lemma 3.5 of [CDG] we obtain (24)÷(28).
We first prove (29) in the case n ≥ 3.
We observe that, by (4), we have∫

εY +εk
|∇ψτ

ε |2dx = cap (ε
n

n−2Dτ , ενB)

and by ii) of Lemma 3 we have

cap (ε
n

n−2Dτ , ενB) = εncap (Dτ , εν− n
n−2B).

By Hoelder inequality applied for 1
p = 1

2 + 1
s , we have

∫
εY +εk

|∇ψτ
ε |p dx =

∫
ελB

|∇ψτ
ε |pdx ≤

(∫
ελB

|∇ψτ
ε |2 dx

) p
2

|ενB| p
s

≤ ε
np
2 cap (Dτ , εν− n

n−2B)
p
2 ε

νnp
s |B| p

s .

Then, since the number of cubes Yε covering Ω is about |Ω|ε−n, we have

‖∇ψτ
ε ‖p

Lp(Ω) ≤ C
|Ω|
εn
ε

np
2 cap (Dτ , εν− n

n−2B)
p
2 ε

νnp
s |B| p

s

= C|Ω||B| p
s cap (Dτ , εν− n

n−2B)
p
2 ε

n(sp+2νp−2s)
2s .

By i) of Lemma 3 cap(Dτ , εν− n
n−2B) converges to cap(Dτ ) and since sp + 2νp −

2s > 0 if p < 2, the last term tends to zero for ε that tends to zero.
The case n = 2 is similar. We observe that by (4), we have∫

εY +εk
|∇ψτ

ε |2dx = cap(exp(−ε−2)Dτ , ενB)

and by ii) of Lemma 3, we have

cap(exp(−ε−2)Dτ , ενB) = cap(Dτ , εν exp(ε−2)B)

Then

‖∇ψτ
ε ‖p

Lp(Ω) ≤ C
|Ω|
ε2
cap(Dτ , εν exp(ε−2)B)

p
2 ε

2νp
s |B| p

s

= |Ω||B| p
s cap(Dτ , εν exp(ε−2)B)

p
2 ε

2(νp−s)
s .

By i) of Lemma 3 cap(Dτ , εν exp(ε−2)B) converges to cap(Dτ ). If νp− s > 0 and
p < 2, the last term tends to zero for ε that tends to zero.

Now let us prove (30).
Let us pose

gτ
ε (x1, . . . , xn) = ψτ

ε (2εk1 − x1, . . . , xn). (31)

Since 1 − ψτ
ε satisfies the problem (22), then by the uniqueness of the solution of

this problem and by (31), we have that gτ
ε (x) = ψτ

ε (x) and so the thesis. �



336 G. Cardone, C. D’Apice and U. De Maio NoDEA

Let C be a compact set such that C ⊂⊂ Y ⊂ Rn , ν ≥ 1 and let

Ω′′
ε = Ω\(∪{ενC + εk : k ∈ Zn} ∩ Yε). (32)

Lemma 3 Let Ω ⊂ Rn a bounded open set, ε > 0 and let Ω′′
ε defined as in (32).

Let {uε}ε and {vε}ε two bounded sequences in H1
0 (Ω) such that uε = vε a.e.

in Ω′′
ε .
Then

uε − vε −→ 0 weakly in H1
0 (Ω) as ε → 0+.

Proof. See [AtM] and Lemma 3.12 of [CDG]. �

4 Proof of Theorem 2

Let us consider now the problem (7). By Theorem 5.2 of [G3] for n = 2 and
n = 3, wλ ∈ H1+α for α ∈] 12 , 1] and so ∇wλ ∈ Hα (see Chapter 7 of [A]). By
Rellich-Kondrachov theorem (see for example Theorem 7.57 of [A]) we have that

wλ ∈ L∞(Y ∗) ∩W 1,r(Y ∗) (33)

for r such that, with α ∈] 12 , 1[,

2 < r ≤ 4
2−2α , if n = 2,

3 < r ≤ 6
3−2α , if n = 3. (34)

Let us observe that for α ∈] 12 , 1[, we have that 4
2−2α > 4 and 6

3−2α > 3.
Let us consider the function wλ defined by

wλ(x1, x2, . . . , xn) =
{
wλ(x1, x2, . . . , xn) for x ∈ Y ∗,
wλ(−x1, x2, . . . , xn) for a.e. x ∈ lY ∩Q. (35)

So
wλ ∈ L∞(Y ∗ ∪ lY ) ∩W 1,r(Y ∗ ∪ lY ), for rasin (34). (36)

If we consider the extension operator Φ : W 1,p(Y \(Q\lY )) → W 1,p(Y ) given in
(10) (where we take R = Y and C = (Q\lY )), by (36) we have that

Φwλ ∈ L∞(Y ) ∩W 1,r(Y ), for r as in (34). (37)

If n > 3, by regularity of boundary of Q, by Proposition 7.7 of [Ta] wλ ∈ Hm(Y ∗)
for every m, and so by Rellich-Kondrachov theorem, if we take m > n

2 , it results

wλ ∈ W 1,∞(Y ∗). (38)
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So wλ ∈ W 1,∞(Y ∗ ∪ lY ). Then

Φwλ ∈ L∞(Y ) ∩W 1,r(Y ), for every r s.t. 1 ≤ r < +∞. (39)

Let us pose
wε,λ(x) = ε(Φwλ)

(x
ε

)
in εY, (40)

We observe that obviously (by construction)

wε,λ(x1, x2, . . . , xn) = wε,λ(2εk1 − x1, x2, . . . , xn)
for a.e. x ∈ ({ε(lY + k) : k ∈ Zn s.t. ε(Y + k) ⊂ Ω}\Ωε) ∩ Ω′

ε. (41)

We observe that, by (37) and (39)

wε,λ ∈ L∞(Ω) ∩W 1,r(Ω), (42)

for r such that, with α ∈] 12 , 1[,

2 < r ≤ 4
2−2α , if n = 2,

3 < r ≤ 6
3−2α , if n = 3,

1 ≤ r < +∞, if n > 3. (43)

We observe also that Φwλ(y) − λy is Y -periodic. So there exists an Y -periodic
function β such that

(Φwλ)(x) = λx + β(x). (44)

and so
wε,λ(x) = λx + εβ

(x
ε

)
.

Since Φwλ belongs to L∞(Y ), by (37) and (39), β is also in L∞(Y ) and so

‖wε,λ‖L∞(Ω) ≤ c3, (45)

with c3 a constant independent on ε and

wε,λ(x) → λx strongly in L∞(Ω). (46)

In the following we use for λx the symbol w∗
λ. By (37) and (39), we have

β ∈ L∞(Y ) ∩W 1,r(Y ), for r as in (43) (47)

and so, since εβ(x
ε ) is equibounded in W 1,r(Ω) for r as in (43), then

‖wε,λ‖W 1,r(Ω) ≤ c4, for as in (43) (48)

with c a constant independent on ε.
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It easy to see also that

wε,λ ⇀ w∗
λ weakly in W 1,p (Ω), (49)

for p such that, with α ∈] 12 , 1[,

2 < p < 4
2−2α , if n = 2,

3 < p < 6
3−2α , if n = 3,

1 ≤ p < +∞, if n > 3.

Let (uτ
ε )ε be a sequence of the solutions of problem (5).

We observe that uτ
ε = 0 on ∂Ω ∪ ΓD,τ

ε . By Proposition 3, there exists a
sequence {vτ

ε }ε of extension of {uτ
ε}ε satisfying (14) and obviously vτ

ε = 0 on
∂Ω ∪ ΓD,τ

ε . So by (13) we have

vτ
ε ∈ H1

0 (Ω\D′τ
ε ). (50)

Now we estimate the H1-norm of vτ
ε .

We have, by Poincaré inequality, (14) and (6)

‖vτ
ε ‖2

H1(Ω) ≤ c2Ω

∫
Ω

|∇vτ
ε |2dx ≤ c2Ωc

2
2

∫
Ωτ

ε

|∇uτ
ε |2dx = c2Ωc

2
2

∫
Ωτ

ε

fuτ
εdx

≤ c2Ωc
2
2‖f‖L2(Ωτ

ε )‖uτ
ε‖L2(Ωτ

ε ) ≤ c2Ωc
2
2‖f‖L2(Ω)‖vτ

ε ‖H1(Ω)

≤ c5‖vτ
ε ‖H1(Ω)

where cΩ is the Poincaré constant of Ω; then

‖vτ
ε ‖H1(Ω) ≤ c5, (51)

where c5 is a constant independent on ε.
So there exists a subsequence, still denoted by ε, such that

vτ
ε ⇀ uτ weakly in H1

0 (Ω). (52)

Obviously, since vτ
ε = uτ

ε on Ωτ
ε , we deduce by (51) that

‖uτ
ε‖H1(Ωτ

ε ) ≤ c6, (53)

where c6 is a constant independent on ε.
By (52) and Rellich theorem we have

vτ
ε ∈ Lq(Ω), for q ∈ [1,+∞[, if n = 2,
vτ

ε ∈ Lq(Ω), for q ∈ [1, 2n
n−2 ], if n ≥ 3. (54)
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and

vτ
ε → uτ strongly in Lp(Ω), for 2 ≤ p < ∞, if n = 2,

for 2 ≤ p < 2
n

n− 2
, if n ≥ 3. (55)

Let us pose ηε,λ = ∇wλ(xε) in Ωε; by (7) we have{ −divη̃ε,λ = 0 in Ωε

η̃ε,λ · n =0 on ∂Tε.

where η̃ε,λ denote the extension to zero of ηε,λ on the whole Ω. Its variational
formulation is ∫

Ω
〈η̃ε,λ,∇ϕ〉 dx = 0, ∀ϕ ∈ H1

0 (Ω). (56)

We observe that
η̃ε,λ ⇀ Aλ weakly in L2(Ω) (57)

where Aλ is given by (8).
Let us pose ξτ

ε = ∇uτ
ε . Then by (53), we have (up to a subsequence)

ξ̃τ
ε ⇀ ξτ weakly in (L2(Ω))n, (58)

where ξ̃τ
ε denote the extension to zero of ξτ

ε on the whole Ω, and∫
Ω
〈ξ̃τ

ε ,∇v〉dx =
∫

Ω
χΩτ

ε
fvdx, for every v ∈ V τ

ε . (59)

Let us consider, for every ϕ ∈ D(Ω), ϕwε,λψ
τ
ε , where ψτ

ε is given by (23). By (26),
(33) and Proposition 9.4 of [B], we can take ϕwε,λψ

τ
ε , as test function in (59); we

have ∫
Ω
〈ξ̃τ

ε ,∇ϕ〉wε,λψ
τ
ε dx+

∫
Ω
〈ξ̃τ

ε , η̃ε,λ〉 ϕψτ
ε dx+

∫
Ω
〈ξ̃τ

ε ,∇ψτ
ε 〉 ϕwε,λdx

=
∫

Ω
χΩτ

ε
fϕwε,λψ

τ
ε dx (60)

Moreover if we take in the problem (56) vτ
εϕ (ϕ ∈ D(Ω)) as test function, we have∫

Ω
〈η̃ε,λ,∇ϕ〉vτ

ε dx+
∫

Ω
〈η̃ε,λ,∇vτ

ε 〉ϕdx = 0 (61)

By (60) and (61), we have∫
Ω
〈ξ̃τ

ε ,∇ϕ〉wε,λψ
τ
ε dx+

∫
Ω
〈ξ̃τ

ε , η̃ε,λ〉ψτ
εϕdx+

∫
Ω
〈ξ̃τ

ε ,∇ψτ
ε 〉wε,λϕdx

−
∫

Ω
〈η̃ε,λ,∇ϕ〉vτ

ε dx−
∫

Ω
η̃ε,λ,∇vτ

εϕdx =
∫

Ω
χΩτ

ε
fwε,λψ

τ
εϕdx (62)
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Let us consider the last term in (62). Let us observe that

χΩτ
ε
⇀ ϑ weakly∗ in L∞(Ω), (63)

and, by (28) and (45), that

wε,λψ
τ
ε → w∗

λ strongly in L2(Ω). (64)

So by (63) and (64) ∫
Ω
χΩτ

ε
fϕwε,λψ

τ
ε dx →

∫
Ω
ϑfϕw∗

λdx. (65)

Let us consider the first term in (62). Then by (58) and (64), it results that, as
ε → 0, ∫

Ω
〈ξ̃τ

ε ,∇ϕ〉wε,λψ
τ
ε dx →

∫
Ω
〈ξτ ,∇ϕ〉w∗

λdx. (66)

Let us consider the second and the fifth term in (62).
We have by (26) and (53), since the support of ψτ

ε − 1 is contained in Aε,∣∣∣∣
∫

Ω
〈ξ̃τ

ε , η̃ε,λ〉ψτ
εϕdx−

∫
Ω
〈η̃ε,λ,∇vτ

ε 〉ϕdx
∣∣∣∣

=

∣∣∣∣∣
∫

Ωτ
ε

〈ξτ
ε , ηε,λ〉(ψτ

ε − 1)ϕdx

∣∣∣∣∣
≤ ‖ϕ‖∞‖∇uτ

ε‖[L2(Ωτ
ε )]n‖ηε,λ‖[L2(Aε∩Ωε)]n

≤ c7ε
n‖∇(Φw

λ
)‖[L2( Aε

ε )]n

≤ c8|Ω|‖∇(Φw
λ
)‖[L2( Aε

ε ∩Y )]n , (67)

where c8 is a constant independent on ε.
We have that ‖∇(Φw

λ
)‖[L2( Aε

ε ∩Y )]n tends to zero, as ε → 0, by the absolute

continuity of the integral because |Aε

ε | → 0.
Let us consider the fourth term in (62). By (55) and (57), we have∫

Ω
〈η̃ε,λ,∇ϕ〉vτ

ε dx →
∫

Ω
〈Aλ,∇ϕ〉udx. (68)

Let us consider the third term in (62).
Let (φε)ε be a sequence in D(Ω) such that

φε → ϕ strongly in L∞(Ω) (69)

and φε is constant on ενB + εk, for every ε, k ∈ Zn such that ε(Q+ k) ⊂ Ω.
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Since ψτ
ε = 1 in Ω\Aε and so ∇ψτ

ε = 0 in Ω\Aε, we have∫
Ω
〈ξ̃τ

ε ,∇ψτ
ε 〉wε,λϕdx =

∫
Ωτ

ε

〈ξτ
ε ,∇ψτ

ε 〉wε,λϕdx

=
∫

Ωτ
ε

〈ξτ
ε ,∇ψτ

ε 〉(ϕ− φε)wε,λdx

+
∫

Ωτ
ε ∩Aε

〈ξτ
ε ,∇ψτ

ε 〉φεwε,λdx.

If we restrict ξτ
ε to Ωε and after denote by Rεξ

τ
ε the function given by (11), by

the properties of simmetry of ψτ
ε given by (30) and wε,λ given by (41) and Rεξ

τ
ε ,

since φε are constant on Ωτ
ε ∩Aε, we have∫

Ωτ
ε ∩Aε

〈ξτ
ε ,∇ψτ

ε 〉φεwε,λdx =
1
2

∫
Aε

〈Rεξ
τ
ε ,∇ψτ

ε 〉φεwε,λdx. (70)

By the definition of ξτ
ε and Rεξ

τ
ε , and the properties of simmetry of vτ

ε given by
(13), we have ∫

Aε

〈Rεξ
τ
ε ,∇ψτ

ε 〉φεwε,λdx =
∫

Aε

〈∇vτ
ε ,∇ψτ

ε 〉φεwε,λdx. (71)

So by (70), (71)∫
Ω
〈ξ̃τ

ε ,∇ψτ
ε 〉wε,λϕdx =

∫
Ωτ

ε

〈ξτ
ε ,∇ψτ

ε 〉(ϕ− φε)wε,λdx

+
1
2

∫
Aε

〈∇vτ
ε ,∇ψτ

ε 〉 φεwε,λdx

=
∫

Ωτ
ε

〈 ξτ
ε ,∇ψτ

ε 〉(ϕ− φε) wε,λdx

+
1
2

∫
Aε

〈∇vτ
ε ,∇ψτ

ε 〉(φε − ϕ) wε,λdx

+
1
2

∫
Ω
〈∇vτ

ε ,∇ψτ
ε 〉 wε,λϕdx. (72)

We have that∣∣∣∣∣
∫

Ωτ
ε

〈ξτ
ε ,∇ψτ

ε 〉(ϕ− φε)wε,λdx

∣∣∣∣∣
≤ ‖ϕ− φε‖L∞(Ω)‖wε,λ‖L∞(Ω)‖∇uτ

ε‖(L2(Ωτ
ε ))n‖∇ψτ

ε ‖L2(Ω) (73)

that, by (27), (45), (53) and (69), tends to zero. In a similar way we obtain that,
as ε → 0

1
2

∫
Aε

〈∇vτ
ε ,∇ψτ

ε 〉 (φε − ϕ)wε,λdx → 0. (74)
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Now we examine the last term in (72). It results

wε,λv
τ
εϕ ∈ H1

0 (Ω\D′τ
ε ). (75)

In fact since vτ
ε ∈ H1

0 (Ω\D′τ
ε ) and ϕ ∈ D(Ω), by (50) we must only prove that

wε,λv
τ
ε ∈ H1(Ω). Obviously ∇(wε,λv

τ
ε ) = wε,λ∇vτ

ε + vτ
ε ∇wε,λ. By (45) and since

∇vτ
ε ∈ L2(Ω) we have that wε,λ∇vτ

ε ∈ L2(Ω). If n = 2, by ( 4) and since wε,λ ∈
L∞(Ω) ∩ W 1,4(Ω), then ∇wε,λv

τ
ε ∈ L2(Ω). If n ≥ 3, by (4) and since wε,λ ∈

L∞(Ω) ∩W 1,3(Ω), then ∇wε,λv
τ
ε ∈ L2(Ω). So we have∫

Ω
〈∇vτ

ε ,∇ψτ
ε 〉wε,λϕdx = 〈−∆ψτ

ε , wε,λv
τ
εϕ〉

−
∫

Ω
〈∇ψτ

ε ,∇ϕ〉wε,λv
τ
ε dx−

∫
Ω
〈∇ψτ

ε ,∇wε,λ〉vτ
εϕdx (76)

By the equiboundedness of wε,λ in L∞(Ω), by (55) and since, by (27), ∇ψτ
ε ⇀ 0

weakly in L2(Ω), we obtain that
∫
Ω〈∇ψτ

ε ,∇ϕ〉wε,λv
τ
ε dx tends to zero.

We can observe that

‖vτ
ε ∇wε,λ‖Ls(Ω) ≤ c9 , for s > 2, (77)

where c9 is a constant independent on ε.
In fact if n = 2, by (48) it results ∇wε,λ is equibounded in Lr(Ω) with r > 2.

By (4) vτ
ε is equibounded in Lq(Ω) for 1≤ q < +∞ and so by (77) there exists

s > 2 such that vτ
ε ∇wε,λ is equibounded in Ls(Ω). By (29), ∇ψτ

ε ⇀ 0 strongly in
Ls′

(Ω), with 1
s′ + 1

s = 1.
If n = 3, by (48) there exists r such that 3 < r ≤ 6

3−2α (α ∈] 12 , 1]) and ∇wε,λ

is equibounded in Lr(Ω). By (4) vτ
ε is equibounded in Lq(Ω) for 1≤ q < 6. So

there exists s > 2 such that ∇wε,λv
τ
ε is equibounded in Ls(Ω).

If n > 3, we observe that, by (48), ∇wε,λ is equibounded in L∞(Ω). Then
by (29), ∇ψτ

ε ⇀ 0 strongly in Ls′
(Ω), with 1

s′ + 1
s = 1.

So we obtain that
∫
Ω 〈∇ψτ

ε ,∇wε,λ〉 vτ
εϕdx tends to zero. We have that

wε,λv
τ
ε → w∗

λu
τ weakly in H1

0 (Ω).
Indeed wε,λ → w∗

λ strongly in L∞(Ω), by (46) and vτ
ε ⇀ uτ weakly in H1

0 (Ω)
by (52).

Moreover ∇(wε,λv
τ
ε ) = wε,λ∇vτ

ε + vτ
ε ∇wε,λ and vτ

ε ∇wε,λ is equibounded in
Ls(Ω) for s > 2, by (77).

By Lemma 3 and (75), we have

〈−∆ψτ
ε , ϕwε,λv

τ
ε 〉H−1(Ω),H1

0 (Ω) → 〈µτ , ϕw
∗
λu

τ 〉H−1(Ω),H1
0 (Ω). (78)

By (62) and (65)÷(78), we have that, as ε → 0∫
Ω

〈ξτ ,∇ϕ〉w∗
λdx+

1
2

〈µτ , ϕu
τw∗

λ〉H−1(Ω),H1
0 (Ω)

−
∫

Ω
〈Aλ,∇ϕ〉uτdx =

∫
Ω
ϑfϕw∗

λdx. (79)
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Now let us take, for every ϕ ∈ D(Ω), ϕψτ
ε as test function in (59). Then∫

Ω
〈ξ̃τ

ε ,∇ϕ〉ψτ
ε dx+

∫
Ω
〈ξ̃τ

ε ,∇ψτ
ε 〉 ϕdx =

∫
Ω
χΩτ

ε
fϕψτ

ε dx. (80)

As previously proved we have∫
Ω
〈ξ̃τ

ε ,∇ψτ
ε 〉ϕdx =

∫
Ωτ

ε

〈ξτ
ε ,∇ψτ

ε 〉(ϕ− φε)dx+
1
2

∫
Aε

〈∇vτ
ε ,∇ψτ

ε 〉 (φε − ϕ) dx

+
1
2

∫
Ω
〈∇vτ

ε ,∇ψτ
ε 〉ϕdx. (81)

As to obtain (73) and (74), we have that the first and the second term on the
right tends to zero. Then∫

Ω
〈∇vτ

ε ,∇ψτ
ε 〉ϕdx =

∫
Ω
〈∇ψτ

ε ,∇(vτ
εϕ)〉dx− 1

2

∫
Ω
〈∇ψτ

ε ,∇ϕ〉vτ
ε dx. (82)

Now we observe that, since vτ
εϕ ∈ H1

0 (Ω\D′τ
ε ) by (50),∫

Ω
〈∇ψτ

ε ,∇(vτ
εϕ)〉dx = 〈µτ

ε − γτ
ε , v

τ
εϕ〉 = 〈µτ

ε , v
τ
εϕ〉. (83)

So by (24) and (52), we have for ε that tends to zero

〈µτ
ε , v

τ
εϕ〉 → 〈µτ , u

τϕ〉. (84)

By (27) and (52), we have for ε that tends to zero∫
Ω
〈∇ψτ

ε ,∇ϕ〉vτ
ε dx → 0. (85)

By (81)÷(85), we obtain ∫
Ω
〈ξ̃τ

ε ,∇ψτ
ε 〉 ϕdx → 〈µτ , u

τϕ〉 (86)

Then passing to the limit as ε → 0 in (80), by (28), (58), (63) and (86), we have∫
Ω
〈ξτ ,∇ϕ〉 dx+

1
2

〈µτ , ϕu
τ 〉H−1(Ω),H1

0 (Ω) =
∫

Ω
ϑfϕdx, (87)

for every ϕ ∈ D(Ω).
Now taking ϕw∗

λ as test function in (87), we obtain∫
Ω
〈ξτ ,∇ϕ〉w∗

λdx+
∫

Ω
〈ξτ , λ〉ϕdx+

1
2

〈µτ , ϕu
τw∗

λ〉H−1(Ω),H1
0 (Ω)

=
∫

Ω
ϑfϕw∗

λdx. (88)
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By (79) and (88) we have∫
Ω
〈ξτ , λ〉ϕdx+

∫
Ω
〈Aλ,∇ϕ〉uτdx = 0 (89)

But by divergence theorem ∫
Ω
〈Aλ,∇(ϕuτ )〉dx = 0

and so ∫
Ω
〈Aλ,∇ϕ〉uτdx = −

∫
Ω
〈Aλ,∇uτ 〉 ϕdx. (90)

Then by (89) and (90) we have∫
Ω
〈ξτ , λ〉 ϕdx−

∫
Ω
〈Aλ,∇uτ 〉 ϕdx =

∫
Ω
〈ξτ − A∇uτ , λ〉 ϕdx = 0,

and so ξτ = A∇uτ a.e. in Ω.
If now {wτ

ε }ε is any other family of uniform extensions of {uτ
ε}ε bounded in

H1
0 (Ω) we have that vτ

ε − wτ
ε = 0 in Ωτ

ε and is bounded in H1
0 (Ω). By Lemma 3

we obtain ii) of Theorem 2.
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[BP] A. BAKHVALOV, G.P. PANASENKO, Homogenization: Averaging
Processes in Periodic Media, Math. Appl. (Soviet Ser.) 36 Kluwer
Academic Publishers, 1989.

[BLP] A. BENSOUSSAN, J.L. LIONS, G. PAPANICOLAOU, Asymptotic
Analysis for Periodic Structures, North Holland, Amsterdam, 1978.

[BD] A. BRAIDES, A. DE FRANCESCHI, Homogenization of Multiple Inte-
grals, Oxford Lecture Ser. Math. Appl. Oxford University Press 12
(1998).



Vol. 9, 2002 Homogenization in perforated domains with mixed conditions 345

[B] H. BREZIS, Analisi Funzionale, Liguori Ed., Napoli, 1990.

[CD] D. CIORANESCU, P. DONATO, Homogénéisation du problème de
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