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Abstract— Type 1 diabetes mellitus (T1DM) is character-
ized by insulin deficiency and blood sugar control issues.
The state-of-the-art solution is the artificial pancreas (AP),
which integrates basal insulin delivery and glucose mon-
itoring. However, APs are unable to manage postprandial
glucose response (PGR) due to limited knowledge of its
determinants, requiring additional information for accurate
bolus delivery, such as estimated carbohydrate intake.
This study aims to quantify the influence of various meal-
related factors on predicting postprandial blood glucose
levels (BGLs) at different time intervals (15min, 60min, and
120min) after meals by using deep neural network (DNN)
models. The prediction models incorporate preprandial
blood glucose values, insulin dosage, and various meal-
related nutritional factors such as intake of energy, car-
bohydrates, proteins, lipids, fatty acids, fibers, glycemic
index, and glycemic load as input variables. The impact of
input features was assessed by exploiting eXplainable Arti-
ficial Intelligence (XAI) methodologies, specifically SHapley
Additive exPlanations (SHAP), which provide insights into
each feature’s contribution to the model predictions. By
leveraging XAI methodologies, this study aims to enhance
the interpretability and transparency of BGL prediction
models and validate clinical literature hypotheses. The find-
ings can aid in the development of decision-support tools
for individuals with T1DM, facilitating PGR management
and reducing the risks of adverse events. The improved
understanding of PGR determinants may lead to advance-
ments in AP technology and improve the overall quality of
life for T1DM patients.

Index Terms— predictive models, postprandial blood glu-
cose response, machine learning, explainable artificial in-
telligence, interpretability, meal-related features
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I. INTRODUCTION

TYPE 1 diabetes mellitus (T1DM) is an autoimmune disor-
der characterized by the destruction of pancreatic β-cells,

inadequate insulin production, and compromised glycemia
regulation [1]. As a result, the primary objective in T1DM
management is achieving glycemia control via exogenous
insulin administration. The accurate determination of insulin
dosage at specific time points presents a significant challenge,
as patients face fluctuations in metabolic needs [2]. Recent
years have witnessed remarkable technological advancements
with the emergence of closed-loop systems, commonly known
as the artificial pancreas (AP). These innovative systems aim
to replicate physiological insulin release through automated,
glucose-responsive insulin delivery. Comprising an insulin
pump, a continuous glucose monitor (CGM), and a control
algorithm built on heuristics and theoretical knowledge, the AP
systems are designed to optimize glycemia control by mini-
mizing both hyperglycemic and hypoglycemic episodes [3]. In
spite of their successful automation of basal insulin delivery,
AP systems encounter challenges in efficiently addressing
postprandial glucose regulation (PGR), a critical concern for
individuals with T1DM who must manually determine the
preprandial insulin dose based on meal information [4].

To overcome this challenge, the integration of innovative
decision support algorithms into T1DM therapy can potentially
facilitate PGR management. Advanced methods of artificial
intelligence (AI), specifically machine learning (ML), focusing
on predicting future blood glucose levels (BGLs) offer a
potential approach for improving diabetes treatment and miti-
gating adverse events [5], [6]. Existing literature highlights the
potential of ML-based approaches, including artificial neural
networks, to predict future BGLs, enabling early detection
of hypo- and hyperglycemic events, and optimizing insulin
administration [6]–[8]. This knowledge can be integrated into
closed-loop systems, like AP, to improve insulin delivery
adequacy. However, predicting BGLs remains challenging due
to various factors beyond insulin infusions, including meal
intake, physical activity, sleep patterns, and emotional states,
which impact real glucose signals [9]. Despite the importance
of these factors, there is a scarcity of models that incorpo-
rate them into their framework, also considering the lack of
real data availability. Prior studies [10], [11] investigated the
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role of nutritional factors as input components in forecasting
postprandial BGLs over various prediction horizons (PHs).
These reported a significant impact of nutritional factors on the
predicted BGLs, with increasing PHs showing more influence.
Nonetheless, the aforementioned works, as the majority of
BGLs prediction models in the literature, lack interpretability,
rendering them as black boxes for ML scientists, healthcare
practitioners, and patients. Indeed, in the field of decision-
support models for medicine, there is a growing demand for
transparent models capable of generating dependable and inter-
pretable predictions [12]. In this regard, eXplainable Artificial
Intelligence (XAI) has emerged as a crucial research area.
XAI encompasses a range of techniques and methodologies
with the primary objective of providing human-understandable
explanations for the decisions and predictions generated by
AI models [13], [14]. As a result, various methodologies and
algorithms have been developed to unveil the inner workings
of AI models and their decision-making processes [15].

Within this context, the present study aims to investigate
the impact of specific input features on BGLs prediction by
employing XAI methodologies. To achieve this objective, a
postprandial BGL prediction model is proposed, having as
features BGL values, the quantity of insulin administered
during mealtime, microboluses of insulin provided by the AP
system before the meal, as well as meal-related attributes (e.g.,
intake of energy, carbohydrates, proteins, lipids, fatty acids,
fiber, cholesterol, glycemic index, and glycemic load). This
investigation specifically involves the development of three
distinct prediction models, with PHs of 15min, 60min, and
120min after the meal. To assess the influence of each input
feature and to confirm clinical evidence on the importance of
nutritional factors, the SHapley Additive exPlanations (SHAP)
approach is exploited [16]. In this regard, it is worth men-
tioning that the aim of this research is the assessment of the
relative influence of various nutritional factors, and not towards
the development of an advanced predictive model for glucose
levels. Thus, in the proposed approach, the predictive model
serves as a means to an end, rather than the primary object.
According to our current understanding, the comprehensive
impact of various nutritional factors on BGLs in T1DM
appears as not thoroughly addressed with respect to XAI, but
only from a clinical point of view, in the existing literature
[17]–[19].

The work is structured as follows. Section II presents a
thorough literature review on ML-powered BGL prediction
systems and XAI applications, highlighting the current state of
knowledge and gaps in the field. Sections III and Section IV
outline the methodology employed, including data collection
and study design. Section V reports the obtained results,
providing detailed insights into the measured parameters and
their significance. Building upon this, Section VI presents a
comprehensive discussion, interpreting the findings within the
context of existing diabetes management strategies. Finally,
Section VII summarizes the key findings and paves the way
to future works.

TABLE I
PREDICTION PERFORMANCE COMPARISON IN CURRENT LITERATURE.
PH [PREDICTION HORIZON], RMSE [ROOT MEAN SQUARED ERROR]

Study Type of inputs PH
(min)

RMSE
(mg/dL)

Annuzzi et al. [10]
CGM data, statistical attributes,
insulin,
meal related information

30
60

8.0 ± 0.6
21.3 ± 1.6

Daniels et al. [21]
CGM data, insulin,
physiological signals,
meal intake

30
60

120

18.8 ± 2.3
31.8 ± 3.9
47.2 ± 4.6

Alfian et al. [23] CGM data, statistical attributes 30
60

6.6 ± 2.4
15.3 ± 5.9

Jaloli et al. [27] CGM data, insulin,
carbohydrates

30
60

9.8 ± 1.2
18.3 ± 2.8

Li et al. [31] CGM data, insulin,
carbohydrates

30
60

19.3 ± 2.8
31.8 ± 3.5

II. RELATED WORKS

In recent years, ML has disclosed new perspectives in
AP systems, providing the opportunity to successfully extract
knowledge from data. Particularly, ML methodologies focused
on predicting future BGLs have emerged as a promising ap-
proach for empowering individuals with T1DM [6], [9], [20],
[21], effectively addressing the limitations associated with ad-
verse events [5]. In the literature, several ML-based strategies,
such as deep neural networks (DNNs), have demonstrated
potential in BGL prediction and early detection of hypo-
and hyperglycemic events, leading to improved preprandial
insulin administration. In particular, numerous studies have
investigated BGL prediction using different neural network
models, including Feed Forward Neural Network (FFNN) [10],
[22]–[24], Long Short Term Memory (LSTM) [25]–[30], and
Convolutional Neural Network (CNN) [31], [32]. Although
these ML models achieve satisfactory performance in predict-
ing BGLs (see Table I), their lack of interpretability remains
a significant issue [33].

Indeed, in the field of medical ML research, an ongoing
debate revolves around the importance of transparent models
capable of producing reliable and interpretable predictions
[34]. The process of defining a medical problem that can
be effectively addressed through ML, acquiring relevant data,
cleansing the data, and refining the ML model to achieve
optimal performance still requires substantial effort. As a re-
sult, researchers often overlook or neglect the incorporation of
explainability methods. However, there has been a noticeable
surge in the number of scientific papers focusing on several
applications of XAI, such as image classification [35]–[37] and
natural language processing [35], [38], [39]. Surely, in recent
years, the healthcare domain has also been affected, especially
involving biomedical [40] and tabular data [34]. This growing
interest is motivated not only by the necessity of explaining
existing black-box models and developing interpretable white-
box models, but also by the critical importance of proactively
addressing concerns related to discrimination and biases within
datasets and model training [33], in order to prevent disparities
and promote equitable representation of the patients’ popula-
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Fig. 1. Pipeline of the proposed approach. Data from 15 T1DM patients are selected from the dataset and filtered to reduce noise. Eight statistical
attributes are computed from the preprandial glycemic history and considered input features along with preprandial glycemic values, administered
insulin, and meal-related factors. For each of the three PHs, a fully-connected DNN model is optimized via a grid search of hyperparameters and
validated using the LOSO-CV strategy. Then, the top-performing model is subjected to the XAI method for output interpretation. Shapley values are
computed for all input features to evaluate their influence on the prediction.

tion in AI-powered systems.
In this context, the SHAP method [16] has emerged as

rigorous approach and wide-ranging applicability. As a model-
agnostic technique, SHAP allows the quantification of each
feature’s contribution to the prediction process. Notably, SHAP
efficiently provides both global and local explanations, unify-
ing disparate approaches such as Local Interpretable Model-
agnostic Explanations (LIME) [35], DeepLIFT [41], and
Layer-wise Relevance Propagation (LRP) [42]. Furthermore,
a significant advantage of SHAP over other XAI techniques is
its versatility, as it can be employed in both classification [43]
and regression problems [44].

In diabetes management, XAI applications in the current lit-
erature mostly relates to predicting early asymptomatic stages
of diabetes for early diagnosis [45], [46] or assessing the risks
of adverse events [47], [48] in an interpretable manner. As for
BGLs prediction, a personalized bidirectional LSTM model
equipped with interpretability tools has been proposed in [49]
using data from six T1DM patients. Specifically, the Shapley
values related to CGM measurements, administered insulin,
physical activity, and meal carbohydrates were calculated on
the network output at PHs of 30min and 60min. Physical
activity had limited effects on the regression performance and
was therefore disregarded, while CGM values and carbohy-
drates showed a positive impact on the predicted glucose value,
in contrast to the negative impact of insulin. In [50] a decision
tree algorithm has been proposed to predict various char-
acteristics of PGR in women with gestational diabetes. The
Shapley values were computed to identify the most significant
contributors among CGM measurements, responses from habit
surveys, demographic information, and meal-related features.
Findings revealed the glycemic load, amount of carbohydrates,
type of meal, amount of starch, and food consumed 6 hours
before the current meal as the prominent factors. Despite these
compelling studies, the application of XAI to AP research
remains largely unexplored, primarily attributed to the com-
plexity of the BGL prediction problem and the novelty of the
explainability trend in this field.

III. MATERIALS AND METHODS

This section provides an overview of the dataset used and
presents the proposed method. As mentioned in Section I, the
objective of this study was to assess the influence of input
features on the predictive capability of BGLs. In order to
achieve this goal, an XAI methodology was employed. The
schematic representation of the proposed method is illustrated
in Figure 1.

A. Dataset Description
This study was conducted on the AI4PG dataset, provided

by the Diabetes Outpatient Clinic of Federico II University
Hospital in Naples, Italy [25]. The utilization of this dataset
in the present study received the necessary ethical approval
from the Ethical Committee of University of Naples Federico
II (Registration number 338/20).

The dataset comprises tabular data collected from 25 in-
dividuals diagnosed with T1DM equipped with a closed-
loop system, the Medtronic MiniMed 670G [51]. Within the
patients’ group, there were 12 males and 13 females, with
an average age of 40 ± 12 years and a duration of diabetes
of 15 ± 12 years. In addition to the measured CGM values
and the administered insulin doses, the dataset incorporates
information regarding the patients dietary habits. More in
detail, the CGM values and insulin data were automatically
extracted from the closed-loop system, whereas nutritional
data were obtained from a 7-day food record that is the golden
standard for measuring dietary habits. All foods and drinks
consumed (including dressings) were reported providing as
much detail as possible (i.e. cooking methods, brands names).
Energy intake, nutrient composition, glycaemic index, and
glycaemic load were estimated using a validated software
(Metadieta) [52]. Each entry within the dataset corresponds to
a specific meal, encompassing a range of CGM measurements
(mg/dL) capturing pre- and postprandial BGLs. Overall, the
dataset comprises 1264 meals, including breakfasts, lunches,
and dinners, with CGM glycemia values available at 5-min in-
tervals from 30min before the meal to 120min after. Multiple
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features associated with each meal are estimated and reported,
including the intake of energy (kcal), the quantities of carbo-
hydrates (g), proteins (g), lipids (g), fatty acids (g), fibers (g),
and cholesterol (mg), as well as the corresponding glycemic
index (GI) and glycemic load (GL) values. Furthermore, the
dataset provides insights into insulin delivery. Specifically, it
includes information on the microboluses administered by the
AP, spanning three hours before the meal until mealtime, along
with manual boluses (MBs) of insulin delivered at mealtime
(in I.U.). The MB insulin dosage was calculated by the patient,
considering the quantity of carbohydrates and meal intake.
Participants were not required to provide data regarding their
physical activity levels. Nevertheless, over the observation
period, no cases of temporary blood glucose targets indicative
of physical exercise sessions were observed.

B. Proposed Method
To investigate the influence of specific features on BGLs

prediction, three ML-based systems employing Feed Forward
Neural Networks (FFNN) [53] to forecast postprandial BGLs
in patients individuals diagnosed with T1DM are proposed.
Different PHs (15min, 60min, and 120min) after a meal are
considered.
The FFNNs took as input features:

• a 30min window of BGLs (Gly 30b - Gly 0) along
with associated statistical attributes such as minimum
(Gly min), maximum (Gly max), mean (Gly mean),
standard deviation (Gly std), peak-to-peak difference
(Gly ptp), median (Gly median), kurtosis (Gly kurt),
and skewness (Gly skew);

• information regarding the insulin dosages:
– manually-administered bolus (MB) of insulin

(Bolus) at mealtime;
– cumulative sum of microboluses delivered by the

closed-loop system worn by patients in the three-
hour interval preceding the meal (Ins history), as
an absolute measure of the system’s insulin delivery;

• meal-related information:
– energy intake (Energy);
– carbohydrates (Carbo), glycemic index (GI),

glycemic load (GL);
– Proteins;
– Fibers;
– Lipids, monounsaturated fatty acids (MUFA),

polyunsaturated fatty acids (PUFA), saturated fatty
acid (SAFA), Cholesterol.

The data were preprocessed by selecting for each patient
a number of observations between 30 and 100. Then, the
preprandial BGLs were filtered with the Savinsky-Golay tech-
nique [54] to smooth out noise and leave the dynamics
unchanged. Fully-connected DNNs were exploited to forecast
BGLs. In order to determine optimal hyperparameter values
of the FFNN at different PHs, a grid search strategy [53]
was adopted. Ultimately, three separate models were derived,
specifically tailored to predict at distinct PHs: 15min, 60min,
and 120min. Each model was validated by using Leave-One-
Subject-Out Cross-Validation (LOSO-CV) strategy. Among

various validation methods, such as holdout and k-fold, the
LOSO-CV approach stands out as one of the most robust
validation methods for inter-subject analysis. Indeed, being
the test set composed of data belonging to a subject not seen
during the training, LOSO-CV provides a reliable evaluation
of the model performance on new and unencountered data.
Additional details concerning the preprocessing step and ex-
perimental setup are reported in Section IV. The assessment of
prediction performance for each postprandial PH was carried
out through Root Mean Square Error (RMSE), defined by the
following equation:

RMSE =

√
1

N

∑
N

(ŷt- yt)2 (1)

where ŷt and yt represent the predicted and measured BGLs
at time instant t, respectively; and N denotes the total number
of observations in the dataset.

As the central focus of this study lies in achieving an
interpretable decision-support system for T1DM management,
special attention was given to addressing the crucial aspect
of interpretability. To this purpose, the SHAP technique [16]
was employed to analyze the impact of features on the output
model.

C. Model Interpretability: SHAP
SHAP [16] is a method to explain individual predictions,

providing relevance scores to each input feature. This method-
ology utilizes Shapley values, derived from coalitional game
theory, to attribute the contribution of each feature to the
final prediction. The basic principle of SHAP technique is
to decompose the model output into the cumulative impacts
of individual features. For complex models such as DNNs,
the adopted SHAP method (i.e., Kernel SHAP) relies on
weighted linear regression to compute the importance of each
feature. In particular, it employs a simpler explanation model
g, which serves as an interpretable approximation of the
original prediction model. Given M input features, the Shapley
value explanation g(z′) is conceptually derived using a linear
additive model [16]:

g(z′) = ϕ0 +

M∑
j=1

ϕjz
′
j , (2)

where z′j denotes the presence (1) or absence (0) of the
feature j; ϕj is the Shapley value representing the relative
feature contribution; and ϕ0 is the base value when all input
features are absent (0).
By assigning a value to each input, SHAP allows for a
comprehensive understanding of how and to what extent each
feature influenced the final prediction. This is achieved through
systematic analysis of various feature combinations, calculat-
ing their individual effects on predictions when combined with
others. In practice, for each combination, certain inputs are
held constant at their actual values, while the features under
evaluation are randomly perturbed.

To estimate the global relevance of each input on the
model’s outcome, it is possible to compute the feature impor-
tance. Specifically, the absolute Shapley values of feature j
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were averaged across the data as follows:

Ij =
1

n

n∑
i=1

|ϕ(i)
j | (3)

where n is the number of instances in the dataset.
One notable characteristic of SHAP is its model-agnostic

nature, making it applicable to a wide range of ML models.
Additionally, SHAP offers consistent explanations, i.e. pro-
vides the same explanation for a given model and dataset, and
effectively accommodates complex model behaviors, including
interactions among features. This adaptability highlights its
effectiveness in capturing intricate relationships within the
data.

IV. EXPERIMENTS

In this section, the conducted experiments are illustrated,
together with the preprocessing and the experimental setup
adopted. The main steps of the proposed pipeline are reported
in Figure 1. After a first data preprocessing step (data selection,
filtering, and statistical measures calculation), a Leave-One-
Subject-Out Cross-Validation (LOSO-CV) model validation
procedure was carried out with a hyperparameter optimization.
Finally, found the best model, SHAP technique was exploited
for interpretability.

A. Preprocessing Step

A subgroup of 15 subjects was selected from the initial
cohort of 25 patients in the AI4PG dataset. The selection
criterion was a minimum of 30 recorded meals per person.
In cases where the number of recorded meals exceeded 100,
only the first 100 meals were considered for the analysis. This
rigorous selection aimed to ensure an adequate number of
data points for reliable and robust analysis, resulting in a final
dataset of 1036 meal records from 15 subjects. For each dataset
entry, the Savitzky-Golay filtering technique [54] with a first-
order polynomial and a 15-step sliding window was employed
to smooth the BGLs trends. Specifically, BGL values measured
each 5min from 30min prior to the meal until the mealtime
were utilized as inputs for the FFNN model. Additionally,
8 statistical measures, computed from the preprandial BGLs
values for each meal entry, were incorporated as additional
input: minimum, maximum, mean, standard deviation, median,
peak-to-peak difference, kurtosis, and skewness. In addition,
microboluses administered by the AP system in the 3 h before
the meal were summed to obtain a single quantity that takes
into account the amount of basal insulin. Finally, all features
were scaled using min-max scaling strategy (see Section IV-B
for more details).

B. Experimental Setup

After the preprocessing, a ML model validation procedure
was conducted. As mentioned in Section III-B, FFNNs were
employed to predict postprandial BGLs at different PHs
(15min, 60min, 120min). In order to identify the optimal hy-
perparameters for the FFNN models, a grid search strategy was

TABLE II
THE SEARCH SPACE ADOPTED DURING THE GRID SEARCH FOR

TUNING HYPERPARAMETERS

Tuned Hyperparameters Search Space

number of hidden layers {1, 2, 3}
number of neurons in each layer {8, 16, 32, 64, 128}

optimization algorithm {Stochastic Gradient Descent (SGD) [55],
Adam [56]}

activation function
{Rectified Linear Unit (ReLU) [57],
hyperbolic tangent function (tanh),

Variable Activation Function (VAF) [58]}
learning rate {0.0001, 0.0005, 0.001, 0.005, 0.01}
weight decay parameter (penalty L2) {0.0001, 0.001, 0.01}

exploited. More specifically, Table II provides the tuned hy-
perparameters and the search spaces. Relatively shallow neural
networks were considered, with a number of layers ranging
from 1 to 3. Incorporation of a regularization term, employing
weight decay with a penalty on L2 norm, was employed while
systematically varying the weight decay values, as illustrated
in Table II. The maximum number of epochs was established
at 1000, with a patience value of 10 for the stopping criteria,
as a usual trade-off between computational complexity and
the model’s generalization capability [53]. Ultimately, three
distinct models were derived, each specifically tailored for
predicting BGLs at different PHs.
The proposed method was validated using the LOSO-CV
strategy to effectively address inter-subject variability. This
iterative approach includes training the model on n-1 subjects,
where n indicates the total number of subjects in the dataset,
and considering the subject excluded during the training pro-
cess as a test to assess the model. Moreover, in each iteration
of the LOSO-CV strategy, all data underwent min-max scaling,
taking into account the minimum and maximum values from
the training data. The data were scaled to adjust the different
scales of the involved features.
Each model was evaluated on the test set by using RMSE as
described in Section III-B.

Subsequent to the identification of the best-performing
models at 15min, 60min, and 120min after the meal, the
FFNNs were retrained, wherein data from the patient with
the best RMSE was excluded to form the test set. Finally, the
interpretation of the models’ output was accomplished through
the utilization of the SHAP, described in Section III-C.

V. RESULTS

A. Prediction Results

The model’s performance was evaluated by computing the
RMSE between the real and predicted BGLs generated by
the FFNNs at different PH after the meal (15min, 60min,
120min). The mean and standard deviation of the RMSEs are
summarized in Table III, alongside the selection of the best
model. The results were obtained by averaging the RMSEs
across n folds of the LOSO-CV strategy, where n represents
the number of patients considered, in this case, 15.

Final performance in terms of RMSE was found to be
comparable to previous literature (e.g. [21], [23], [27], [31]
in Table I). However, it is essential to acknowledge that
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TABLE III
PERFORMANCE AT DIFFERENT PREDICTION HORIZON (PH) OF THE

PROPOSED FFNN MODELS BY MEANS OF ROOT MEAN SQUARED

ERROR (RMSE) AND SELECTED HYPERPARAMETERS VALUES.

PH (min) RMSE (mg/dL)
(mean ± std) Selected Hyperparameters

15 2.53 ± 0.43

number of hidden layers = 2
number of neurons = {32,16}
optimization algorithm = Adam
activation function = tanh
learning rate = 0.0001
L2 penalty = 0.001
batch size = 32

60 24.74 ± 4.27

number of hidden layers = 3
number of neurons = {32,16,8}
optimization algorithm = Adam
activation function = tanh
learning rate = 0.0001
L2 penalty = 0.01
batch size = 32

120 50.15 ± 7.70

number of hidden layers = 3
number of neurons = {32,16,8}
optimization algorithm = Adam
activation function = tanh
learning rate = 0.0001
L2 penalty = 0.01
batch size = 16

differences in data utilization, experimental conditions, prepro-
cessing techniques, and hyperparameter configurations among
various studies may influence the outcomes, making an unbi-
ased comparison of the proposed methods challenging.

Moreover, unlike other studies in the literature that often
employed hold-out or k-fold cross-validation strategies [10],
[20], [23], [59], [60], this investigation opted for the LOSO-
CV approach. LOSO-CV is considered one of the most reliable
validation methods for inter-subject analysis, as it accounts for
the variability among subjects.

B. Interpretability Results
As discussed in Section I, the aim of this study is to quantify

the impact of input features, especially meal-related features,
on postprandial BGLs prediction by using XAI methodologies.
Specifically, the SHAP technique (see Section III-C) was
employed to interpret each trained FFNNs.

First, feature importance analysis was conducted for as-
sessing the global influence of each specific input feature on
the models’ output. Specifically, following Eq. 3, the absolute
Shapley values of feature j were averaged across the data
of a single patient. Subsequently, the average importance of
each feature was computed over 15 patients. The calculated
feature importance for each PH are presented in Figure 2,
providing a concise visualization of the average contribution
of individual features to the model output. The length of each
bar reflects the mean of the absolute Shapley values per feature
across all data, helping identify the most influential factors.
Higher feature importance values for a feature correspond
to heightened impacts on increasing or decreasing the final

prediction. In Figure 2.a, it can be observed that the most
influential features are those related to glycemia, with the
exception of Gly kurt and Gly skew, which appear negligible,
along with the marginal impact of administered insulin and
nutritional factors. The situation begins to change at PH =
60min in Figure 2.b, with an increasing importance of certain
factors such as Carbo, Lipids, Energy, Bolus, and GL. Finally,
in Figure 2.c, there is a further decrease in the effect of
glycemic features and an increase in meal-related factors. The
main exception is represented by Gly 25b, which remains
highly impactful at PH = 120min.

However, feature importance does not allow a thorough
understanding of the features’ effects. In order to evaluate
the relationship between the value of the input variable and
the prediction output, summary plots have been exploited
and reported in Figure 3. This representation takes advantage
of the importance of features to order them in a descend-
ing manner, and at the same time shows the relationship
between the value of the input variable and its impact on
prediction. Specifically, summary plots of Shapley values, as
shown in Figure 3 for a single subject, provide a global
perspective on feature importance and its underlying drivers
by showing the distribution of individual feature contributions.
As observed, certain glycemic features (i.e., Gly 0) exhibit
a positive correlation for all the PHs, wherein higher input
values correspond to higher predictions. Conversely, an inverse
pattern is noticed for Gly 30b, wherein higher input values
lead to lower predictions, and lower input values result in
higher predictions. In Figure 3.a, Carbo does not appear as a
row because its influence at PH = 15min is negligible, just
like the other meal-related factors at the bottom. On the other
hand, as already observed from the feature importance plots, it
becomes essential to take into account the meal-related factors
as the PH extends. In Figures 3.b and 3.c, it is evident that at
lower values of Carbo, the impact is concentrated on very low
negative SHAP values. However, as the feature value grows,
the intensity of the impact towards positive SHAP values
also grows, resulting in higher predicted outputs. Interestingly,
Bolus and GL exhibit the opposite behavior.

Ultimately, Shapley correlation matrices were employed for
gaining deeper insights into feature interplay. For the sake
of brevity, Shapley correlation matrices for a single subject
are presented in Figure 4. These grids reveal intricate fea-
ture relationships by calculating correlations between Shapley
values for pairwise feature combinations. Unlike standard
correlation matrices computed on input features, Shapley value
correlations consider individual feature effects on the pre-
diction, thus exposing potential counter-intuitive relationships
between features. The heatmaps in Figure 4 illustrate patterns
of alignment (red) or opposition (blue) in feature contributions
on the output for all three PHs on the best fold. Notably, the
intensity of values in the top-left area of the heatmaps indicates
strong correlations among features related to glycemic history.
Specifically, Figure 4.b and 4.c demonstrate consistency be-
tween the effects of Gly 30b and Gly 25b, while the behavior
changes from Gly 20b to Gly 0. Interestingly, the effects of nu-
tritional factors related to meals show limited correlations with
glycemia. Stronger SHAP correlations are observed between
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Fig. 2. Boxplots for feature importance analysis at (a) 15min, (b) 60min, and (c) 120min after mealtime. Each feature bar corresponds to the
average importance computed over 15 subjects, and the error bars indicate the associated standard deviation.
Before the meal: Gly 30b to Gly 5b - glycemia history from 30 min to 5 min before the meal; Gly median - median of glycemia history from 30 min
before meal to mealtime; Gly mean - mean of glycemia history; Gly std - standard deviation of glycemia history; Gly ptp - peak-to-peak difference of
glycemia history; Gly min - minimum of glycemia history; Gly max - maximum of glycemia history; Gly kurt - kurtosis of glycemia history; Gly skew
- skewness of glycemia history; Ins history - sum of microboluses delivered by HCLS within the three-hour period preceding the meal. At mealtime:
Gly 0 - glycemia value; Bolus - manual bolus of insulin. Meal-related: GL - glycemic load; Carbo - grams of carbohydrates; GI - glycemic index;
Proteins - grams of proteins; Lipids - grams of lipids; SAFA - grams of saturated fatty acid; MUFA - grams of mono-unsaturated fatty acids; PUFA -
grams of poly-unsaturated fatty acid; Cholesterol - milligrams of cholesterol; Fibers - grams of fibers; Energy - kcal of energy.

Energy and meal nutritional components, such as Carbo and
Lipids. At PH = 120min, these correlation values demon-
strate increased strength, as evidenced by the intensification of
values in the bottom-right area of the heatmap. Additionally,
the effect of insulin administered before the meal (Ins history)
is partially correlated with glycemic history (from Gly 30b to
Gly median), probably given its computation based on CGM
measurements.

VI. DISCUSSION

The present study evaluated the performance of the pro-
posed FFNN models for predicting BGLs. The models’ RMSE
performance, as depicted in Table III, demonstrated a level
of accuracy that was comparable to the findings reported in
Table I of previous studies. However, it is crucial to acknowl-
edge that direct comparisons between different studies should
be interpreted with caution. Several factors can influence
the outcomes, including variations in data sources, experi-
mental conditions, and preprocessing methods. Nevertheless,
the results demonstrated that the FFNNs effectively predicted
BGLs and exhibited performance comparable to state-of-the-
art approaches.
This investigation used the LOSO-CV approach to account
for inter-subject variability, by using each individual subject’s
data as an independent validation set while training on the
remaining subjects’ data. By doing so, the model can better
generalize to new, unseen data and minimize the risk of
overfitting. As a result, the proposed model offers valuable

insights, showing promising performance and generalization
capability in blood glucose prediction.

As stated in Section I, the primary objective of this study
was to assess the impact of different features, particularly
those associated with meals, on BGL predictions using a
post-hoc XAI. Indeed, the significance of nutritional factors
on PGR as reported in the literature [61] can lead to the
hypothesis that these nutritional factors may have an impact
on BGL predictions, although several aspects remain unclear,
such as the extent to which these factors are subject dependent.
Consequently, in the proposed approach, feature selection (FS)
before training was intentionally excluded. As a matter of fact,
FS would have restricted the exploration, as our focus was on
using XAI to unveil the impact of features. To retrospectively
evaluate each feature’s contribution and expand understanding
without preconceived notions, SHAP method was employed.
The study reports interpretability results in the form of feature
importance (Figure 2) and summary plots (Figure 3), allowing
for a comprehensive understanding of the model’s predictive
factors.

Figures 2.a and 3.a show feature importance for PH =
15min after the meal. As observed, the influence of Bolus
and the majority of meal-related features on the postprandial
predicted BGLs was found to be negligible. However, the
preprandial glycemia history within the 30min window had a
significant impact on the postprandial glucose response (PGR).
Specifically, higher glycemia values at mealtime (Gly 0) were
associated with higher predicted BGLs, showing a high cor-
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Fig. 3. Best-fold summary plots of SHAP values at (a) 15min, (b) 60min, and (c) 120min after mealtime for a single subject. Features are listed
on the vertical axis in descending order of importance, with the most significant factors at the top, while the horizontal axis illustrates the variation
of the Shapley values. For a single observation, the influence of a feature is visualized through a point along the relative row, whereby the color of
the point corresponds to its feature value, and its position is determined by its positive or negative Shapley value. As the influence of the feature on
the output strengthens, the point progressively moves away from the gray vertical line, which represents zero impact.
Before the meal: Gly 30b to Gly 5b - glycemia history from 30 min to 5 min before the meal; Gly median - median of glycemia history from 30 min
before meal to mealtime; Gly mean - mean of glycemia history; Gly std - standard deviation of glycemia history; Gly ptp - peak-to-peak difference of
glycemia history; Gly min - minimum of glycemia history; Gly max - maximum of glycemia history; Gly kurt - kurtosis of glycemia history; Gly skew
- skewness of glycemia history; Ins history - sum of microboluses delivered by HCLS within the three-hour period preceding the meal. At mealtime:
Gly 0 - glycemia value; Bolus - manual bolus of insulin. Meal-related: GL - glycemic load; Carbo - grams of carbohydrates; GI - glycemic index;
Proteins - grams of proteins; Lipids - grams of lipids; SAFA - grams of saturated fatty acid; MUFA - grams of mono-unsaturated fatty acids; PUFA -
grams of poly-unsaturated fatty acid; Cholesterol - milligrams of cholesterol; Fibers - grams of fibers; Energy - kcal of energy.

Fig. 4. Best-fold correlation matrices between SHAP values corresponding to each feature pair at (a) 15min, (b) 60min, and (c) 120min after
mealtime for a single subject. The intensity of red denotes a strong positive correlation, while the intensity of blue signifies a strong negative
correlation between effects.

relation between the preceding and immediately following
BGLs. This observation may align with physiological dynam-
ics in real-life scenarios, wherein, within 15min from the
meal, the effects of Bolus and meal intake may not have
fully manifested. This can be attributed to the time required

for insulin and nutritional factors to circulate in the body
and the inherent delays in glucose readings by the CGM
device [62], [63]. As a matter of fact, clinical studies have
shown that although insulin levels peak within 40min to
60min after injection, the maximum insulin action is observed
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approximately 100min after injection [63], [64].
Figures 2.b and 3.b illustrate the results obtained by using

SHAP technique for a PH of 60min after the meal. In this
case, the Carbo intake of the meal, as well as GL, appear
to hold greater significance. Specifically, postprandial blood
glucose is notably influenced by GL. Serving as a product
of GI and Carbo, GL enables the simultaneous description
of both the quality and quantity of carbohydrates in a meal.
Considering that the impact on blood glucose is affected not
only by the quantity but also the quality of carbohydrates
consumed, the higher impact of GL seems appropriate, as it
accounts for both aspects [65]. Furthermore, higher values of
Carbo lead to an increase in the predicted BGLs, accurately
capturing the impact of the meal on glycemic dynamics. For
PH = 60min, Bolus exhibits a greater impact on BGL
prediction, aligning with the actual influence of insulin on
glycemic levels, as it typically begins to take effect approxi-
mately 60min after injection [63]. More in detail, an increase
in Bolus values at mealtime exerts an adverse effect on
the predicted BGLs (see Figure 3.b), aligning with the well-
known influence of insulin, which lowers glycemia values.
Furthermore, the findings suggest that nutritional factors, in
general, have a more significant impact on BGL prediction
after 1 h from the meal. This observation can be interpreted
as further confirmation that BGL values are influenced by
nutritional factors over the medium term, consistent with
previous research [17].

Finally, Figures 2.c and 3.c, show SHAP results for PH =
120min. As can be observed, in this instance, the importance
of the carbohydrate intake Carbo appears to be more sig-
nificant. However, the nutritional factor driving better blood
glucose prediction at 2 h becomes GL, for the observed rela-
tive increased predictive value of GI . The predictive power of
lipids intake Lipids also becomes relevant, which is expected
to influence the late postprandial blood glucose response in
people with T1DM [18], [66].

The obtained results contribute to advancing the transi-
tion from physiological knowledge to clinical practice. This
represents a critical step toward a better understanding of
PGR determinants in individuals with T1DM and could offer
valuable implications for advancing AP technology and devel-
oping decision-support tools for T1DM patients. Some aspects,
however, still need to be addressed. First, the ML models used
strongly depend on training data, and the availability of high-
quality data is essential to get accurate predictions. One of the
biggest challenges faced in this study was the limited public
availability of real-world data, especially data that included
detailed meal-related information beyond just carbohydrates.
Most studies in the literature [9], [67] use synthetic data (i.e.
UVA/Padova simulator [68]), or real public datasets (i.e. Ohio
dataset [69], DirectNet [70]) that provide only blood sugar or
only the amount of carbohydrates and insulin bolus as meal-
related information. As our primary objective was to explore
the impact of various nutritional factors on blood glucose, it
was necessary to collect data with an experimental campaign.
This is not an easy task in practical AP applications, since
it would pose a heavy burden on the patients. However, it is
worth noting that ongoing research to develop applications

for automatic identification of food composition [71], [72]
could help gather information on nutrients. Another aspect
that should be addressed relates the input features used for the
prediction of postprandial glycemic levels: in fact, these have
been selected based on theoretical and physiological consid-
erations [23], [61], and available data, but may not capture all
relevant variables. Indeed, beyond nutritional factors, it would
be of considerable interest to explore the influence of variables
associated with physical activity and the psychological well-
being of patients [73], [74]. In this regard, XAI-based features
impact findings could be used to carry out feature selection to
improve model performance by identifying the most influential
input features [75]–[77]. Thirdly, in this study, PH until 120
min after the meal was explored, and it seems sufficient to start
disentangling the different times at which the various nutrients
exerted their influence on blood glucose. However, extending
the postprandial period up to six hours would be an interesting
avenue for investigation; this would make it more likely to
capture later postprandial events such as hypoglycemia and
hyperglycemia [61], [78].

VII. CONCLUSION

This study focused on addressing the challenges of manag-
ing PGR for individuals with T1DM through the use of DNN
models. Despite the effectiveness of current AP technology
in integrating basal insulin delivery and glucose monitoring, it
falls short in managing PGR due to an incomplete understand-
ing of its determinants. Consequently, this research aimed to
quantify the influence of various input features on predicting
postprandial BGLs at different time intervals after meals. By
incorporating preprandial glycemic history, insulin dosage, and
a range of nutritional factors as input variables, the models
showed satisfactory performance in predicting glucose levels.
Although these findings may not be immediately applicable
due to current limitations, this study holds the potential to
advance our understanding of the factors that influence post-
prandial glucose response in individuals with Type 1 Diabetes
(T1DM) and the development of Artificial Pancreas (AP)
technology.
To enhance interpretability, the SHAP explainability method
was utilized, revealing the significant influence of meal-related
factors like carbohydrates, lipids, and glycemic load on post-
prandial glucose levels up to two hours after a meal. By
bridging the gap in our understanding of PGR determinants,
this research contributes to the advancement of T1DM care, of-
fering a deeper comprehension of PGR determinants. It holds
the potential to offer valuable insights for the advancement
of AP technology and the development of more effective and
personalized approaches to diabetes management.
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[75] H. Wang, E. Doumard, C. Soulé-Dupuy, P. Kémoun, J. Aligon, and
P. Monsarrat, “Explanations as a new metric for feature selection: a sys-
tematic approach,” IEEE Journal of Biomedical and Health Informatics,
2023.

[76] J. Zacharias, M. von Zahn, J. Chen, and O. Hinz, “Designing a feature
selection method based on explainable artificial intelligence,” Electronic
Markets, vol. 32, no. 4, pp. 2159–2184, 2022.

[77] M. Vijayan, S. Sridhar, and D. Vijayalakshmi, “A deep learning regres-
sion model for photonic crystal fiber sensor with xai feature selection
and analysis,” IEEE Transactions on NanoBioscience, 2022.

[78] M. Parillo, G. Annuzzi, A. A. Rivellese, L. Bozzetto, R. Alessandrini,
G. Riccardi, and B. Capaldo, “Effects of meals with different glycaemic
index on postprandial blood glucose response in patients with type 1 di-
abetes treated with continuous subcutaneous insulin infusion,” Diabetic
medicine, vol. 28, no. 2, pp. 227–229, 2011.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3348334

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.medtronicdiabetes.com/customer-support/minimed-670g-system-support
https://www.medtronicdiabetes.com/customer-support/minimed-670g-system-support
https://www.medtronicdiabetes.com/customer-support/minimed-670g-system-support
https://www.metadieta.it/
https://tegvirginia.com/software/t1dms-2014/
https://tegvirginia.com/software/t1dms-2014/
http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.htm
http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.htm
https://public.jaeb.org/direcnet/stdy/167
https://public.jaeb.org/direcnet/stdy/167

	Introduction
	Related Works
	Materials and Methods
	Dataset Description
	Proposed Method
	Model Interpretability: SHAP

	Experiments
	Preprocessing Step
	Experimental Setup

	Results
	Prediction Results
	Interpretability Results

	Discussion
	Conclusion

