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Abstract
Key message Simultaneous improvement for GY and GPC by using GWAS and GBLUP suggested a significant 
application in durum wheat breeding.
Abstract Despite the importance of grain protein concentration (GPC) in determining wheat quality, its negative correlation 
with grain yield (GY) is still one of the major challenges for breeders. Here, a durum wheat panel of 200 genotypes was 
evaluated for GY, GPC, and their derived indices (GPD and GYD), under eight different agronomic conditions. The plant 
material was genotyped with the Illumina 25 k iSelect array, and a genome-wide association study was performed. Two sta-
tistical models revealed dozens of marker-trait associations (MTAs), each explaining up to 30%. phenotypic variance. Two 
markers on chromosomes 2A and 6B were consistently identified by both models and were found to be significantly associ-
ated with GY and GPC. MTAs identified for phenological traits co-mapped to well-known genes (i.e., Ppd-1, Vrn-1). The 
significance values (p-values) that measure the strength of the association of each single nucleotide polymorphism marker 
with the target traits were used to perform genomic prediction by using a weighted genomic best linear unbiased prediction 
model. The trained models were ultimately used to predict the agronomic performances of an independent durum wheat 
panel, confirming the utility of genomic prediction, although environmental conditions and genetic backgrounds may still 
be a challenge to overcome. The results generated through our study confirmed the utility of GPD and GYD to mitigate the 
inverse GY and GPC relationship in wheat, provided novel markers for marker-assisted selection and opened new ways to 
develop cultivars through genomic prediction approaches.

Introduction

Durum wheat (Triticum turgidum ssp. durum) is a tetraploid 
species widely cultivated in the countries of the Mediter-
ranean basin, in Canada, in the desert areas of the south-
eastern USA, in northern Mexico and in other minor areas 
(De Vita and Taranto 2019). The protein concentration, the 
starch composition, and the vitreousness of the kernels make 
this species particularly suitable to produce pasta (Troccoli 
et al. 2000; Kaplan Evlice 2022) whose consumption has 
grown steadily over the past few decades to reach over 16 
million tons in 2021 (IPO 2021; https:// inter natio nalpa sta. 
org/ about- ipo/). This is mainly attributable to the beneficial 
effect of pasta on human health due to the low amount of fats 
and carbohydrates available (Augustin et al. 2017; Huang 
et al. 2017), and its reduced ecological footprint (Ruini et al. 
2013). Grain protein concentration (GPC) and starch compo-
sition play a key role in defining the functional properties of 
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semolina (Shewry et al. 2003; Lafiandra et al. 2014) as they 
are directly responsible for the firmness of the pasta during 
cooking and for the absence of surface stickiness of cooked 
pasta (Bonomi et al. 2012; Bresciani et al. 2022).

The possibility of increasing GPC through traditional 
plant breeding is hampered by the strong influence of the 
environment and by its negative relationship with grain yield 
(GY) (Blanco et al. 2006; 2012; Rapp et al. 2018; Giunta 
et al. 2022; Taranto et al. 2023). Indeed, the increase in GY 
achieved in the last decades was associated with a reduc-
tion in the protein amount in the kernels when genotypes 
are grown with similar nitrogen (N) availability (De Vita 
et al. 2007; Subira et al. 2014; Giunta et al. 2018); the latter 
depends directly on the absorption of N supplied as fertilizer 
(Colecchia et al. 2013; Blandino et al. 2015; Carucci et al. 
2021). Extensive studies have suggested that GY and GPC 
are controlled by many quantitative trait loci (QTLs) with 
small effects and localized on all chromosomes of both tetra-
ploid and hexaploid wheat (Gupta et al. 2017; Kumar et al. 
2018; Colasuonno et al. 2021; Ding et al. 2022; Arriagada 
et al. 2022; Marcotuli et al. 2022).

The strategies mainly used to understand the genetic 
basis of these traits have been QTL mapping, using bi-
parental populations, and genome-wide association stud-
ies (GWAS) (Taranto et al. 2018; Arriagada et al. 2020). 
For durum wheat, dozen of QTLs have been reported for 
both GY (Blanco et al. 2012; Patil et al. 2013; Graziani 
et al. 2014; Russo et al. 2014; Sukumaran et al. 2018b; 
Fatiukha et al. 2020; Mangini et al. 2018, 2021) and GPC 
(Blanco et al. 2006; 2012; Maccaferri et al. 2008; Laidò 
et al. 2014). In addition, QTL meta-analysis performed by 
combining different consensus maps and types of markers 
was performed for these two traits to aid marker-assisted 
selection (MAS) with the identification of candidate genes 
(Maccaferri et al. 2019; Soriano et al. 2021; Marcotuli 
et al. 2022; Arriagada et al. 2022). Unfortunately, only a 
few of these QTLs have been exploited in breeding pro-
grams through MAS, without breaking the negative asso-
ciation between GY and GPC. For example, the Gpc-B1 
locus, encoding a NAC transcription factor (TtNAM-B1), 
accelerated the senescence process and N translocation in 
the grain (i.e., GPC), but reduced grain weight by limit-
ing GY (Brevis et al. 2010; Tabbita et al. 2017; Velu et al. 
2017). Conversely, the identification of QTLs for grain 
weight and number of grains in the wild emmer wheat 
Zavitan, and the successful introgression into the back-
ground of the durum wheat Svevo (Avni et al. 2018; Golan 
et al. 2019) led to an increase in yield but no informa-
tion emerged on the effect of the two QTLs on GPC. The 
grain protein deviation (GPD), a derived index based on 
the residuals of the regression of protein concentration on 
grain yield (as explaining factor), has been proposed as a 
concurrent selection criterion (Monaghan et al. 2001) so 

that genotypes with a high GPD show higher protein con-
centration at different yield level (Oury and Godin 2007). 
This adjusted phenotypic breeding value has already 
shown some potential to mitigate the aforementioned neg-
ative trade-off when used in a recurrent selection scheme 
(Mosleth et al. 2015; Rapp et al. 2018; Thorwarth et al. 
2018). Nigro et al. (2019) identified four QTLs for GPD 
suggesting that selecting for GPC could not affect the final 
grain yield. Rapp et al. (2018) using GY and GPC-derived 
indices, such as GPD, yield protein and grain yield devia-
tion (GYD), identified several MTAs, showing how a com-
bination of indices allowed for a better balance between 
the two main traits. In all these latter reports, GWAS have 
revealed a complex genetic architecture for all traits with 
most QTLs having a very small effect not useful for a 
MAS program.

In this context, genomic prediction (GP) is a promising 
option to resolve the potential trade-off between the GY and 
GPC (Bentley et al. 2014; Guo et al. 2014; Bassi et al. 2016). 
Recently, GP has been widely used in durum wheat to study 
different traits such as yield and grain quality (Haile et al. 
2018; Rapp et al. 2018), phenological indices (Montesinos-
López et al. 2019), and disease resistance (Steiner et al. 
2019), allowing the reduction in labor costs compared to 
conventional breeding (Meuwissen et al. 2001; Lorenzana 
and Bernardo 2009; Bhat et al. 2016).

To be attractive, the GP models should achieve a mod-
erate level of prediction accuracy (PA), being this latter 
directly proportional to genetic gain (Heffner et al. 2010). 
PA is calculated from the correlation between the genomic 
estimated breeding values (GEBVs) and the true breeding 
values (TBVs) (Heffner et al. 2009) and depends on various 
parameters, such as population size (Crossa et al. 2013), 
the genetic architecture of the target trait(s) (Sallam et al. 
2015), marker density (Poland and Rutkoski 2016), and the 
statistical model (Lozada and Carter 2019). Therefore, the 
successful implementation of genomic prediction strategies 
in breeding programs requires careful consideration of all 
these factors.

One of the most widely used methods for evaluating 
genomic prediction models is k-fold cross-validation, in 
which the original dataset is randomly split into subsets, 
typically five or ten. All but one of the subsets are used as 
the training population, while the remaining subset is used as 
the validation population. Several genomic prediction stud-
ies have applied this method for model validation (Crossa 
et al. 2010; Albrecht et al. 2011; Resende et al. 2012). How-
ever, this approach has a drawback since the same original 
population is part of both the training and test populations, 
the accuracy of the prediction from cross-validation could 
be biased, resulting in overly optimistic predictions, as 
also reported by Amer and Banos, (2010) and Michel et al. 
(2016). Conversely, validation using an independent study 
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could provide higher prediction accuracy by avoiding over-
fitting, as reported by Amer and Banos (2010) and Hofheinz 
et al. (2012).

Genomic best linear unbiased prediction (GBLUP) is one 
of the most applied models due to its ease of use and low 
computational power required (Meuwissen et al. 2001).

The GBLUP model calculates GEBVs using phenotypes 
and a genomic relationship matrix (G) assuming a normal 
distribution for single nucleotide polymorphism (SNP) 
effects (Contaldi et al. 2021; Cappetta et al. 2021). The G 
matrix is routinely estimated assuming the same effect for all 
SNPs (VanRaden 2008; Goddard and Hayes 2009). This rep-
resents one of the most relevant limitations of the GBLUP 
model, which is biologically flawed since most traits depend 
on different sets of genes and chromosomal regions (Zhang 
et al. 2010a, b, c). Breaking this assumption, Zhang et al. 
(2010a, b, c) performed a weighted GBLUP (WGBLUP) 
assuming an unequal contribution for all SNPs. More 
recently, WGBLUP has been successfully implemented in 
animal breeding providing improved accuracy prediction 
of carcass weight and backfat thickness in Hanwoo cattle 
(Lopez et al. 2020). In an empirical plant breeding study, 
WGBLUP slightly increased the prediction accuracy for 
yield in alfalfa (Medicago sativa L.) (Medina et al. 2021).

Therefore, in this study, GWAS and WGBLUP were per-
formed to better elucidate the genetic basis of the mecha-
nisms regulating individually or simultaneously important 
and complex agronomic traits. To this end, a large panel of 
durum wheat elite varieties were grown in different years 
and agronomic conditions to (i) investigate the genetic 
variance, heritability and correlations between GY, GPC, 
GPD, GYD and some other related traits; (ii) identify QTLs/
genes that could be used in molecular-assisted breeding to 
improve GPC without reducing GY; (iii) evaluate the poten-
tial of genomic prediction using WGBLUP; (iv) validate the 
trained models using an independent panel of lines for their 
implementations in breeding programs.

Materials and methods

Plant material and genotyping

The plant material consisted of 200 durum wheat (Triti-
cum turgidum ssp. durum, 2n = 4 × = 28; AABB genome) 
genotypes adapted to the southern European climate, 
including modern varieties and advanced breeding lines. 
This group of genotypes will be referred hereafter to as 
the Cross-Validation Panel (CVP). Plants were grown at 
CREA Research Centre for Cereal and Industrial Crops 
(CREA-CI), Foggia, Southern Italy (41° 27′ 36″ N, 15° 
30′ 05″ E) and at Giovanni Santacroce Spa, Deliceto, Fog-
gia, Southern Italy (41° 26′ 59″ N, 15° 46′ 73″ E) for two 

consecutive seasons (2017–2018 and 2019–2020). At both 
sites, the genotypes were sown on the recommended dates 
(late fall) and randomly arranged in a split-plot design with 
two agronomic treatments as main plots (irrigation water 
supply and high nitrogen input vs. rainfed conditions and 
low nitrogen input) and two replicates. The plots included 
eight rows of 7.5 m in length with a row spacing of 0.17 m. 
In the high input treatment, 240 kg/ha of N fertilizer was 
divided into three applications (120, 70, and 50 N kg/ha 
at tillering, stem elongation, and flowering time, respec-
tively), and the plots were irrigated using a drip irrigation 
system maintaining soil moisture not less than 20% of field 
capacity. Soil moisture probes evenly distributed across 
the fields provided data to help ensure target field capacity 
was maintained. The low input treatment was carried out 
under rainfed conditions and with a single application of 
60 kg/ha of nitrogen in the tillering phase.

The sowing density has always been 350 seeds  m2. Dur-
ing pre-sowing, 45 kg/ha N and 115 kg/ha  P2O5 were sup-
plied; an additional dose of 85 kg/ha N was applied each 
year in the case of high input. Weeds, pests, and fungal 
diseases were chemically controlled. Genotypes were eval-
uated under 8 conditions resulting from site × treatment × 
growing season combination. Genotyping was performed 
using the Illumina wheat 25 K iSelect Array developed by 
TraitGenetics GmbH, Gatersleben, Germany (www. trait 
genet ics. com). The entire dataset can be downloaded at 
https:// data. mende ley. com/ datas ets/ rt2gm zbvmz/1. Raw 
genotyping data were processed with PLINK (Purcell 
et al. 2007) using a call rate value of less than 95% and a 
minimum allele frequency (MAF) of less than 5%. After 
filtering, a total of 6795 SNPs distributed across all 14 
chromosomes were used for downstream analysis.

An Independent Validation Panel (IVP), consisting of 
40 F7–F8 advanced breeding lines derived from the ongo-
ing breeding program at CREA-CI, was used to evaluate 
the GP models. The advanced breeding lines were grown 
at CREA-CI during two consecutive seasons (2020–2021 
and 2021–2022) in rainfed conditions and arranged in a 
randomized complete block design with plots of 10 square 
meters and two replicates. The durum wheat lines were 
grown under standard agronomic conditions (i.e., rainfed 
and 120 kg/ha of N fertilizer) and evaluated for the same 
traits (except for flag leaf appearance (FLA) and Nitrogen 
uptake in the grain (N_upt) resulting from site x growing-
season combination. IVP was genotyped using the Illu-
mina wheat 15 K iSelect Array developed by TraitGenet-
ics, and only markers shared with the 25 K were used 
for analysis. The raw dataset describing the 40 advanced 
breeding lines under study can be downloaded at the fol-
lowing link: https:// data. mende ley. com/ datas ets/ rt2gm 
zbvmz/1.

http://www.traitgenetics.com
http://www.traitgenetics.com
https://data.mendeley.com/datasets/rt2gmzbvmz/1
https://data.mendeley.com/datasets/rt2gmzbvmz/1
https://data.mendeley.com/datasets/rt2gmzbvmz/1
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Agronomic traits and statistical analysis

The plots of the fields were harvested with a combine har-
vester. Grain yield was determined in t  ha−1 and adjusted 
for moisture concentration at 13%. Grain protein con-
centration was determined by near-infrared spectroscopy 
(ICC standard method 159, ICC, Vienna, Austria). FLA 
(growth stage 41; Zadoks et al. 1974) was expressed in 
days since April  1st. Heading date (HD) was recorded 
when about half of the culms showed emerging spikes 
and was expressed in days since April 1st (growth stage 
55; Zadoks et al. 1974). The measurements of test weight 
(TW), expressed as kg  hl−1, were obtained using a Schop-
per Chondrometer equipped with a 1 L container. N_upt, 
expressed in Kg N  ha−1, was calculated by multiplying 
the N percentage of the total biomass at the harvest date 
by the grain yield. The data underwent a general linear 
mixed model statistical analysis during the present study, 
the latter being able to model non-normal distributed data 
(Suardi et al. 2020). In addition to the evaluated GY and 
GPC, two yield and protein indices were derived: grain 
protein deviation (GPD) and grain yield deviation (GYD). 
The IVP was phenotyped for the same traits as CVP except 
for FLA and N_upt as they were not collected.

BLUEs were calculated using the following linear 
mixed model:

where yijk are the observed values of the ith genotype within 
the kth replicate at the jth environment, � is the overall mean, 
gi corresponds to the effect of the ith genotype assuming it 
was a fixed effect, tj is the jth environment (all combination 
treatment-year-location) effect modeled as the random effect 
with tj ∼ N

(

0, I�
2

t

)

, rk(j) is the effect of the kth replicates 
within the trial considered as random factor with 
rk(j) ∼ N

(

0, I�
2

r

)

, gtij represents the genotype by environment 
interaction modeled as random effect with gtij ∼ N

(

0, I�
2

gt

)

, 
and eijk is the residuals effect considered as random factor 
and assuming to have a normal distribution eijk ∼ N

(

0, I�
2

e

)

. 
This model was constructed within the R environment using 
the 'lmer' function from the 'lme4' package (Bates et al. 
2015). To calculate the broad sense heritability  (H2) per trait 
across all environments, the variance components were esti-
mated using the same model used for the BLUEs, with the 
only exception that the ith genotype effect ( gi ) was consid-

ered as a random factor with gi ∼ N
(

0, I�
2

g

)

. Therefore, the 
following formula was used to calculate the broad sense 
heritability:

(1)yijk = � + gi + tj + rk(j) + gtij + eijk

where �2

g
 is the genotypic variance; �2

ge
 is the variance 

resulting from the genotype x environment interaction; and 
�2

e
 is the error variance component. Next, we used grain 

yield and grain protein concentration BLUEs to calculate 
the derived indices GYD and GPD. GYD was expressed 
as the deviation from the regression between GPC and GY. 
This was done by estimating the residuals from the regres-
sion of grain yield on protein concentration based on BLUEs 
previously calculated (Rapp et al. 2018) using the following 
formula:

where GY and GPC are the measurements of grain yield 
and grain protein concentration, respectively; α is the inter-
cept, and β is the regression coefficient. By inverting the 
role of GY and GPC in the last equation, we were able to 
calculate GPD (Oury and Godin 2007) as follows:

A graphical assessment of the normality was carried out 
using the residuals obtained from the mixed linear model 
expressed in Eq. (1) for each trait and drawn using the R 
environment (R Core Team 2023), as reported by Kozak 
and Phiepo (2018).

Population structure, linkage disequilibrium, 
and marker‑trait association analysis

The CVP structure was assessed by a Principal Component 
Analysis (PCA) matrix and a kinship matrix (K), which were 
used in a mixed linear model (MLM) as a variance–covari-
ance matrix across individuals. Both were calculated and 
tested in GAPIT3 (Wang and Zhang 2021). The linkage 
disequilibrium (LD) decay value was calculated using the 
LD Adjacent Pairs Analysis function as part of the SNP 
and Variation Suite (SVS) software package (version 8.4.0, 
Golden Helix Inc.) and then, used to define the confidence 
interval for the identification of candidate genes. As for 
GWAS, BLUEs and five models were used to identify the 
MTAs for each environment (Esposito et al. 2022). The 
five models were: (i) Mixed linear Model (MLM; Yu et al. 
2006); (ii) compressed mixed linear model (CMLM; Zhang 
et al. 2010a, b, c); (iii) Fixed and random model Circulating 
Probability Unification (Farm-CPU; Liu et al. 2016); (iv) 
Linkage-disequilibrium Iteratively Nested Keyway (BLINK; 
Liu et al. 2016); (v) Settlement of MLM Under Progres-
sively Exclusive Relationship (SUPER; Wang et al. 2014). 
Manhattan plots and quantile–quantile (Q–Q) plots were 

(2)H2 =
�2

g

�2
g
+

�2
ge

#Env
+

�2
e

#Env∗#Rep

(3)GYD = GY − � − �GPC

(4)GPD = GPC − � − �GY
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automatically generated by GAPIT3. The MLM model is the 
most popular approach to control for spurious associations 
using population structure and a kinship matrix as covari-
ates, even though these might be confounding factors. The 
CMLM method was developed to solve the MLM confound-
ing problem and to improve statistical power by grouping 
individuals into groups and adjusting their genetic values 
(not the genetic effects of individuals) as random effects. In 
the SUPER model, the number of genetic markers used to 
define individual relationships is strongly reduced to small 
bins, each of which is represented by the most significant 
markers.

A maximum likelihood method is then used to optimize 
the number of bins selected by excluding markers that are 
in LD with respect to the test marker, regardless of local 
distance. The last two models (FarmCPU and BLINK) 
are instead considered as multi-locus models, and both 
allow the evaluation of large datasets while reducing false 
positives and negatives (Huang et al. 2019). FarmCPU was 
developed to control for false positives and confounding 
effects between test markers and cofactors in an iterative 
way. The associated markers are fitted as cofactors to con-
trol for false positives to test the remaining markers in 
a fixed-effect model, and then, a random effect model is 
used to select the associated markers. BLINK was devel-
oped to increase statistical power and efficiency (Huang 
et al. 2019). It differs from FarmCPU assumption that 
causal genes are evenly distributed in the genome, which 
improves throughput, as optimization of bin size and the 
number is no longer required (Huang et al. 2019).

Genomic prediction

Genomic Best Linear Unbiased Prediction (GBLUP) 
and Weighted Genomic Best Linear Unbiased Prediction 
(WGBLUP) were applied using the following equation:

where y is the vector of the BLUEs; 1 is the vector of ones, � 
is the grand mean; Z is the design matrix of random effects;g 
is the vector of genomic breeding values; and e is the vec-
tor of random residuals assuming e ∼ N

(

0, I�2

r

)

 where �2

e
 

is the variance of the residuals and I is the scaled matrix 
of markers (VanRaden 2008). In the GBLUP formula, it is 
assumed that g ~ N(0, G�2

g
 ), where G is the genomic relation-

ship matrix and �2

g
 is the additive genetic variance. Here, 

the genomic relationship matrix was constructed by assum-
ing equal weight of the markers (GBLUP) and assigning a 
specific weight to each marker (WGBLUP). In conventional 
GBLUP, according to VanRaden (2008), the G matrix was 
generated as follows:

(5)y = 1� + Zg + e

where M is the matrix of centered genotypes; m corresponds 
to the marker number and pi represents the minor allele fre-
quency of the ith SNP. In this formula, the equal contribu-
tion of each marker is assumed. By contrast, the weighted 
G matrix ( G∗ ) in the WGBLUP was generated as follows:

where elements such as M , m , and pi are the same as in 
Eq. 6, and D represents the diagonal matrix where each 
value corresponds to the weight of the SNP.

In this study, 10 rounds of fivefold cross-validation were 
performed. In the WGBLUP scenario, the weight corre-
sponded to −log10 (p-values) obtained by performing GWAS 
on the training population at each round of the fivefold was 
used. Fifty random training populations, each including 160 
genotypes, were constructed and used as input to perform 
GWAS. Then, p-values from the BLINK and FarmCPU 
models at each GWAS were used to weight fifty G matrices 
for each trait and obtain predictions. Prediction accuracies 
were calculated using the sommer R package (Covarrubias-
Pazaran 2016), whereas all genomic relationship matrices 
were computed using the R package AGHmatrix (Amadeu 
2016). PA in the IVP was calculated using the GBLUP and 
WGBLUP models implemented considering the whole CVP.

Comparison of MTAs with known QTLs

The MTAs identified in the present study were also com-
pared with known QTLs/MTAs. The physical positions of 
all SNPs on Svevo chromosomes (Maccaferri et al. 2019) 
were obtained by aligning sequences harboring each SNP 
to the reference genome by BLAST, retrieving only hits 
with a full-length alignment. The physical position of all 
significant MTAs was also visualized in the Grain Genes 
Genome Browser (https:// wheat. pw. usda. gov). The coor-
dinates of the boundaries of the QTL intervals identified 
in the present study were compared with those detected by 
Saini et al. (2021) (for GY, HD, PH, and grain morphometric 
traits), Gudi et al. (2022) (for GPC), Nigro et al. (2019) and 
Thorwarth et al. (2018) (for GY-GPC indices).

(6)G =
MM�

∑m

i=1
2pi

�

1 − pi
�

(7)G∗ =
MDM�

∑m

i=1
2pi

�

1 − pi
�

https://wheat.pw.usda.gov


 Theoretical and Applied Genetics         (2023) 136:242 

1 3

  242  Page 6 of 21

Results

Descriptive statistics of phenotypic traits

BLUEs values showed a good degree of variability for the 
target traits, thus demonstrating that the population under 
study is suitable for GWAS (Supplementary Table  1). 
The variance explained by each component of Eq. (1) was 
reported in Supplementary Table 2, whereas normality was 
assessed using residuals obtained from the mixed linear 
model expressed in Eq. (1) for each trait (Fig. 1). Except for 
FLA, which exhibited a multimodal distribution, and GY, 
which was normally distributed, most of the traits under 
study displayed heavy-tailed distributions (Fig. 1).

The coefficient of variation ranged from 0.02 (TW) to 
0.75 (GPD), whereas broad-sense heritability ranged from 
0.41 (N_upt) to 0.93 (HD). In detail, higher values of herit-
ability  (H2 > 0.60) were found for all traits except for N_upt, 
which had a lower  H2 (0.41).

Pearson’s and Spearman’s correlations were also 
employed to further understand pairwise relationships 
between traits (Supplementary Fig.  1, Supplementary 

Table 3). The highest positive correlation was observed 
between GYD and N_upt (+ 0.94; p-value = 2.2e−16), and 
between GY and GPC with their respective indices, namely 
GYD and GPD (+ 0.87 and + 0.86, respectively; p-val-
ues < 0.001) (Supplementary Fig. 1). A negative correla-
tion between GY and GPC (− 0.46; p-value = 6.0e−12) and 
between TW and GPC (− 0.28; p-value = 6.7e−5), whereas 
no relationship was found between GY and GPD. Low cor-
relation values were also found between phenology-related 
traits (HD and FLA) and all other target traits (Supplemen-
tary Fig. 1).

Genotyping, principal component analysis 
and linkage disequilibrium decay

A total of 6795 high-quality SNPs, 43.8% mapped on 
genome A and 56.2% on genome B, were used (Fig. 2). As 
durum wheat chromosomes differ in length, SNP markers 
were not evenly distributed among chromosomes. The low-
est number of SNPs was on chromosome 4, with fewer SNPs 
on chromosome 4A; on the other hand, chromosome 1B is 
the one with the greatest number of SNPs (Fig. 2).

Fig. 1  QQ-plot of residuals obtained from Eq. (1) for each trait, with 
the exception of the derivate indexes (GYD, and GPD), for which val-
ues were not available. GY grain yield (t   ha−1), GPC grain protein 

concentration (%), HD heading date (days), FLA flag leaf appearance 
(days), TW test weight (g), N_upt nitrogen uptake (kg N  ha−1)
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PCA showed the individuals to be quite scattered in the 
plot, with the top three principal components accounting for 
only 30% of the phenotypic variation (Fig. 3A). This result 
suggested that the population under study was poorly strati-
fied as also confirmed by the Kinship matrix used in GWAS 
(Fig. 3B). Genome-wide LD decay was observed at ∼1.8 Mb 
(Supplementary Fig. 2).

Genome‑wide association studies

Five statistical models were run in GAPIT3 (CMLMM, 
MLM, SUPER, FarmCPU, and BLINK) using 6,795 high-
quality SNPs to identify genetic loci associated with tar-
get traits (Fig. 4). We tested five models to determine the 
optimal one for each trait based on quantile–quantile (QQ) 
plots. We observed a non-uniform distribution of p-values 
in the SUPER model for almost all phenotypical traits, sug-
gesting that this model may be inappropriate for identifying 
associated markers. MLM and CMLM were instead strongly 
conservative since they identified few associated markers 
and increased the number of false negatives. By contrast, 
FarmCPU and BLINK appear to better control false positive 
and false negative associations (Table 1). As an example, 
Fig. 4b shows the QQ plot for each of the five tested models 
for GPC; the remaining QQ plots are reported in Supple-
mentary Fig. 3. 

FarmCPU and/or BLINK identified 32 markers sig-
nificantly associated with seven traits except N_upt; seven 
markers were scored by both methods and therefore, were 
marked as more robust associations (Table 2; Fig. 5, Sup-
plementary Fig. 4). Three additional markers were found 
to be significantly associated with GY, GPD and TW by 
a single model, while for the remaining one they are just 
below the Bonferroni threshold. Associated markers 
were located on all chromosomes with the sole exception 
of chromosome 4B (Table 1; Fig. 5). AX-94576974 on 

Fig. 2  Bar chart showing the distribution of SNPs along genomes A 
and B

Fig. 3  a Three-dimensional plots showing the top three principal components of the SNPs (N = 6795) × individuals (N = 200) data matrix. b 
Heat map of the Kinship matrix calculated by the identity-by-descent based on genomic relationship matrices (GRM)
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chromosome 2A was found by BLINK to be associated with 
GY and GYD. The same marker was scored with a −  log10 
(p-value) = 4.8 by FarmCPU, just below the Bonferroni 
threshold. AX-109345149 on chromosome 6B was found 
to be associated with GPC by both statistical models. The 
marker BS00078413_51 on chromosome 1B was found to 
be associated with GPC and GPD. Association tests revealed 
the utility of GY and GPC indices. Indeed, several markers 
on chromosomes 2B, 5B, 6A, and 7A were associated with 
GPD but not with GPC, and most of them were independent 
of GY and GYD (Fig. 5).

Two markers, one on chromosome 2A and one on chro-
mosome 5B, were found to be associated with HD by both 

methods. The marker AX-110933998 on chromosome 5B 
exceeds the threshold set only according to FarmCPU.

RAC875_c1643_1548_1 on chromosome 2A had the 
highest significance (−  log10 (p-value) > 12 for both mod-
els) and overlapped the genomic region harboring Ppd-A1, 
whereas AX-110933998 on chromosome 5B was close to the 
Vrn-B1 locus. FarmCPU identified two additional markers 
associated with HD (on chromosomes 2A and 7B, respec-
tively). BLINK association tests returned four markers (Ku_
c269_2643 on chromosome 2A, Tdurum_contig54925_225 
on chromosome 2B, wsnp_RFL_Contig4307_5006558 on 
chromosome 5A, and AX-158559793 on chromosome 7A) 

Fig. 4  a Circular Manhattan plot showing results for each of the 
statistical method used (BLINK, FarmCPU, SUPER, MLM and 
CMLMM). Significant associations are marked with red asterisks. 

b Quantile–quantile (QQ) plot of the five statistical models tested 
for the “grain protein concentration (GPC)” trait. The red line is the 
expected distribution under the null hypothesis (color figure online)

Table 1  Summary statistics and 
heritability for eight phenotypic 
target traits in a panel of 200 
durum wheat genotypes

SD = Standard Deviation, CV = Coefficient of Variation. GY grain yield (t  ha−1), GYD grain yield devia-
tion (index), GPC grain protein concentration (%), GPD grain protein deviation (index), HD heading date 
(days), FLA flag leaf appearance (days), TW test weight (g), N_upt nitrogen uptake (kg N  ha−1), SD stand-
ard deviation, CV coefficient of variation,  H2 heritability

Trait Mean Min Max SD CV H2

GY 6.77 5.54 7.77 0.46 0.07 0.67
GYD 0.00 −0.95 1.12 0.39 0.73 –
GPC 14.50 13.11 17.10 0.72 0.05 0.86
GPD 0.00 −1.63 1.81 0.61 0.75 –
HD 29.33 22.33 36.83 3.19 0.11 0.93
FLA 3.42 1.00 5.00 1.11 0.32 0.91
TW 81.43 76.48 84.38 1.47 0.02 0.92
N_upt 166.84 142.51 198.96 9.94 0.06 0.41
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associated with FLA, of which those on chromosomes 2A 
and 5A overlap with Ppd-A1 and Vrn-A1.

Finally, four markers (on chromosomes 2A, 3A, and 7A) 
were scored by both methods to be associated with TW. An 
additional significant association (Excalibur_c91980_139) 
was found on chromosome 6B only by BLINK. The 32 
markers associated with the seven traits were subjected to 
the Wilcox test at p ≤ 0.05. In detail, the population was 
divided into two groups based on allele profiles and we 
tested whether the BLUE values varied significantly between 
the two groups (Fig. 6). Almost all MTAs had a significant 
effect on the corresponding trait, with few exceptions. For 
example, Q.GPD-7B for GPD and GPC, Q.HD-2A.1 and 

Q.HD-7B for HD and Q.FLA-2A for FLA showed a non- 
significant p-value (> 0.05).

Genomic prediction using a weighted GBLUP

The significance values (p-values) that measure the strength 
of the association of each SNP marker with the target traits 
were used to perform genomic prediction with WGBLUP. 
The results returned by this approach along with those 
obtained by the GBLUP model are shown in Fig. 7. WGB-
LUP presented prediction accuracies higher than GBLUP up 
to 10.1% (FLA) when −  log10 (p-value) computed by BLINK 
were used as weights. The lowest rate of improvement in 

Table 2  Characterization of MTAs identified by FarmCPU and BLINK models for eight traits

The asterisks indicate the MTA with a significance level just below the fixed Bonferroni threshold in the alternative model. GY grain yield, 
GYD grain yield deviation, GPC grain protein concentration, GPD grain protein deviation, HD heading date, FLA flag leaf appearance, TW test 
weight, QTN Quantitative trait nucleotide, MTA Marker-trait association. PVE percentage of total phenotypic variance explained

Trait QTN MTA Chromosome Position p− value Model PVE (%)

GY Q.GY-2A AX-94576974 2A 699002865 1.05E− 08 BLINK* 19.62
Q.GY-4A Tdurum_contig7992_605 4A 698878120 2.77E− 08 FarmCPU 5.12

GYD Q.GYD-2A AX-94576974 2A 699002865 2.57E− 09 BLINK 13.68
GPC Q.GPC-1A BS00024107_51 1A 576972389 6.17E− 07 BLINK 7.68

Q.GPC-3A Tdurum_contig10426_280 3A 102225240 3.17E− 07 BLINK 5.02
Q.GPC-3B Tdurum_contig43263_243 3B 148004098 1.58E− 08 FarmCPU 27.81
Q.GPC-5B Kukri_c637_517 5B 699936252 6.74E− 06 BLINK 11.30
Q.GPC-6B AX-109345149 6B 119530509 3.27E− 07; 4.02E− 06 FarmCPU; BLINK 1.18;6.18
Q.GPC-7A BS00091168_51 7A 517554461 1.37E− 06 FarmCPU 2.07
Q.GPC-7B Tdurum_contig11521_102 7B 368924124 2.11E− 07 FarmCPU 13.76
Q.GPC-7B.2 Excalibur_c23777_74 7B 701398438 7.11E− 07 FarmCPU 2.13

GPD Q.GPD-1B BS00078413_51 1B 654103642 8.08E− 08 FarmCPU* 2.47
Q.GPD-2B.1 AX-95256064 2B 2550907 1.43E− 06 FarmCPU 3.10
Q.GPD-2B.2 wsnp_Ex_c29445_38480890 2B 523912577 3.45E− 06 FarmCPU 17.16
Q.GPD-5B AX-94449281 5B 411135705 2.66E− 07 BLINK 0
Q.GPD-6A AX-94531527 6A 28543900 6.73E− 08 FarmCPU 1.11
Q.GPD-7A BobWhite_c5396_296 7A 437594549 1.11E− 06 FarmCPU 3.14
Q.GPD-7B Excalibur_c41736_124 7B 671888191 6,57E− 06 FarmCPU 5.22

HD Q.HD-2A.1 RAC875_c1643_1548_1 2A 36290496 7.07E− 14; 1.78E− 14 FarmCPU, BLINK 3.30;15.23
Q.HD-2A.2 BS00063368_51 2A 750951682 2.79E− 06 FarmCPU 30.16
Q.HD-5B.1 AX-110933998 5B 535310058 5.74E− 07 FarmCPU 5.89
Q.HD-5B.2 AX-158525875 5B 670640309 2.26E− 08; 1.97E− 09 FarmCPU; BLINK 42.81;30.16
Q.HD-7B tplb0060b03_432 7B 717786400 3.94E− 09 FarmCPU 8.62

FLA Q.FLA-2A Ku_c269_2643 2A 36293520 5.31E− 07 BLINK 1.19
Q.FLA-2B Tdurum_contig54925_225 2B 626536953 6.56E− 06 BLINK 6.71
Q.FLA-5A wsnp_RFL_Contig4307_5006558 5A 356083833 1.08E− 09 BLINK 5.29
Q.FLA-7A AX-158559793 7A 35081074 3.75E− 10 BLINK 6.71

TW Q.TW-2A AX-94476292 2A 101228899 1.90E− 06; 1.57E− 08 FarmCPU; BLINK 4.65;3.24
Q.TW-3A.1 AX-94461370 3A 5229999 3.57E− 09; 5.34E− 08 FarmCPU; BLINK 4.59;3.68
Q.TW-3A.2 BS00061179_51 3A 602570712 1.69E− 07; 1.35E− 07 FarmCPU; BLINK 8.13;3.51
Q.TW-6B Excalibur_c91980_139 6B 153041419 2.38E−06 BLINK* 5.81
Q.TW-7A AX-94750198 7A 687170561 2.34E−06; 5.5E−06 FarmCPU; BLINK 9.92;9.17
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prediction accuracy was observed for N_upt (2.2%) and 
GPC (2.6%). Overall, prediction accuracy was slightly 
higher when BLINK weights were used, except for GYD 
and N_upt (Fig. 7). In detail, a significant improvement 
in prediction accuracy of 6.7% was observed by applying 
BLINK-WGBLUP for GY, whereas PA increased by 3.9% 
using FarmCPU-WGBLUP. An improvement in prediction 
accuracy (up to 5.4% and 6.2%) was observed for HD and 
TW, respectively, using WGBLUP-BLINK, whereas reach-
ing 4.7% and 4.1% with FarmCPU-WGBLUP.

Finally, to validate the trained models, we predicted the 
agronomic performances of 40 durum wheat advanced 
breeding lines (Table 3; Supplementary Table 4). A similar 
prediction accuracy was achieved for GY (0.45) by testing 
the trained model developed within the 200 genotypes (0.42) 
(Table 3). Similarly, no evident changes in prediction accu-
racy were observed using CVP and IVP also for the traits 
GYD and TW (from 0.30 to 0.33 and 0.63 to 0.59, respec-
tively). By contrast, a decrease in prediction accuracy was 
observed for GPC, GPD, and HD (from 0.56 to 0.43, from 
0.47 to 0.30, and from 0.63 to 0.59, respectively) (Table 3). 
Using WGBLUP, no clear differences in prediction accuracy 
were observed for all traits, with the single exception of GY, 
which passed from 0.42 (GBLUP) to 0.46 by (BLINK-WGB-
LUP). However, it is interesting to note that approximately 
half of the associated SNPs detected in CVP are missing in 
the 15 K array used to genotype the IVP, perhaps explaining 
why WGBLUP was less effective.

Discussion

The improvement of GY and GPC at one time is considered 
one of the top priorities in durum wheat breeding programs. 
These traits are the ultimate expression of the multiple and 
complex plant physiological processes, which are influ-
enced by climate and the environment during crop growth. 
Unfortunately, the inverse relationship between them rep-
resents one of the biggest constraints for wheat improve-
ment. The main hypotheses that could explain the negative 
correlation are the competition between carbon and N for 
energy (Munier-Jolain and Salon 2005). In addition, the 
polyploid nature and functional gene redundancy of durum 
wheat makes a genetic approach for the selection of a desired 
phenotype time-consuming and, in some cases, impossible 
because of gene linkage, gene drag (Gaut et al. 2018; Bor-
rill et al. 2019) or the small effect of individual QTLs on the 
target traits.

Independent QTLs for GY and GPC

In this study, we detected putative QTLs associated with 
GY and GPC with small effects each explaining a small 

proportion of the phenotypic variance, confirming the typ-
ical characteristics of a quantitative trait, which is usually 
influenced by many loci with small effects and by environ-
mental factors (Maccaferri et al. 2008; Blanco et al. 2012; 
Soriano et al. 2017). In particular, two MTAs were identi-
fied for GY on chromosomes 2A (Q.GY-2A) and 4A (Q.
GY-4A). Q.GY-2A (AX-94576974) mapped to the region 
previously identified by Mengistu et al. (2016), Peng et al. 
(2003) and Peleg et al. (2009) as associated with different 
yield-related traits including kernels per plant, spike dry 
matter and spikes per plant. Peleg et al. (2003) studied 
the genetic architecture of domesticated-related traits in 
Triticum dicoccoides, the ancestor of tetraploid and hexa-
ploid cultivated wheat, reporting on chromosomes 1B, 
2A, and 5A the most significant QTLs for GY (LOD > 5, 
P < 0.001). Subsequently, Peleg et al. (2009) also remarked 
the importance of chromosome 2A in the control of yield-
related traits even under stressful conditions.

Recently, Adhikari et al. (2021) confirmed the role of 
the same chromosome as a hotspot for QTLs associated 
with different agronomical and physiological traits under 
drought conditions, suggesting that chromosome 2A car-
ries several QTLs associated with variability for physi-
ological indices and agronomic traits under normal and 
stressful conditions, as also described by Liu et al. (2019a, 
b, c). Q.GY-2A is also 50 Mb away from the well-known 
Ppd-A1 gene, thus confirming the relationship between 
phenology and yield or yield-related traits (Wang et al. 
2011; Kamran et al. 2014; Maphosa et al. 2014).

The marker “Tdurum_contig7992_605” on chromo-
some 4A was also found to be associated with two yield-
related traits (i.e., the number of grains per spikelet and 
the number of grains) by Dubcovsky and colleagues in 
bread wheat (unpublished data, https:// wheat. pw. usda. 
gov/ GG3/). In durum wheat, the region was found to be 
associated with grain filling duration (Soriano et al. 2017), 
grain yield per plant (Roncallo et al. 2017), and plant bio-
mass (Mengistu et al. 2016; Roncallo et al. 2017). The 
same region was also identified by the recent meta-QTL 
analysis conducted by Arriagada et al. (2022). Instead, 
chromosome 4A was not reported as a QTL hotspot in the 
consensus map of durum wheat developed by Marcotuli 
et al. (2022). Soriano et al. (2021) found QTLs on chro-
mosome 4A, but none overlapped the one identified here. 
By contrast, chromosome 4A was considered a hotspot 
for GY in bread wheat. Liu et al. (2019a, b, c) reported 
the largest number of QTLs for GY on this chromosome, 
of which one was considered stable and major. Recently, 
Isham et al. (2021) identified four genomic regions in 
bread wheat controlling yield-related traits, including one 
on chromosome 4A.

Seven different regions were instead associated with 
GPC, of which Q.GPC-6B was the only one detected by both 

https://wheat.pw.usda.gov/GG3/
https://wheat.pw.usda.gov/GG3/
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FarmCPU and BLINK and independent of GY, and there-
fore, of particular interest for the simultaneous improvement 
of GY and GPC. The 119 Mb region on the Svevo genome is 
close to the position of the previously cloned Gpc-B1 gene, 
identified in wild emmer (Uauy et al. 2006). The presence 
of the Gpc-B1 allele accelerates senescence in flag leaves 
by producing pleiotropic effects on nitrogen remobilization, 
total GPC, and grain size (Uauy et al. 2006a). To verify 
its role, in 2014 Pearce and colleagues (Pearce et al. 2014) 
generated loss-of-function mutants in tetraploid wheat and 
found that the mutants delayed senescence and reduced the 
protein, zinc, and iron content of the grain. In this frame-
work, this study confirmed the importance of this region for 
identifying new alleles for GPC improvement.

Markers associated with GY and GPC‑derived indices

The absence of a negative correlation between GY and GPD 
recorded in this study highlighted the utility of these derived 
indices (Bogard et al. 2010; Taulemesse et al. 2016; Nehe 
et al. 2020). GPD is known to be under genetic control (Bog-
ard et al. 2010; Latshaw et al. 2016; Oury and Godin 2007), 
with several QTLs identified by GWAS (Nigro et al. 2019). 
Two recent studies in durum wheat highlighted the useful-
ness of exploiting the genetic variability of GPD to develop 
improved cultivars. Rapp et al. (2018) using two different 
panels (159 and 189 genotypes) grown in multiple locations 
revealed a complex genetic architecture of GPD, as it is con-
trolled by many panel-specific QTLs having small effects 
and being detected in only one panel. Later, Nigro et al. 
(2019) by using a set of ~ 250 genotypes grown in seven dif-
ferent field trials identified four stable QTLs associated with 
positive GPD. Of all MTAs, Q.GPD-5B was within 1.5 Mb 
of the QTL QGpd.mgb-5B.1 identified by Nigro et al. (2019) 
at 54.4 cM on chromosome 5B. The same MTA was also 
detected by Groos et al. (2003), Habash et al. (2007), Wang 
et al. (2011), and Rapp et al. (2018).

However, compared with those previous studies, we 
found no association for GPD on chromosome 4A, possi-
bly due to the different approach or the statistical models 
used for detecting MTAs. For example, Groos et al. (2003), 
Habash et al. (2007) and Wang et al. (2011) used map-
ping populations (both early and late generations) obtained 
from crossing different parental lines (i.e., Renan/Récital; 
Line 3228/Jing 4839), and identified QTLs using inclusive 
composite interval mapping (ICIM) or composite interval 

mapping (CIM) approaches. Rapp et  al. (2018) instead 
identified MTAs in a population of durum wheat called the 
“Central European panel” using a mixed linear model with a 
kinship matrix to correct for population structure. Given the 
difficulty in unambiguously identifying QTL from different 
studies due to the different marker systems (SNP, DARTseq, 
and SSR), linkage maps, and statistical approaches (ICIM, 
CIM, MLM) used, we believe that putative QTLs detected 
in early studies might be panel-specific, as also pointed out 
by Rapp et al. (2018).

With respect to the other MTAs, Q.GPD-2B.1 co-local-
izes with a QTL previously described by Golabadi et al. 
(2011) as associated with harvest index (HI), while Q.GPD-
2B.2 co-mapped in the same region detected for spikelet per 
spike (Distelfeld et al. unpublished), kernel weight (Faris 
et al. 2014) and plant height (Milner et al. 2016).

Similarly, Q.GPD-6A overlapped with a QTL associated 
with grain yield per spike as described by Patil et al. (2013), 
although Blanco et al. (2002) confirmed the results reported 
here by describing the same marker associated with GPC. 
Furthermore, Q.GPD-7A identified in this study on the long 
arm of chromosome 7A, falls in the same region previously 
identified to be associated with GPC (Suprayogi et al. 2009) 
but also with spikelet per spike (Giraldo et al. 2016), and 
kernels per fertile spikelet (Roncallo et al. 2017). Recently, 
Mulugeta et al. (2023) performed GWAS using 10,045 SNP 
scored in a panel of Ethiopian durum wheat genotypes 
revealing MTAs for grain yield and GYD on chromosomes 
1B, 5A and 7A. Notably, the MTA on chromosome 7A over-
lapped with that identified by FarmCPU in this study for the 
same trait, although the marker showed a level of signifi-
cance below the fixed threshold.

MTAs associated with other traits

As the investigation of grain yield-related traits has great 
importance to increase yield potential and protein concentra-
tion, we also identified here MTAs for HD, FLA, TW, and 
N_upt. Heading date and flowering time are closely related 
to grain yield in wheat, due to their key role in maintain-
ing the right balance between making full use of resources 
and avoiding environmental stresses. Two MTAs found on 
chromosomes 2A and 5B for HD (Q.HD-2A.1 and Q.HD-
5B.1) co-mapped with well-known adaptive genes (i.e., 
Ppd-1 and Vrn-1), confirming the robustness of the dataset 
and the panel of genotypes used for the association tests. 
Four MTAs were identified for FLA of which Q.FLA-2A 
co-mapped with Q.HD-2A.1. Indeed, the short physical dis-
tance between the associated markers suggested that it may 
be the same, while Q.FLA-2B overlapped a genomic region 
previously described by Peleg et al. (2009) and Marcotuli 
et al. (2022) as associated with GPC suggesting the pos-
sible role of crop phenology on the expression of this trait. 

Fig. 6  Violin plot for MTA with significant effects (p-value < 0.05) 
on corresponding traits. For each of them, the durum wheat geno-
types were divided into two groups based on allele profiles. The 
x-axis represents the two alleles for each associated MTA, while the 
y-axis corresponds to BLUE values of the corresponding trait (color 
figure online)

◂
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Interestingly, Q.FLA-7A was located close to Vrn-3, i.e., the 
wheat ortholog of the Arabidopsis FLOWERING LOCUS 
T (Yan et al. 2006) gene located on the group of homeo-
logues chromosomes 7. Several studies have demonstrated 
the importance of this gene during the flowering period, and 
the possible pleiotropic effect on yield and its components 
(Sanna et al. 2014; Giunta et al. 2018).

As TW influences grain weight, this trait is closely related 
to yield and GPC. Therefore, it is important to identify TW-
associated QTLs that do not coincide with GY and GPC, but 
unfortunately in many studies this information was either 
missing or referred to bread wheat.

In this study, five MTAs were found to be associated with 
TW and were not expected to co-localize with known QTLs. 
The Q.TW-2A identified on chromosome 2A may be different 
from the QTw.macs-2A described by Patil et al. (2013) as it 
was more than 20 Mb away from the closely linked marker 
(Xgwm71.2). Two other MTAs identified on the short arm of 
chromosomes 6B (Q.TW-6B) and 7A (Q.TW-7A) may coincide 
with those reported by Elouafi et al. (2004). However, in this 
case it was not possible to compare their physical positions on 
the Svevo genome, due to the absence of common markers.

Weighted genomic prediction

Given the severe negative relationship between GY and 
GPC, and the presence of many minor QTLs distributed 
across the whole genome of durum wheat, our findings 
suggested that genomic prediction could help counteract 

Fig. 7  Prediction accuracy obtained for all target traits. The genomic 
best linear unbiased prediction (GPLUP) model (orange bars) was 
compared with the weighted GBLUP (WGBLUP) model that used 
the − log10 (p-values) from BLINK (green) and FarmCPU (blue) as 

“weights”. GY grain yield, GYD grain yield deviation, GPC grain 
protein concentration, GPD grain protein deviation, HD heading date, 
FLA flag leaf appearance, TW test weight, N_upt nitrogen uptake. 
Bars indicate standard errors (color figure online)

Table 3  Comparison between fivefold Cross-Validation (CV) and 
Independent Validations (IV) for all target traits

Phenotypic data points for FLA and Nupt under the independent 
validation scheme were not available (–).GY grain yield, GYD grain 
yield deviation, GPC grain protein concentration, GPD grain pro-
tein deviation, HD heading date, FLA flag leaf appearance, TW test 
weight, Nupt nitrogen uptake

Trait Validation 
method

Prediction Accuracy (PA)

GBLUP WGBLUP 
(FarmCPU)

WGB-
LUP 
(BLINK)

GY CV 0.42 0.45 0.46
IV 0.45 0.45 0.49

GYD CV 0.30 0.33 0.34
IV 0.33 0.34 0.29

GPC CV 0.56 0.57 0.59
IV 0.43 0.41 0.41

GPD CV 0.47 0.50 0.50
IV 0.30 0.31 0.24

HD CV 0.60 0.64 0.65
IV 0.51 0.47 0.48

FLA CV 0.51 0.55 0.57
IV – – –

TW CV 0.63 0.66 0.67
IV 0.59 0.62 0.62

N_upt CV 0.35 0.36 0.36
IV – – –
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the inverse relationship, facilitating the selection of high-
yielding varieties with high protein concentration (Michel 
et al. 2019). GBLUP is the most widely used statistical 
model for genomic prediction as its computational demand 
is low. However, it is less sensitive because it assumes that 
each marker has the same variance. Here, we used p-values 
obtained from two GWAS models (BLINK and FarmCPU) 
to perform a weighted GBLUP for each target trait. Consist-
ent with the results obtained by Annicchiarico et al. (2022) 
and Medina et al. (2021), we observed an increase in predic-
tion accuracy with WGBLUP. This is of particular interest 
as clues to WGBLUP in durum wheat are still scarce. We 
hypothesize that the weighted matrix applied in the WGB-
LUP model, which assigns weights to each of the SNPs 
involved in the process breaking the conventional GBLUP 
assumption, contributed to the observed outcomes. How-
ever, several criticisms need to be considered when assign-
ing weights to each SNP. For example, p-values are usually 
calculated solely based on the phenotypic information of 
the training population, thus requiring a population size for 
GWAS large enough to ensure accurate p-value estimates 
and avoid potential negative impacts on their reliability. 
Furthermore, the contribution as a weight for some key 
genes, such as the Reduced Height (Rht) or Vernalization 
(Vrn) genes, which play well-established roles in specific 
phenotypic traits, should not be based exclusively on p-val-
ues obtained from GWAS but explicitly considered in the 
matrix weighted according to their established significance. 
Compared with the literature, the results herein reported are 
consistent with Sukumaran et al. (2018a), which used nine 
GBLUP-based models to achieve a prediction accuracy of 
0.20 to 0.40 for grain yield in a panel of 208 durum wheat 
genotypes under different growing conditions. However, we 
obtained a higher accuracy up to 5.9% for the same trait 
by weighting the markers with p-values from both BLINK 
and FarmCPU. A similar increase in prediction accuracy 
was also observed by Zaïm et al. (2020), who incorporated 
significant QTLs for grain yield into the genomic predic-
tion model (ridge regression BLUP). Sehgal et al. (2020) 
incorporated robustly associated loci identified in GWAS 
as fixed effects in genomic prediction models to predict 
grain yield in spring bread wheat. The authors found that 
the model that accounted for the haplotype-based GWAS 
loci as fixed effects led to an increase in prediction accuracy 
of up to 9–10%, which is in line with the improvements 
we have achieved. Instead, comparing the GYD accuracy of 
this study with that obtained by Rapp et al. (2018) a lower 
prediction accuracy was shown (PA ~ 0.5%), although the 
same authors reported a lower accuracy (PA = 0.41) when 
the model was assessed on a different panel.

A moderate accuracy of 0.56 for GPC using the GBLUP 
model was found in this study, compared with ~ 0.60 
obtained by Haile et  al. (2018) in a double haploid 

population of durum wheat. However, the results shown here 
improved by 8% with weighted GWAS models. As for GPD, 
Michel et al. (2019) running two genomic prediction mod-
els (genomics- and assisted-based) in a population of 1,114 
F4:6 individuals and doubled haploid winter wheat breed-
ing lines, reported prediction accuracy values of up to 0.58, 
which was in line with what we achieved using WGBLUP 
(BLINK; 0.57). Such improvements in prediction accuracy 
were also observed for the other two traits evaluated in the 
present study (i.e., HD and TW). We obtained a higher pre-
diction accuracy for HD using WGBLUP and comparable 
results using GBLUP to what was highlighted by Crossa 
et al. (2016). Similarly for TW, when GBLUP were used, 
the results reported here were in agreement with those by 
Fiedler et al. (2017), but as expected, using WGBLUP pre-
diction accuracy slightly increased.

As a final goal, we tested whether trained GP models 
could be employed in a plant breeding program to select 
the most promising lines with enhanced traits. Indeed, the 
assessment of the GP model in new breeding programs is 
still a big challenge. Although the high and robust predic-
tion accuracy has promised reasonably good identification 
of the highest performing lines, this is still a difficult task 
for breeders.

Given the fact that the most widely used method for eval-
uating genomic prediction models (k-fold cross-validation) 
has a drawback since the same original population is part of 
both the training and test populations (Crossa et al. 2010; 
Hofheinz et al. 2012; Michel et al. 2016), the accuracy of the 
prediction from cross-validation could be biased, resulting 
in overly optimistic predictions. Here, we have opted for an 
independent validation using an unconnected trial to support 
the results of the cross-validation method.

Compared with the cross-validation method, slightly 
lower accuracy was obtained for all traits under investigation 
using GBLUP except for GY, GYD and TW which remained 
approximately constant. Our results are in line with those by 
Schillaci et al. (2021), who predicted bulk density for both 
topsoil and subsoil achieving higher accuracy using cross-
validation compared with the independent panel.

Similarly, prediction accuracy decreased when switching 
from cross-validation to independent validation (IV) for all 
traits using WGBLUP.

The trend is consistent with the assumption that inde-
pendent validation is a one-off evaluation and cannot be 
used to adjust model parameters explaining the lower accu-
racy compared to the iterative cross-validation method. The 
lower accuracy achieved by WGBLUP in the independent 
validation scheme could be related to the lack of signifi-
cantly associated markers in the 15 K array used to perform 
the genotyping in the independent panel, thus opening new 
opportunities to exploit GWAS information in predictive 
models to help and guide breeders in their decisions. In fact, 
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while some studies have reported no significant differences 
in predictive ability using independent validation, we believe 
this strategy will become the benchmark for evaluating any 
model.

Finally, the results presented here are consistent with 
those by Annicchiarico et al. (2019) who applied the same 
validation procedure. In this regard, the authors found higher 
prediction accuracy in intra-population than inter-population 
for pea phenotypic traits such as grain yield, the onset of 
flowering, seed weight, and lodging susceptibility. Similar to 
the results reported here, low prediction accuracy has been 
recorded for independent predictions of grain yield, heading 
date, and test weight using different sets of wheat double 
haploid and recombinant inbred populations (Charmet et al. 
2014). Wang et al. (2020) also estimated higher prediction 
accuracy (0.60) using cross-validation across all the sce-
narios than applying an independent validation scheme using 
one- as and two-year datasets as training population (from 
0.23 to 0.32 and from 0.31 to 0.42, respectively).

Plant breeding programs often involve multiple trials per-
formed in different environments over several years, test-
ing different genotypes. An independent validation strat-
egy can provide a reliable degree of prediction accuracy 
by training the model on one population and subsequently 
predicting untested genotypes in untested trials (Jiang et al. 
2017). Enhancing prediction accuracy through this valida-
tion strategy is crucial for the application of genomic pre-
diction approaches to plant breeding programs. While the 
exploitation of information from GWAS was not effective in 
improving prediction accuracy, integrated approaches such 
as incorporating climate and soil parameters, crop manage-
ment and companion organism information, high-throughput 
phenotyping data points, or even microbial profiles into pre-
dictive models might enhance prediction accuracy.

Conclusions

This study provides new insights into the simultaneous 
improvement of grain yield and grain protein concentra-
tion in durum wheat using GWAS and GP approaches. Two 
significant and independent MTAs on chromosomes 2A 
and 6B were identified for GY and GPC. These might be 
usable for assisted breeding programs and for further stud-
ies aimed at identifying candidate alleles/genes underlying 
the target phenotype. Other independent QTLs were found 
for GPD, revealing its utility for identifying high-yielding 
genotypes with a reduced penalty in protein concentration. 
The WGBLUP model produced slightly higher prediction 
accuracy, revealing an improvement up to 9% for FLA. Inde-
pendent validation conducted on different genetic materials 
confirmed the robustness and effectiveness of the proposed 

approach even though further improvement in prediction 
accuracy could be achieved if the training and breeding pop-
ulations will share the same number of molecular markers.
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