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Modelling of field-scale transport of chemicals is of deep interest to public as well as private sectors, and it
represents an area of active theoretical research in many environmentally-based disciplines. However, the
experimental data needed to validate field-scale transport models are very limited due to the numerous
logistic difficulties that one faces out.
In the present paper, the migration of a tracer (Cl−) was monitored during its movement in the unsaturated
zone beneath the surface of 8 m×50 m sandy soil. Under flux-controlled, steady-state water flow
(Jw=10 mm/day) was achieved by bidaily sprinkler irrigation. A pulse of 105 g/m2 KCl was applied
uniformly to the surface, and subsequently leached downward by the same (chloride-free) flux Jw over the
successive twomonths. Chloride concentration monitoring was carried out in seven measurement campaigns
(each one corresponding to a given time) along seven (parallel) transects. The mass recovery was near 100%,
therefore underlining the very good-quality of the concentration data-set.
The chloride concentrations are used to test two field-scale models of unsaturated transport: (i) the
Advection-Dispersion Equation (ADE), which models transport far from the zone of solute entry, and (ii) the
Stochastic-Convective Log-normal (CLT) transfer function model, which instead accounts for transport near the
release zone. Both the models provided an excellent representation of the solute spreading at zN0.45 m
(being z=0.45 m the calibration depth). As a consequence, by the depth z≈50 cm one can regard transport
as Fickian. The ADE model dramatically underestimates solute spreading at shallow depths. This is due to the
boundary effects which are not captured by the ADE. The CLTmodel appears to be a more robust tool to mimic
transport at every depth.
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1. Introduction

In the last decades many issues related to soil and groundwater
protection have stimulated theoretical (detailed reviews can be found
in [13,43]) as well as experimental (e.g. [6,8,17,20,23,24,28,33,52])
studies on transport phenomena taking place in natural environ-
ments. Major progresses have been achieved through parallel studies
aiming from one side to set-up experimental techniques for
monitoring migration in soils of inorganic, organic dissolved solutes
as well as suspended particles (e.g. [7,27]), and to develop from the
other proper modelling tools (see, e.g. [12,26]).

The main difficulty relies on the impossibility to describe into a
detailedmanner the complex (and quite irregular) soil structure. Such
a complexity has a direct impact on the reliability of predicting the
fate of moving solutes. The tortuosity and considerable irregularity of
the flow paths as well as the presence of channels (bio-pores, dead
pores, cracks, etc.) slow down (or speed up) advection, and dispersion
of migrating solutes (see, e.g. [3]). Even if the governing transport
equations have been established (e.g. [2]), solution of them is still a
formidable task. One major factor that contributes to the complexity
of the problem at stake is the large degree of spatial variability
exhibited by natural soils (e.g. see [38,41,51]).

It is a common tenet that heterogeneity has a major influence on
transport, and it is responsible of an enhanced (macro)dispersion that
cannot be captured by the out-coming of laboratory experiments [12].
Heterogeneity in soils is observed on various scales, ranging from
centimeters to tens, and hundreds of kilometers (e.g. [11]).
Approaches to model heterogeneity will depend on the scale over
which flow, and transport are observed. The basic idea is to construct
models which predict the most relevant features (typically moments)
of transport.

In the present paper we investigate on the applicability of two of
such stochastic models. The main novelty of our contribution (as
compared with previous studies on the same topic) relies on the fact
that we use a very comprehensive set of real data, along the lines
recently traced by Dagan [15] and Neuman [31]. Models selected for
testing are calibrated at the depth z=45 cm, and validated at depths
different from the calibrating one. The success or failure of a model to
describe the data-set will be assessed by means of proper perfor-
mance indicators. The overall task of this cause/effect approach is to
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improve the understanding of solute transport mechanism at the
field-scale as influenced by soil properties that are easy to observe/
infer from in situ measurements.

2. Theoretical background

One of the distinctive features of a soil is the spatial heterogeneity
of its hydraulic properties (e.g. [34,35,38,41,49,51]). This spatial
heterogeneity is generally irregular (Fig. 1), and it occurs over scales
beyond the scope of laboratory samples (e.g. [11]). These features
have distinct effects on the spatial distribution of solutes, as it has
been observed both in field-scale experiments (e.g. [5,17,36,44]), and
by numerical simulations (a wide review can be found in [22,37]).

When we attempt to apply laboratory-scale theories at field (or
even larger) scales, we face with a missing heterogeneity-issue. In
other words, theories/models suitable for laboratory scales (small
samples) are generally not applicable at larger scales. To deal with this
issue two basic approaches, which we shall briefly recall in the sequel
for completeness, have been developed: the physical (i.e. Stochastic),
and the system (i.e. Transfer Function) approach.

2.1. Stochastic formulation of solute transport (physical approach)

The formation heterogeneity is set in a mathematical framework
by regarding the soil hydraulic properties (such as the hydraulic
conductivity, and the water retention function) as Random Space
Functions (RSFs). As a consequence, the transport equations are of a
stochastic nature, and the concentration C is also a RSF. Thus, the aim
of the stochastic approach is to evaluate the statistical moments of C
given the statistical moments of the hydraulic properties. This is a
formidable task, and more often its scope is usually restricted (due to
the scarcity of available data) to the computation of the first two
moments.

Transport through heterogeneous porous formations can be
described as a dispersion-mechanism by continuous motions [12]
by following Taylor [47]. For a propagating solute body, the
displacement covariance tensor X of the solute particles can be
calculated from the statistics of the velocity field by using the
Lagrangian formulation. The solute body is regarded as being
composed of many (indivisible) particles, and we assume that a
given particle is initially at a, i.e.X = a for t=0. Due to the extremely
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Fig. 1. Distribution of Ks (in cm/h) in a vertical 40 m×1 m cross section. The values are obta
z=30,90 cm.
irregular variations of the hydraulic conductivity (see Fig. 1) the
concentration “point values” are subjected to considerable uncertain-
ty. As a consequence, we focus our attention on global measures of
solute transport, such as the first two-spatial moments of C. These
latter represent the information that one can generally achieve from
field experiments. For a finite body of a passive solute, with initial
constant concentration C x;0ð Þ = C0 within a volume V0, the spatial
moments of the distribution of C are given by (see, e.g. [39]):

M = θC0V0; R tð Þ = 1
V0

∫V0
daX t; að Þ ð1Þ

Si;j tð Þ = 1
V0

∫V0
da Xi t;að Þ−Ri tð Þ½ � Xj t; að Þ−Rj tð Þ

h i
i; j = x; y; zð Þ; ð2Þ

where M is the total solute mass, R is the coordinate of the center of
gravity of the propagating solute body, whereas Si, j represent the
second-order spatial moments (θ being the water content). Under
ergodic conditions, which are assumed to prevail if the lateral extent
of the solute input zone is sufficiently large comparedwith the scale of
the heterogeneity in the transverse directions [39], one has

R tð Þ≈〈R tð Þ〉 = a + Ut; Si;j tð Þ≈〈Si;j tð Þ〉 = Si;j 0ð Þ + Xi;j tð Þ; ð3Þ

being U, defined as the ratio between the flux and the mean water
content, the water velocity (the operator 〈〉 stands for the ensemble
average), whereas Si, j(0) characterizes the initial dispersion of the
plume. The components Xi, j of the displacement covariance tensor X
are calculated as Xi;j t;að Þ = 〈X′

i t; að ÞX′
j t;að Þ〉. Hence, under these

conditions, the one particle trajectory tensor suffices to characterize
(at least up to the second order) spatial moments of a propagating
solute body.

Let f X; t; að Þ be the probability density function (pdf) of X, i.e. fdX
represents the probability of a particle to be within the elementary
volume dX at the time t. The ensemble average 〈C x; tð Þ〉 is computed
as [12]

〈C x; tð Þ〉 = C0∫V0
daf x; t; að Þ: ð4Þ

This fundamental result reads as follows: the concentration
expected value is obtained via the pdf of the particle trajectory,
20 25 30 35
 (m)

ined from 2×40 samples taken along 40 profiles at horizontal interval of Δ=1.25 m, at
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which is regarded as a function of x and t. It is easy to verify that for
Gaussian f, themean 〈C〉 satisfies the Advection-Dispersion Equation (ADE)

∂
∂t 〈C z; tð Þ〉 + U

∂
∂z 〈C z; tð Þ〉 = D

∂2

∂z2
〈C z; tð Þ〉; ð5Þ

with

U =
d
dt

〈Xz tð Þ〉D =
1
2
d
dt

Xzz tð Þ: ð6Þ

Notice that we have limited to consider one-dimensional ADE,
since it will be of main concern in the sequel. The main (and usually
quite difficult) task is to relate Xzz to the Lagrangian velocity field. This
line of reasoning has been first pursued by Russo [39], and
subsequently generalized by Severino et al. [46] by adapting the
approach that originally was proposed by Dagan [10] for transport by
groundwater flow. It is beyond the scope of the present paper to go
through a detailed discussion of the results.We limit to recall themost
relevant (in view of the subsequent discussions) issue: when the
centroid of the moving plume has travelled a long-enough distance,
dispersion coefficients become constant (see, e.g. [42]), and transport
is coined as Fickian. In other words, at large depths transport can be
modelled by the classical ADE provided that the dispersion coefficient

is replaced by D = 1
2 limt→∞

d
dt

Xz;z tð Þ. Furthermore, it has been demon-

strated by Severino et al. [46] that the required travel-distance to
attain the Fickian regime is a formation-property, irrespective
whether the porous medium is fully or partially saturated.

Finally, it is worth reminding that the governing equation for 〈C〉 is
generally non local (for awide review, see [32]). Oneway to circumvent
such a non-locality is the abovementioned Lagrangian approach.When
such an approach is not warranted, alternative techniques, most of
which are described by Dentz and Tartakovsky [16], can be used.

2.2. Transfer function formulation of solute transport (system approach)

This approach relies on the application of the principles of
superposition, and mass balance to a finite volume of soil bounded
by a top-surface through which solute enters, and an exit one through
which it leaves [26]. Transport is preliminarily characterized via an ad
hoc experiment/measurement in which a narrow pulse of a tracer
mass M is added at the inlet of the volume, and it is recovered at the
outflow surface as function of the time.

The recorded outflow is sought in a probabilistic sense as follows:

if during the time period△ tj= tj+1− tj a fraction
mj

M
of the total input

mass M crosses the outflow surface located at a given depth z, then

P tjbtbtj + 1

� �
= F tj + 1

� �
−F tj
� �

≈
mj

M
ð7Þ

where F=F(t) is the probability that a solute added at the inlet at t=0
will cross the outflow surface at a time less or equal to t. If the flux Jw is
steady, then

mj≈Jw C z; tj
� �

△tj; ð8Þ

where C z; tj
� �

refers to the average out-flowing concentration
(defined as ratio between the solute mass crossing a unit area to
the water volume crossing the same area) between tj and tj+1.

Eqs. (7) and (8) enable one to establish a relationship between the
observable concentration C, and the travel time f= f(t) pdf. Indeed, by
recalling that this latter is defined as

f tð Þ = lim
△t→0

F t + △tð Þ−F tð Þ
△t

=
d
dt

F tð Þ; ð9Þ
and by combining with Eqs. (7)–(9), we may write

f tð Þ = C z; tð Þ
∫∞
0dt C z; tð Þ

: ð10Þ

This fundamental result reads as follows: the normalized outflow
concentration of an experiment in which a narrow pulse is added to
the inlet of a transport volume (under steady water flow conditions)
is equal to the travel time pdf of that volume.

By using the superposition principle (for details see [26]) we may
write the concentration for an arbitrary input concentration C 0; tð Þ as

C z; tð Þ = ∫t
0dt′C 0; t−t′ð Þf z; t′ð Þ: ð11Þ

Eq. (11) may be interpreted as follows: the solute flux arriving at
the outflow at the time t contains solutes that entered the control
volume at all the times less than t. In particular, if a particle enters at
the time t− t′, it has the probability f(t′)dt′ of having a travel time t′,
or of exiting the control volume at the time t. The integral is just the
cumulant of all the possible contributions from travel times t′
between 0 and t.

The transfer function framework has some advantages, and some
disadvantages over the physical approach. The travel time f(t) records
the transfer features of the medium completely, and therefore it is
valid for all (linear) transport processes: it does not require any
process assumption. To the contrary, it merely predicts concentrations
at the outflow, which means that it cannot be used (unless some
further hypotheses are invoked) to predict the outflow concentrations
at any other depthwithin/beyond the control volume. Thus, extension
of the approach to depths different from that at which the transfer
function is calibrated requires an assumption concerning the
transport process.

At field-scale the so-called Stochastic-Convective Transfer Function
revealed successful into recovering the outcome of several field-scale
transport experiments (e.g. [6,50]). It is assumed that solutes are
confined in isolated stream-tubes. As a consequence, the probability
that a solute particle will reach a depth z in a time less or equal to t
must be the same probability that it will reach the calibration depth ℓ
in a time less than or equal to ℓ

z t, i.e.

P z; tð Þ = P ℓ;
ℓ
z
t

� �
: ð12Þ

Now, by accounting for Eqs. (9) and (12), one has

f z; tð Þ = d
dt

P z; tð Þ = d
dt

P ℓ;
ℓ
z
t

� �
=

ℓ
z
f ℓ;

ℓ
z
t

� �
: ð13Þ

Eq. (13) establishes a relation between the pdf at any depth z≠ℓ.
To model the travel time (Eq. (13)) at the calibration depth ℓ, Jury
[25] used the log-normal distribution

f ℓ; tð Þ = 1ffiffiffiffiffiffi
2π

p
σℓt

exp − ln t−μℓffiffiffi
2

p
σℓ

 !2" #
; ð14Þ

where μℓ = ln
b t Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + CV2 tð Þ
q
2
64

3
75, and σℓ represent the mean and
variance of the random variable ln t, respectively. When the
stochastic-convective hypothesis is applied to Eq. (14), the log-
normal travel time at any depth z writes as

f z; tð Þ = 1ffiffiffiffiffiffi
2π

p
σℓt

exp − ln tℓ=zð Þ−μℓffiffiffi
2

p
σℓ

" #2( )
; ð15Þ
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Fig. 2. Average water-content profiles as function of the depth, at the sampling times.
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which will be referred hereafter as Convective Log-normal Transfer
(CLT) function. Similarly to the physical approach, here the normal-
ized concentration is completely characterized by the mean μℓ, and
the standard deviation σℓ measured at the calibration depth z=ℓ.

In the sequel, we shall apply the ADE as well as the CLT models to
analyze a recently conducted unsaturated field-scale tracer transport.

3. The field-scale transport experiment

The experimental-field, which is located at the Ponticelli-site
(nearby Naples, Italy), is a sandy soil. The soil texture in the upper
1.00 m was studied in detail by sampling at 0.20 m increments in
several (randomly selected) locations across the field. The results
of the textural analysis with the corresponding soil texture classifi-
cation are listed in Table 1. The main feature is that the soil is
macroscopically homogeneous up to 0.80 m, with a layer of finer
textured (loamy) soil at 0.80÷1.00 m. The soil resulted structureless
in the sand component, and sub-angular blocky in the finer textured
component. Measurements of the soil bulk density ρ up to 1.00 m
(with 0.30 cm depth intervals) at various locations across the field
had mean and standard deviation equal to 1.01 g/cm3 and 0.13 g/cm3

(i.e. CV(ρ)=13%), respectively.
The saturated hydraulic conductivity Ks was measured along 40

profiles in the field by using the auger-hole method [1]. Because in the
auger-hall method the sampled volume has the same size of the
laboratory-scale samples, such measurements of Ks can be considered
homogeneous to those obtained by laboratory techniques (e.g. by
means of permeameters). The distribution of measured values was
normal with mean 0.13 cm/min, and coefficient of variation equal to
24%. In addition, Ks was measured upon 80 soil samples taken at
z=0.30 cm, and z=0.90 cm (every 1.25 m) along a (50 m long)
transect parallel to the field where the transport experiment was
carried out. The measured (by means of the constant-head permea-
meter method) values lead to the following results: mean 0.35 cm/
min, and coefficient variation CV(Ks)=1.15. A preliminary analysis of
the spatial structure of Ks revealed a horizontal correlation integral
scale approximately equal to 7 m. In Fig. 1 we have depicted contour
plots of Ks (cm/h) as measured across a vertical (40 m×1 m) cross
section. The irregular, ostensibly erratic, variations of Ks are clearly
evident.

The experimental plot (8 m width×50 m long), equipped by a
sprinkler irrigation system, was set-up under a greenhouse in order to
prevent additional (due to rain-events) water supplies. The sprinkler
irrigation system supplied a flux of 10 mm/day. The coefficient of
uniformity of the sprinkler systemwas 87%. It was estimated by catch-
cans placed in the vertexes of a regular (1 m×1 m) grid covering the
whole plot. Meteorological data were also in situ measured by a
standard weather-box recording temperature, relatively humidity,
and potential evapotranspiration (ET). In particular, the ET-values
were used to estimate the net amount of water entering the soil.

3.1. Experimental methodology

The field was regularly irrigated for nine weeks prior to the tracer
application to leach the soil of residual salts, and to achieve a
Table 1
Soil particle size distribution, and statistics (i.e. mean and standard deviation) of the satura

Horizon Depth
(cm)

Coarse sand
2Nd≥0.2 mm

Fine sand
0.2Nd≥0.002 mm

Ap 0–20 30.0 50.0
BW 20–50 30.0 53.0
BC 50–80 34.0 48.0
C 80–100 25.0 63.0
reasonably time invariant (at least up to z=2m) water-content
profile. The mean water content 〈θ〉, measured at depth intervals of
0.15 m (and several times) is depicted in Fig. 2. Higher values of 〈θ(z)〉
were detected at higher depths (say for zN0.55 m). This is due to the
presence (see Table 1) of a different sub-layer. The coefficient of
variation CV(θ) was always less than 20% (Table 2). While such a
variability of the mean water content has a small impact upon the soil
hydraulic properties, it has a tremendous influence on solute
transport. This issue will be fully addressed later on when discussing
(in Section 4) the out-coming of the transport experiment.

As for the chloride application, 45 g of KCl were dissolved in 1l of
deionized water, and subsequently siphoned into the irrigation
system followed by an additional 5 mm of water supply. The resulting
applied (at the surface) mass was M0=105 g/m2 (corresponding to
an input concentration equal to 21 g/l). Given the small interval (of
the order of minutes) of the solute application as compared with the
advective characteristic time (of the order of days), the boundary
condition can be well approximated by a Dirac-pulse, i.e.

C 0; tð Þ = M0

U0
δ tð Þ ð16Þ

being U0 the ratio between the water flux, and the mean water content
at the soil surface z=0. The soil was then leached down to 2.0 m over
the next two months by irrigation of 10 mm of applied chloride-free
water each day. Monitoring of the chloride concentration was carried
out in seven measurement campaigns (corresponding to 97, 167, 263,
335, 407, 573, 742 h) along seven parallel transects (each one 40m
long), atfixedhorizontal distance of 1 m(Fig. 3a). For each transect, nine
depths (z=0.10;0.20;0.30;0.40;0.50;0.60;0.70;0.80;0.90 m) were
sampled (Fig. 3b). This was repeated for each transect along 40 vertical
profiles (1.25 m away from the other) so that at the end of a single
campaign 9×40 samples were taken. A considerable effort was made
into maintaining the same sampling methodology over the duration of
the experiment. Typically, each campaign required 4 h to be completed.
The total number of soil samples (taken by an Edelmann-type auger)
was 2500.
ted hydraulic conductivity Ks of the experimental plot.

Silt
0.002Nd≥0.0002 mm

Clay
db0.0002 mm

Ks(cm/h)

Mean Stand dev

12.0 8.0 8.82 3.29
12.0 5.0 7.78 1.66
12.0 6.0 – –

7.0 5.0 – –



Table 2
Mean 〈θ〉, and coefficient of variation CV(θ) of the water content versus the depth at
different times.

Time
(h)

Mean/
coefficient
of
variation

Depth (m)

15.0 25.0 35.0 45.0 55.0 65.0 75.0 85.0

97.0 〈θ〉 0.32 0.32 0.32 0.33 0.34 0.39 0.40 0.37
CV(θ) 0.04 0.06 0.07 0.07 0.08 0.10 0.11 0.13

166.5 〈θ〉 0.32 0.32 0.31 0.32 0.35 0.39 0.40 0.38
CV(θ) 0.05 0.05 0.06 0.07 0.11 0.14 0.18 0.13

263.0 〈θ〉 0.32 0.32 0.31 0.32 0.35 0.41 0.40 0.38
CV(θ) 0.05 0.10 0.10 0.06 0.07 0.16 0.15 0.14

335.0 〈θ〉 0.33 0.32 0.32 0.33 0.36 0.41 0.41 0.37
CV(θ) 0.04 0.04 0.06 0.05 0.11 0.16 0.16 0.17

406.5 〈θ〉 0.32 0.32 0.32 0.32 0.36 0.40 0.40 0.38
CV(θ) 0.04 0.04 0.05 0.11 0.12 0.14 0.13 0.15

573.0 〈θ〉 0.33 0.32 0.32 0.32 0.35 0.41 0.40 0.37
CV(θ) 0.05 0.05 0.05 0.07 0.09 0.14 0.17 0.19

741.5 〈θ〉 0.33 0.33 0.32 0.33 0.35 0.39 0.40 0.37
CV(θ) 0.05 0.04 0.05 0.07 0.08 0.14 0.19 0.20
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From each soil sample 100 g were immediately taken, and sealed
in a plastic bag. Upon such sub-samples we determined: (i) the
gravimetric water content; (ii) the soil particles size by the
hydrometer method (e.g. [21]); and (iii) the organic carbon [30]. In
order to determine the chloride concentration, samples were dried (in
an oven at 105 °C), and then sieved by a grid 2 mm×2 mm. Hence, a
mixture consisting of 50 g of dried sample, and 100 ml of deionized
water was prepared, shaken, and filtered by using a 0.45 μm
cellulose-nitrate membrane filter. In the extracted liquid component,
the Cl− concentration was measured by using an ion-specific
electrode setup. The gravimetric concentration Cg was determined
X=8 m

1 m

Y=50 m t7 t6 t5 t4 t3 t2 t1 (a)

Y=50 m

Z=1 m

(b)

1.25 m 1.25 m

1 2 3 403938

z=10cm

sampling depthtime ti (i=1,..,7)

1

2

8

9

Δ

Fig. 3. Sketch of the field plot (at the Ponticelli-site) showing the locations at the several
times ti as well as the sampling depths.
as mass of chloride per mass of dried soil. Hence, the concentration C
(mass of chloride per volume of soil) was computed as C=ρCg.

3.2. Mass recovery

The recovered mass may be used to gauge the efficiency of the
sampling technique as well as the reliability/quality of the concen-
tration data. The recovered specific (i.e. per unit area) solute mass Mr

along the depth was determined as follows

Mr = ∑
N

i=1
C zið ÞθiΔz; ð17Þ

where C(zi) is the concentration of the ith ofN=40 sampling intervals
of Δz length, and θi the volumetric water content at zi (Fig. 3b).

In the Table 3 we have reported Mr as percentage of the total
initially applied chloride mass M0=0.105 kg/m2. The recovery mass
lies between 80.5% and 101.3%. In particular, the mass recovery
exceeds at two depths (i.e. z=0.15 m and z=0.65 m) the maximum
value of 100%. Such an anomaly is likely due to a residual chloride
mass which was not completely removed by the flushing prior to the
chloride application. Indeed, as it can be argued by inspection of Fig. 1,
at z≈0.70 m the saturated hydraulic conductivity (and a fortiori the
hydraulic conductivity) drastically reduces. As a consequence, the
chloride-free water that was applied before initiating the experiment
was probably not enough to push downward z=1 m the residual
chloride. Another additional explanation can be addressed to some
(very small) inaccuracy in the numerical evaluation of Eq. (17).

3.3. Concentration data

Here the local concentration value C = 1=Ωð Þ∫dxc x; tð Þ (being c
the point value) is sought as space average over a support Ω centered
at x. If Ω is small enough, then C can be considered as “point value.”
The high variability associated to the solute propagation in the field
site may be visualized by examining (Fig. 4) the concentration profiles
monitored at the different times. The uncertainty in transport is
highlighted by the very large fluctuations of local measurements
(discrete symbols) as compared with the mean (continuous line)
values. While the uncertainty in the local concentration measure-
ments has been reduced by repeating (5 times) for each sub-sample
the chloride detection (and subsequently taking the average), the
uncertainty in the field average concentration might be “in principle”
assessed only by repeating the same experiment. In fact, while the
above recalled stochastic models refer to all possible realizations, the
field data are computed as spatial averages. The identification of
ensemble average, i.e. 〈C〉, from the spatial one, i.e. C, is possible under
the ergodicity-hypothesis (for a wide discussion on this issue, see
[12]). The pragmatic approach adopted here is to presume that
ergodicity holds (at the least up to the second-order moments of the
concentration data), and to check it a posteriori by comparing
the model prediction with real data. Nevertheless, the attainment of
the ergodic-issue in the case of the Ponticelli-site has been already
assessed for flow by Severino et al. [45]. For these reasons, we shall
assume that C≈〈C〉.
Table 3
Estimated and recovered mass expressed as a percentage between Mr and M0.

Depth (m) Solute mass (kg/m2) Recovered Mr/M0 (%)

0.15 0.106 101.1
0.25 0.103 97.8
0.35 0.097 92.4
0.45 0.102 97.4
0.55 0.103 98.0
0.65 0.106 101.3
0.75 0.098 93.8
0.85 0.085 80.5
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Fig. 4. Measured (discrete points), and mean (continuous line) chloride concentration at the sampling times.
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Notice in Fig. 4 that the peak of the mean concentration decreases
as time elapses. As a consequence, the concentration profile becomes
flatter, and wider. The peaks are captured at all (except at the last)
sampling time. In the Fig. 4 it is also seen that fluctuations are larger
around the centroid of the concentration profiles in agreement with
theoretical studies [9,39,46,52]. The most striking (and quite
important for the modelling point of view) issue is that, unlike the
water content, the range of the coefficient of variation was between
26% and 170% (Table 4).

An interesting way to look at the pattern of the solute propagation
is by means of the “so-called” mobile transport volume

θm = Jw
T1
z
; ð18Þ

where T1 is the arrival (at the depth z) time of the center of gravity of the
concentration profile. Indeed, θm can be considered as the appliedwater
flux Jw divided by the average solute velocity. The quantity (Eq. (18)),
which in the caseof thePonticelli experimenthad ameanequal to 0.232,
can be compared with the mean water content 〈θ〉=0.346. In soils, the
mean water content 〈θ〉may differ from 〈θm〉 for a variety of reasons. In
our case, since it results 〈θm〉b 〈θ〉, exclusion anionic processes due to
negatively charged mineral are likely to be present. As a consequence,
the water volume z*〈θm〉 required to push downward the center of
gravity of the concentration profile at a given depth z* is less than the
average one, i.e. z*〈θ〉. This suggests that a large portion of solutes is
moving downward at higher velocities, therefore supporting the use of
one-dimensionalmodels. It isworth emphasizing that such a conclusion
is sought in amean sense. Indeed, as it will be clearer later on, the use of
one-dimensional models is not authorized in the very shallow depths
due to the occurrence of the lateral transport.

4. Discussion

The concentration data of the Ponticelli-site enable one to analyze
the impact of the medium heterogeneity upon the solute spreading
mechanisms at field-scale. A major question which may be addressed
by means of this data-set is the analysis of the structure of the



Table 4
Mean 〈C〉 and coefficient of variation CV(C) of chloride concentration at different
depths, and sampling times.

Time
(h)

Mean/
coefficient
of
variation

Depth (m)

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

97.0 〈C〉 0.83 0.57 0.31 0.16 0.13 0.13 0.12 0.11
CV(C) 0.52 1.03 1.36 1.09 0.81 0.76 0.69 0.79

166.5 〈C〉 0.44 0.53 0.44 0.26 0.14 0.09 0.08 0.08
CV(C) 0.77 0.57 0.74 1.10 1.48 0.91 0.69 1.19

263.0 〈C〉 0.16 0.24 0.32 0.38 0.36 0.23 0.14 0.11
CV(C) 1.18 1.16 0.88 0.74 0.91 1.16 1.31 1.70

335.0 〈C〉 0.10 0.12 0.17 0.23 0.34 0.45 0.37 0.24
CV(C) 1.41 1.07 1.27 1.11 0.93 0.68 0.79 0.79

406.5 〈C〉 0.08 0.10 0.14 0.17 0.20 0.23 0.21 0.16
CV(C) 0.84 0.61 0.75 0.67 0.70 0.81 1.04 0.90

573.0 〈C〉 0.07 0.06 0.06 0.08 0.14 0.20 0.26 0.25
CV(C) 0.29 0.26 0.39 0.82 1.06 1.10 0.95 0.84

741.5 〈C〉 0.12 0.12 0.12 0.13 0.14 0.18 0.21 0.26
CV(C) 0.33 0.30 0.33 0.29 0.43 0.66 0.73 0.84
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macrodispersion as it evolves from the soil surface. Toward this aim,
we shall adopt the two previously revisited models, i.e. (i) the ADE
model (Eq. (5)), and (ii) the CLT model (Eq. (15)). To test model
predictions, we shall use the mean concentration profiles. In addition,
a moment analysis will be conducted to obtain physical insights on
the macrodispersion evolution.

The scaled (i.e. divided by the appliedmassM0 over the infiltrating
volumetric rate) breakthrough curves at eight control depths (i.e.
z=0.15;0.25;0.35;0.45;0.55;0.65;0.75;0.85 m) are plotted (dis-
crete symbols) in Fig. 5 together with the CLT (dashed line), and the
ADE (continuous line) predicted distributions. To minimize the
impact of sampling errors, the mean concentration was computed
by averaging n=40 local profiles (each one corresponding to a given
sampling campaign) as follows:

C z; tð Þ = ∑n
i = 1θi z; tð ÞCi z; tð Þ

n〈θ zð Þ〉 : ð19Þ

It is seen from Eq. (19) that the weight assigned to each

concentration measurement is
θi z; tð Þ
n〈θ zð Þ〉, being θi(z, t) the local water

content at given depth z and time t, whereas 〈θ(z)〉 represents the
mean water-content profile (Fig. 2). Such a choice is motivated by the
fact that in this way we can account for the impact of the water-
content fluctuations (e.g. [21]).

The parameters of the ADE and CLT models have been determined
by the least square optimization algorithm. The optimization
procedure lead to the following values: 1) U=15.8⋅10−4 m/h, and
D=9.5 ⋅10−5 m2/h; 2) μℓ=5.42 and σℓ=0.51. Two different
calibration procedures were used with the ADE: either fitting both U
and D, or just fitting D, and estimating U as ratio between the flux Jw,
and the mean water content 〈θ〉. In this second case, even if the
optimization was satisfactory (in terms of objective function), it
turned out that the agreement of the model with data, that was tested
by means of indicators (Eqs. (20)–(22)), was very poor. This is
explained by the fact that, even if the advective velocity U can be
considered constant in the time, it cannot be treated as uniformly
distributed. This addresses a posteriori the impact of the increase in
the mean water content (see Fig. 2) due to the finer stratification at
z≥0.80m. For this reason, U cannot be regarded as a given (i.e.
estimated from simultaneous measurements of the flux, and the
water content) parameter, but instead it has to be calibrated.
Fig. 5. Scaledmeasured (circles) concentration data versus theoretical (lines) predictions as f
zN0.45 m.
At z≥0.55 m the agreement between the data, and the CLT model
is slightly better than the one with the ADE model (Fig. 5b). In
particular, the CLT model predicts the early arrivals, and the marked
tailing at the deepest depths. Instead, both the models are not in a
good agreement with data at z=0.15 m (Fig. 5a). More precisely,
while the ADE model under-predicts tracer dispersion (and concur-
rently it over-predicts peak concentration), the CLT one under-
estimates the early arrivals. The reason is that close to the soil surface
transverse (typically radial) transport is not negligible. Indeed, it is
well-known that radial flows (unlike mean uniform ones) signifi-
cantly enhance mixing. As a consequence, peaks are slightly over-
predicted at the shallow depths. A similar argument applies to the CLT
model. In fact, this latter assumes that transport takes place in isolated
vertical columns, and therefore it underestimates the travel times due
to the neglect of lateral movements.

The predicting performances of the previous models are quantified
here by using three different criteria, namely: i) the maximum error
(ME), ii) the root mean square error (RMSE), and iii) the model
efficiency (EF) [29],

ME = max
i=1;::;n

Pi−Mij j ð20Þ

RMSE %ð Þ = 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i = 1 Pi−Mið Þ2
∑n

i = 1Mi

s
ð21Þ

EF = 1− ∑n
i = 1 Pi−Mið Þ2

∑n
i = 1 M−Mi

� �2 ; ð22Þ

where Pi and Mi represent predicted and measured solute concentra-
tions, respectively, whereas M = 1= nð Þ∑iMi is the mean of the
measured concentration. The ME and the RMSE are the maximum
error, and the average deviation between measurements and
prediction. Instead, the EF (also known as Nash–Sutcliffe) parameter
is a measure of the model capability to predict the measured
concentrations. For an ideal prediction, the values of Eqs. (20)–(21)
should be 0, whereas EF=1 (when EF attains negative values, a poor
fitting is obtained). Inspection of Table 5 shows that both the models
perform quite well for z≥55 cm (Fig. 5b). The poor agreement of the
theoretical predictions close to the soil surface (Fig. 5a) is also
quantitatively confirmed by the values of ME, RMSE, and EF.

The ADE-based prediction at z=0.15 m provides the most graphic
illustration of the problem in estimating the extent of solute spreading
when Fickian transport ismistakenly assumed. Indeed, Fig. 5 shows that
the variance of real data is much greater than that the ADE model can
account for. As it will be clearer later on, the concentration profiles at
0≤z≤0.40 moffers a visual confirmation that Fickian transport has not
yet fully-attained. In fact, if the dispersivity had already approached an
asymptotic value by such a depth, then the ADE projection of the solute
spreading using the parameters calibrated at z=0.45 m should have
beenverygood. Since thepredictionsatdepths larger than0.45 mare in
a good agreement with data (Fig. 5b), we argue that by zN0.45 m
transport can be regarded as Fickian. It should be noted that the CLT
performed almost equally well into predicting transport both at large,
and small depths. This is not surprising, since the applicability of the CLT
functionmodel is not restricted to the asymptotic regime. However, the
error analysis (Table 5) showed the overall superiority of ADE with
respect to the CLT function model.

An alternative characterization to transport can be achieved by
means of moments (e.g. [39,40,42,46]). Generally, moments are
random quantities, but they are approximately equal to their mean
values; that is, they satisfy the ergodic hypothesis [39]. Thus, by
unction of the elapsed time (h) at eight different depths. Case a): z≤0.45 m and case b):
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Table 5
Maximum error (ME), root mean square error (RMSE) and model efficiency (EF)
referring to measured and predicted mean concentrations.

Time
(h)

ME RMSE (%) EF

CDE CLT CDE CLT CDE CLT

97 2.81E−05 2.01E−03 36.3 57.5 0.93 0.90
167 1.72E−03 1.92E−03 53.0 48.4 0.79 0.87
263 4.54E−04 4.84E−04 18.5 17.2 0.96 0.97
335 1.39E−05 1.34E−04 0.5 5.5 1.00 1.00
407 3.61E−04 5.88E−04 18.4 25.8 0.95 0.87
573 4.45E−05 4.07E−06 17.4 20.4 0.94 0.91
742 1.97E−04 4.50E−04 17.5 36.9 0.96 0.78
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treating the mean concentration distribution 〈C(z, t)〉 as (up to a
constant) a probability density function, the solute spreading
mechanism can be quantified by means of moments

Z�
n =

∫∞
0dz z

n〈C z; tð Þ〉
∫∞
0dz〈C z; tð Þ〉

n = 1;2;…ð Þ: ð23Þ

While the ADE and CLT models account for a linearly increase with
the depth z of the first-order moment Rz=Z1

* , they provide a different
characterization of the spreading mechanism [26]. Indeed, in the case
of the ADE model, we shall look at the growth of the apparent
dispersivity λ

λ =
z
2
Varz
R2
z

=
z
2
CV2

z ð24Þ

(being Varz=Z2
* −Rz

2 the variance). Alternatively, the apparent
dispersivity (Eq. (24)) can be calculated from the optimized
parameters at each depth, i.e. λ = D

U. Instead, in the case of the CLT
model the spreading mechanism will be analyzed by looking at the
standard deviation σz =

ffiffiffiffiffiffiffiffiffiffi
Varz

p
. It is worth recalling here that, while λ

grows with distance before reaching a constant (asymptotic) Fickian
value for an advection-dispersion process [46], σz remains constant in
the case of a process which obeys the CLT model [50].

In Fig. 6 the parameters λ and σz are depicted along the depth z. The
dispersivity values (Fig. 6a), which are in agreement with values
reported in the literature (see, e.g. [4]), are fairly constant with depth
except for the shallowest ones. This suggests that, starting from
z≈0.50 m, the concentration evolution can be regarded as a convec-
tion-dispersion process. In a different way, one could say that for the
experiment under study the onset depth Z is around 45 cm. The
transitional behavior from the soil surface z=0 to z=Z is manifested
into a growingdispersivity. It is instructive to showhowourdata-set can
be coupled with theoretical results to come up with the formation
heterogeneity statistical structure, which is a very difficult, and time
consuming task (see, e.g. [37]). Indeed, it has been shown by Severino et
al. [46] that for a soil that can be regarded as a bundle of non-interacting
stream-tubes, the asymptotic macrodispersivity λ is

λ =
D
U

= Ivσ
2
Yexp 2α〈Ψ〉ð Þ; ð25Þ

where Iv and σY
2 represent the vertical integral scale and the variance

of Y=lnKs, respectively, whereas 〈Ψ〉 is the mean head. The α-
parameter depends upon the pore-size distribution, and it relates
the hydraulic conductivity to the head [19]. One of the main
advantages related to Eq. (25) is that it leads to a simple strategy to
identify the heterogeneity structure. In fact, once 〈Ψ〉 and α are
measured/estimated, one can easily infer IvσY

2. By considering that
for the experiment at stake it turned out that λ = D

U ≃6 cm,
〈Ψ〉≈−210 cm, σY
2=ln[1+CV2(Ks)]≈0.84, α≈0.001 cm− 1, one

gets Iv≈10.8 cm. Accounting for the fact (see Fig. 6a) that the
Fickian regime is fully developed starting from z≈50 cm, we
conclude that the macrodispersion mechanism becomes Fickian
after that the center of gravity has travelled 50 cm

10:8 cm≈5 vertical
integral scales. This result is in excellent agreement with the
theoretical predictions of Severino et al. [46]. It is important to
emphasize that, although the analysis of Severino et al. [46] is based
on linearization of the flow equations (and therefore it is formally
restricted to formations with σ Y

2≪1), it is valid within a larger range
of σY

2 (for a detailed discussion, see [48]). As for the CLT model, it is
seen that the variance σz

2 is practically constant along the depth
(Fig. 6b). This is exactly the result one would expect from the
transfer function theory (see, e.g. [50]), when the density probability
distribution of the travel times follows the stochastic-convective
model (Eq. (15)).

Before concluding, wewish to state here that the present paper has
essentially focused on the use of mean concentration data. Neverthe-
less, the local values of the concentration are quite dispersed around
the mean (Fig. 4). Rather than its practical implications, there is a
definite theoretical interest (see, e.g. [18]) into quantifying fluctua-
tions of local concentration values. To illustrate this point, in Table 5
we have reported the coefficient of variations of the chloride
concentration. It is seen that the coefficient of variation may also be
equal to 180%. Unlike the mean, the variance is strongly influenced by
the mixing effects, which cause dilution [14]. This task, that to our
knowledge has received less attention in the case of unsaturated
media, is part of an ongoing project.

5. Concluding remarks

The experimental methodology described in this paper was
successful in the acquisition of a comprehensive data-set describing
nonreactive unsaturated solute transport at field-scale. The results
indicate that at small depths (say for z≤0.40 m) transport is still in
the pre-asymptotic regime.

The very large fluctuations of local scale measurements represent
one of the most striking features displayed by the concentration data.
Nevertheless, the peak of the mean concentration appears to have
been captured in all (except the final) sampling time. The mass
recovery of the area-averaged pulse was near 100% at almost all the
depths, with exception of two locations where it resulted slightly (i.e.
101.0%) in excess. This is presumably due to a residual chloride which
was not completely removed during the flushing prior the salt
application.

Two stochastic models were used to predict solute behavior. A
scale effect was observed in the variance of the solute breakthrough
curves, and in the relative medium dispersivity λ. The development of
λ was more nearly proportional to the travelled distance (implying a
linear growth of the dispersivity) with z. From the modelling point of
view, this has a two-fold consequence. First, even if the ADE model
could be in principle used to capture this growing macrodispersion
effect, de facto it is not of practical use due to the impact of the
boundary condition which cannot be neglected (it is reminded that
the ADE model relies on the assumption of infinite medium). Second,
the CLT (whose applicability is not limited to the assumption of
infinite medium) is still poorly working since it assumes that
transport takes place in a bundle of isolated vertical column, whereas
the analysis of concentration data suggests that in the upper most
depths lateral transport is not negligible. This implies that neither of
the models could be calibrated at shallow depths, and predict
transport accurately. For z=45 cm, both the models provided an
excellent representation of the spreading of the solute pulse, in
agreement with the current stochastic theories.

Before concluding, we wish to emphasize that further investiga-
tions (along the lines of [18]) on the role of pore-scale dispersion are
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needed to quantify the impact of local mixing mechanisms upon the
concentration dilution in unsaturated porous media.
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