
Chaos 33, 043128 (2023); https://doi.org/10.1063/5.0135903 33, 043128

© 2023 Author(s).

Parsimonious physics-informed random
projection neural networks for initial value
problems of ODEs and index-1 DAEs

Cite as: Chaos 33, 043128 (2023); https://doi.org/10.1063/5.0135903
Submitted: 23 November 2022 • Accepted: 20 March 2023 • Published Online: 13 April 2023

 Gianluca Fabiani, Evangelos Galaris, Lucia Russo, et al.

COLLECTIONS

 This paper was selected as an Editor’s Pick

https://images.scitation.org/redirect.spark?MID=176720&plid=1953377&setID=405123&channelID=0&CID=715911&banID=520851868&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6ff7d33db84fbba60b51edaf043c854e7bcdf949&location=
https://doi.org/10.1063/5.0135903
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=cha
https://doi.org/10.1063/5.0135903
http://orcid.org/0000-0002-9799-451X
https://aip.scitation.org/author/Fabiani%2C+Gianluca
http://orcid.org/0009-0004-7481-1356
https://aip.scitation.org/author/Galaris%2C+Evangelos
http://orcid.org/0000-0003-4888-467X
https://aip.scitation.org/author/Russo%2C+Lucia
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=cha
https://doi.org/10.1063/5.0135903
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0135903
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0135903&domain=aip.scitation.org&date_stamp=2023-04-13

Chaos ARTICLE scitation.org/journal/cha

Parsimonious physics-informed random
projection neural networks for initial value
problems of ODEs and index-1 DAEs

Cite as: Chaos 33, 043128 (2023); doi: 10.1063/5.0135903

Submitted: 23 November 2022 · Accepted: 20March 2023 ·
Published Online: 13 April 2023 View Online Export Citation CrossMark

Gianluca Fabiani,1 Evangelos Galaris,2 Lucia Russo,3 and Constantinos Siettos2,a)

AFFILIATIONS

1Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli (NA), Italy
2Dipartimento di Matematica e Applicazioni “Renato Caccioppoli,” Università degli Studi di Napoli Federico II,

Corso Umberto I 40, 80138 Napoli (NA), Italy
3Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili,

Consiglio Nazionale delle Ricerche, Via Guglielmo Marconi 4, 80125 Napoli (NA), Italy

a)Author to whom correspondence should be addressed: constantinos.siettos@unina.it

ABSTRACT

We present a numerical method based on random projections with Gaussian kernels and physics-informed neural networks for the numer-
ical solution of initial value problems (IVPs) of nonlinear stiff ordinary differential equations (ODEs) and index-1 differential algebraic
equations (DAEs), which may also arise from spatial discretization of partial differential equations (PDEs). The internal weights are fixed
to ones while the unknown weights between the hidden and output layer are computed with Newton’s iterations using the Moore–Penrose
pseudo-inverse for low to medium scale and sparse QR decomposition with L2 regularization for medium- to large-scale systems. Building
on previous works on random projections, we also prove its approximation accuracy. To deal with stiffness and sharp gradients, we propose
an adaptive step-size scheme and address a continuation method for providing good initial guesses for Newton iterations. The “optimal”
bounds of the uniform distribution from which the values of the shape parameters of the Gaussian kernels are sampled and the number
of basis functions are “parsimoniously” chosen based on bias-variance trade-off decomposition. To assess the performance of the scheme
in terms of both numerical approximation accuracy and computational cost, we used eight benchmark problems (three index-1 DAEs
problems, and five stiff ODEs problems including the Hindmarsh–Rose neuronal model of chaotic dynamics and the Allen–Cahn phase-
field PDE). The efficiency of the scheme was compared against two stiff ODEs/DAEs solvers, namely, ode15s and ode23t solvers of the
MATLAB ODE suite as well as against deep learning as implemented in the DeepXDE library for scientific machine learning and physics-
informed learning for the solution of the Lotka–Volterra ODEs included in the demos of the library. A software/toolbox in Matlab (that we
call RanDiffNet) with demos is also provided.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0135903

We address a machine-learning-based method for the numeri-
cal solution of stiff ODEs and index-1 DAEs, thus exploiting the
universal approximation properties of random projections with
Gaussian Kernels. This is the first time it is shown that a machine
learning scheme may be comparable, and in several cases better,
in terms of both numerical accuracy, and importantly, computa-
tional cost when compared to established/traditional stiff solvers
such as ode23t and ode15s of the Matlab ODE suite and also deep-
learning PINNs as implemented in the DeepXDE library. Thus,
we believe that this work may trigger further developments in the
field of scientific machine learning for the numerical solution of
differential equations.

I. INTRODUCTION

The interest in using machine learning as an alternative to clas-
sical numerical analysis methods1–4 for the solution of inverse,5–14

and forward15–19 problems in differential equations modeling of
dynamical systems can be traced back three decades ago. Today,
this interest has been boosted together with our need to bet-
ter understand and analyze the emergent dynamics of complex
multiphysics/ multiscale dynamical systems of fundamental theo-
retical and technological importance.20 The objectives are mainly
two. First, that of the solution to the inverse problem, i.e., that
of identifying/discovering hidden macroscopic laws, thus learn-
ing nonlinear operators and constructing coarse-scale dynamical

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-1

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0135903
https://doi.org/10.1063/5.0135903
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0135903
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0135903&domain=pdf&date_stamp=2023-04-13
http://orcid.org/0000-0002-9799-451X
http://orcid.org/0009-0004-7481-1356
http://orcid.org/0000-0003-4888-467X
http://orcid.org/0000-0002-9568-3355
mailto:constantinos.siettos@unina.it
https://doi.org/10.1063/5.0135903

Chaos ARTICLE scitation.org/journal/cha

models of ordinary differential equations (ODEs) and partial dif-
ferential equations (PDEs) and their closures, from microscopic
large-scale simulations and/or from multi-fidelity observations.21–33

Second, based on the constructed coarse-scale models, that of sys-
tematically investigating the dynamics by efficiently solving the cor-
responding differential equations, especially when dealing with stiff
problems and PDEs.24,30,31,34–44 Toward this aim, physics-informed
machine learning20,22–24,30–32,45 has been addressed to integrate avail-
able/incomplete information from the underlying physics, thus
relaxing the “curse of dimensionality” of machine/ deep-learning
schemes. In particular, the term “physics-informed neural net-
works” (PINNs) was coined24 to describe NNs that are trained to
solve the forward and inverse problem for differential equations,
incorporating information about the governing equations, initial
and boundary conditions (for PDEs), thus providing analytically the
necessary derivatives that are needed for the training phase, using,
for example, automatic differentiation. However, failures may arise
at the training phase especially in deep learning formulations, while
there is still the issue of the corresponding computational cost.20,46–48

Thus, a bet and challenge is to develop physics-informed machine
learning methods that can achieve high approximation accuracy at a
low computational cost.

Within this framework and toward this aim, we propose a
physics-informed neural network (PIRPNN) scheme based on the
concept of random projections49–54 for the numerical solution to
initial-value problems of nonlinear stiff ODEs and index-1 differen-
tial algebraic equations (DAEs) as these may also arise from spatial
discretization of PDEs. Our scheme consists of a single hidden layer,
with Gaussian kernels, in which the weights between the input and
hidden layer are fixed to ones. The shape parameters of the Gaussian
kernels are random variables drawn i.i.d. from a uniform distri-
bution, for which the bounds and the number of basis functions
are “parsimoniously” chosen based on the expected bias-variance
trade-off decomposition,55 that was numerically computed using as
reference the van der Pol stiff ODEs. The unknown parameters,
i.e., the weights between the hidden and the output layer are esti-
mated by solving a system of nonlinear algebraic equations with
quasi-Newton iterations. For low- to medium-scale systems, this
task is performed using singular value decomposition (SVD), while
for medium- to large-scale systems, we exploit a sparse QR factoriza-
tion algorithm with L2 regularization.56 Furthermore, to facilitate the
convergence of Newton’s iterations, especially at very stiff regimes
and regimes with very sharp gradients, we address an adaptive
scheme for adjusting the step-size of integration and a natural con-
tinuation method for providing good initial guesses for unknown
weights.

We compared the performance of the proposed scheme in
terms of both approximation accuracy and computational cost,
based on eight benchmark problems, three index-1 DAEs and
five stiff problems of ODEs, thus comparing it with ode23t

and ode15s adaptive step-size solvers of the MATLAB ODE
suite.4 In particular, we considered the index-1 DAE Robertson
model describing the kinetics of an autocatalytic reaction,57,58 a
non autonomous index-1 DAEs model describing the motion of
a bead on a rotating needle,58 a non autonomous index-1 DAEs
model describing the dynamics of a power discharge control
problem,58 the van der Pol model, the Prothero-Robinson stiff ODE,

the Hindmarsh–Rose neuronal model,59 the Belousov–Zabotinsky
chemical kinetics stiff ODEs,60,61 and the Allen–Chan phase-
field PDE describing the process of phase separation for generic
interfaces62 discretized in space with central finite differences, thus
resulting into a system of stiff ODEs.63 The comparison is performed
both on the grid of points resulting from the corresponding adap-
tive step-size procedure and on dense grids of equidistant points;
the evaluation of the solution on dense grids of equidistant points
is required, for example, when one studies the (statistical) properties
of chaotic and quasi-periodic dynamics/time series using techniques
such as the fast Fourier transform (FFT). The results show that the
proposed PIRPNN scheme as implemented here (see Sec. IV) out-
performs ode23t for almost all benchmark problems, while for
low-dimensional systems, it also outperforms ode15s when the
evaluation of the solution is required in a dense grid of points. The
structure of the paper is as follows. In Sec. II, we state the prob-
lem and provide some preliminaries on the solution of differential
equations with PINNs (Subsection II B); we also discuss briefly the
concept of random projections (Subsection II C). Furthermore, in
Subsection II D, we describe our approach for the solution of IVPs
of index-1 DAEs and ODEs with the use of PIRPNNs and discuss
its approximation properties within the framework of the univer-
sal approximation theorem of random projections.50,64 In Sec. III,
we address an adaptive step-size scheme for adjusting the interval
of integration as well as a numerical natural continuation method
for providing “good” initial guesses to facilitate the convergence of
Newton’s iterations; in Subsection III C, we also describe a way to
choose the bounds of the uniform distribution from which the val-
ues of the shape parameters are drawn. In Sec. IV, we present the
numerical results obtained by applying the proposed approach to
the above-mentioned stiff ODE and DAE problems along with a
comparison with ode23t/23t and ode15s. In Subsection IV I,
we present a further comparison against a deep learning PINN as
implemented in the DeepXDE library for the Lotka–Volterra ODEs.
Conclusions are given in Sec. V.

II. METHODS

In what follows, we first describe the problem and present some
preliminaries on the use of machine learning for the solution to
differential equations and on the concept of random projections
for the approximation of continuous functions. We then present
the proposed physics-informed random projection neural network
(PIRPNN) scheme, and building on previous works,50 we prove
that in principle the proposed network can approximate with any
given accuracy any unique continuously differentiable function that
satisfies the Picard–Lindelöf Theorem. Finally, we (a) propose an
adaptive step-size scheme for adjusting the interval of integration
based on the elementary local error control algorithm65 and (b)
address a natural continuation method to facilitate the convergence
of Newton’s iterations, especially in regimes with high stiffness and
very sharp gradients.

A. Description of the problem

Here, we consider initial-value problems (IVPs) of ODEs and
index-1 DAEs that may also arise from spatial discretization of PDEs

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-2

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

using, for example, finite differences, finite elements, and spec-
tral methods. In particular, we consider IVPs in the linear implicit
form of

M
du(t)

dt
= f(t, u(t)), u(0) = z. (1)

u ∈ R
m denotes the set of the states {u1, u2, . . . , ui, . . . , um}, M ∈

R
m×m is the so-called mass matrix with elements Mij, f : D ⊆ R

× R
m → R

m denotes a Lipschitz continuous multivariate function,
with components fi(t, u1, u2, . . . , um) defined in a closed domain
D, and z ∈ R

m are the initial conditions. When M = I, the sys-
tem reduces to the canonical form. The above formulation includes
problems of DAEs when M is a singular matrix, including semi-
explicit DAEs in the form58

du(t)

dt
= f(t, u(t), v(t)), u(0) = z,

0 = g(t, u(t), v(t)),

(2)

where now f : R × R
m−l × R

l → R
m−l), g : R × R

m−l × R
l → R

l

and we assume that the Jacobian ∇vg is nonsingular. In this work,
we use physics-informed random projection neural networks for the
numerical solution of the above type of IVPs, in which solutions
are characterized by both sharp gradients and stiffness.58,66 At this
point, it is worthy to emphasize that stiffness is not connected to
the presence of steep gradients. For example, at the regimes where
relaxation oscillations of the van der Pol model exhibit very sharp
changes resembling discontinuities, the equations are not stiff.66

B. Physics-informed machine learning for the solution
to differential equations

In this section and for the completeness of presentation, we
first give a very brief introduction to the basic concept of physics-
informed machine learning for the solution to differential equations
in the form of PDEs. The proposed methodology for the solution of
ODEs and index-1 DAEs that is the subject of the current work is
given in Sec. II D.

Let us assume a set of nx points xi ∈ � ⊂ R
d of independent

(spatial) variables that define the mesh in the domain �, n∂� points
along the boundary ∂� of the domain and nt points in the time
interval, where the solution is sought. For our illustrations, let us
consider a time-dependent PDE in the form of

∂u

∂t
= L(x, u, ∇u, ∇2u), (3)

where L is the partial differential operator acting on u satisfying the
boundary conditions Bu = g, in ∂�, where B is the boundary dif-
ferential operator. Then, the solution with machine learning of the
above PDE involves the solution to a minimization problem in the
form

min
P,Q

E(P, Q) :=
nx
∑

i=1

nt
∑

j=1

∥

∥

∥

∥

∂9

∂t
(·) − L(xi, 9(·), ∇9(·), ∇29(·))

∥

∥

∥

∥

2

+
n∂�
∑

j=1

∥

∥B9(·) − g
∥

∥

2
, (4)

where 9(·) := 9(xi, tj, N (xi, tj, P, Q)) represents a machine learn-
ing constructed function approximating the solution u at xi at time
tj and N (xi, tj, P, Q) is a machine learning algorithm; P contains
the parameters of the machine learning scheme (e.g., for a neu-
ral network, the internal weights W, the biases B, and the weights
between the last hidden and the output layer Wo), Q contains hyper-
parameters (e.g., the parameters of the activation functions for a
neural network, the learning rate, etc.). In order to solve the opti-
mization problem (4), one usually needs quantities such as the
derivatives of N (x, P, Q) with respect to t, x and the parameters of
the machine learning scheme, such as the weights and biases. These
can be obtained numerically using finite differences or other approx-
imation schemes or by symbolic or automatic differentiation.40,67

The above approach can be implemented also for solving sys-
tems of ODEs/DAEs as these may also arise by discretizing in space
PDEs. For example, if we consider a 1D PDE and a grid of nx equis-
paced points xi, i = 1, . . . , nx, with a space-step 1x, we can discretize
the profile in space and approximate the spatial derivatives using,
e.g., central finite differences (FD) to get

∂u(t, x)

∂x
= ui+1(t) − ui−1(t)

21x
,

∂2u(t, x)

∂x2
= ui+1(t) − 2ui(t) + ui−1(t)

1x2
.

(5)

Therefore, in this case, Eq. (3) can be reduced to a system of nx

DAEs, given by

dui(t)

dt
= L̃(xi, u1(t), . . . , unx(t)), i = 2, . . . , (nx − 1),

B̃(u1) = g(t, x1), B̃(unx = g(t, xnx),

(6)

where L̃, B̃ correspond to the discretization of operators L and B,
respectively, with FD. Then, the solution of the discretized sys-
tem can be sought using nx (space-independent) machine learning
constructed functions 9i(·) := 9i(tj, Ni(t, P, Q)) approximating the
solution ui at time tj. Thus, the minimization problem given by
Eq. (3) reduces to

min
P,Q

E(P, Q) :=
nx
∑

i=1

nt
∑

j=1

∥

∥

∥

∥

d9i

dt
(·) − L̃(xi, 91(·), . . . , 9nx(·))

∥

∥

∥

∥

2

+
∥

∥B̃91(·) − g(tj, x1)
∥

∥

2 +
∥

∥B̃9nx(·) − g(tj, xnx)
∥

∥

2
.

(7)

Yet, for deep learning schemes, but even for the simple case of sin-
gle layer networks, when the number of hidden nodes is large, the
solution of the resulting large-scale optimization problem is known
to be difficult, often resulting in poor solutions as iterations stuck
in local minima (for a detailed discussion about these problems, see
e.g., Refs. 46–48.)

C. Random projection neural networks

Random projection neural networks (RPNN) including ran-
dom vector functional link networks (RVFLNs),68,69 echo-state
neural networks/reservoir computing,53,70,71 and extreme learning
machines54,72 share common concepts and have been implemented

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

to relax the “curse of dimensionality” encountered at the training
phase.

A fundamental work on random projections that justifies why
and how a random projection works is the celebrated Johnson and
Lindenstrauss Lemma49 (for a review and tutorial, see also Ref. 73)
stating that for a matrix W ∈ R

d×n, containing n sample data points
w in R

d, there exists a projection F : R
d → R

k defined as

F(w) = 1√
k

Rw, (8)

where R = [rij] ∈ R
k×d has components that are i.i.d. random vari-

ables sampled from a normal distribution, which maps W into a

random subspace of dimension k ≥ O

(

ln n

ε2

)

, where the distance

between any pair of points in the embedded space F(W) is bounded
in [1 − ε 1 + ε], with a high probability. While the JL linear ran-
dom projection is one of the possible choices, it has been experimen-
tally demonstrated and/or theoretically proven that appropriately
constructed nonlinear random projections (that can be modelled
by a linear random projection followed by a nonlinear function)
may outperform such simple linear random projections as in the JL
Lemma (see, e.g., Refs. 50, 51, 74, and 73).

Regarding single-layer feedforward neural networks (SLFNNs),
Rosenblatt75 suggested the use of randomly parametrized activa-
tion functions for single-layer structures to simplify computations.
Thus, the approximation of a sufficiently smooth function f(x) :
R

d → R is written as a linear combination of appropriately ran-
domly parametrized family of N basis functions φi : R × R

p → R

as

f(x) ' fN(x) =
N
∑

i=1

wo
i φi

(

wT
i x + bi, pi

)

, (9)

where wi ∈ R
d are the weighting coefficients of the inputs, b ∈ R are

the biases, and pi ∈ R
p are shape parameters of basis functions.

More generally, for SLFNNs with d inputs, k outputs, and N
neurons in the hidden layer, the random projection of n samples in
the d-dimensional input space X can be written in a matrix-vector
form as

YN = 8NWo, Y ∈ R
n×k, (10)

where 8N ∈ R
n×N is a random matrix containing the outputs of the

hidden layer as shaped by n samples in the d-dimensional space, the
randomly parametrized internal weights W ∈ R

d×N, the biases b ∈
R

N, and shape parameters of the N activation functions; Wo ∈ R
N×k

is the matrix containing the weights wo
ij between the hidden and the

output layer.
In the early 90s, Schmidt et al. used single layer neural net-

works with random weights for the hidden layer and least squares
to train the output weights.94 Barron76 proved that for functions
with integrable Fourier transformations, a random sample of the
parameters of sigmoidal basis functions from an appropriately cho-
sen distribution results to an approximation error of the order of
1/N. Igelnik and Pao68 extended Barron’s proof76 for any family of L2

integrable basis functions φi, thus addressing the so-called RVFLNs.
For the so-called extreme-learning machines (ELMs), which simi-
larly to RVFLNs are FNNs with randomly assigned internal weights

and biases of the hidden layers, Huang et al.54,72 have proved uniform
convergence with a probability 1 under certain assumptions. Similar
results for one-layer schemes have also been reported in other stud-
ies (see, e.g., Refs. 50, 77, and 51). Rahimi and Recht50,77 proved the
following theorem:

Theorem 1 (cf. Lemma 1 in Ref. 50). Consider the feature
functions φ(x, α) : X × U → R parametrized by some vector α ∈
U that satisfy supx,αφ(x, α) ≤ 1. Let p(α) be a probability distribu-
tion on U . Define the set of functions

Fp ≡
{

f(x) =
∫

U
w(α)φ(x; α)dα, |w(α)| ≤ Cp(α)

}

, (11)

and let µ be a probability measure on X . Then, if one takes a function
f∗ in Fp, and N values α1, α2, . . . , αN of the shape parameter α drawn
i.i.d. from p, then for any δ > 0 with probability at least 1 − δ over

α1, α2, . . . , αN, there exists a function f̂ that lies in the random set

F̂α ≡

f(x) =
N
∑

j=1

wjφj(x; αj), |wj| ≤ C

N

(12)

such that
√

∫

X
(f∗(x) − f̂(x))

2
dµ(x) ≤ C√

N

(

1 +
√

2 log
1

δ

)

. (13)

For a detailed discussion on the pros and cons of function
approximation with random basis functions, see Ref. 51.

D. The proposed physics-informed random projection
neural network for the solution of ODEs and index-1
DAEs

Here, we propose a physics-informed machine learning scheme
based on the concept of random projections, and particularly based
on Theorem 1 (see also50,51,77) for the solution of IVPs of systems
given by Eqs. (1) and (2) in n collocation points in an interval, say
[t0 tf]. Based on the above, the output of the random projection
network is spanned by the range R(8), i.e., the column vectors of
8N, say φi ∈ R

n. Hence, the output of the network can be written as

YN =
N
∑

i=1

wo
i φi (14)

For an IVP of m variables, we construct m such networks.
Let us denote by 9(t, W, Wo, P) the set of trial functions

9Ni(t, w
o
i , pi), i = 1, 2, . . . , m that approximate the solution profile ui

at time t, which is defined as

9Ni(t, wi, w
o
i , pi) = zi + (t − t0)w

o
i
T
8Ni(t, wi, pi), (15)

where 8Ni(t, wi, pi) ∈ R
N is the column vector containing the val-

ues of N basis functions at time t as shaped by wi and pi con-
taining the values of the parameters of N basis functions and
wo

i = [wo
1i wo

2i . . . wo
Ni]

T ∈ R
N is the vector containing the values of

the output weights of the ith network. Note that the above set of
functions are continuous functions of t and explicitly satisfy the
initial conditions.

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-4

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

For index-1 DAEs, with say Mij = 0, ∀i ≥ l, j = 1, 2, . . . , m, or
in the semi-explicit form of (2), there are no explicit initial con-
ditions zi for the variables ui, i = l, l + 1, . . . , m, or the variables v
in (2): these values have to satisfy the constraints fi(t, u) = 0, i ≥ l,
(equivalently 0 = g(t, u, v)) ∀t, starting with consistent initial con-
ditions. Assuming that the corresponding Jacobian matrix of the
fi(t, u) = 0, i = l, l + 1, . . . , m with respect to ui, and for the semi-
explicit form (2), ∇vg, is not singular, one has to solve initially at
t = 0, using, for example, Newton–Raphson iterations, the above
nonlinear system of m − l algebraic equations in order to find a
consistent set of initial values. Then, one can write the approxi-
mation functions of the ui, i = l, l + 1, . . . , m [or v in the case of
semi-explicit form (2)] as in Eq. (15).

With n collocation points in [t0 tf], by fixing the values of the
interval weights wi and the shape parameters pi, the loss function
that we seek to minimize with respect to the unknown coefficients
wo

i is given by

L(Wo) =
n
∑

k=1

m
∑

i=1

m
∑

j=1

(

Mij

d9Ni

dt
(tk, wi, w

o
i , pi)

− fi
(

tk, 9(tk, W, Wo, P)
)

)2

. (16)

When the system of ODEs/DAEs results from the spatial dis-
cretization of PDEs, we assume that the corresponding boundary
conditions have been appropriately incorporated into the result-
ing algebraic equations explicitly or otherwise can be added in the
loss function as algebraic constraints. Here, for each Ni, we take N
Gaussian kernels given by:

gji(t, wji, bji, αji, cj) = e−αji(wjit+bji−cj)
2
,

j = 1, . . . , N, i = 1, . . . , m.
(17)

The values of the (hyper) parameters, namely, wji, bji, and cj are set
as

wji = 1, bij = 0, cj = tj = t0 + (j − 1)
tf − t0

N − 1
,

while the values of the shape parameters αji > 0 are sampled from
an appropriately chosen uniform distribution (see below). The time
derivative of 9Ni is given by

d9Ni

dt
=

N
∑

j=1

wo
jie

−αji(t−tj)
2 − 2(t − t0)

N
∑

j=1

αjiw
o
ji(t − tj)e

−αji(t−tj)
2
.

(18)

1. Approximation with the PIRPNN

Here, we show that the PIRPNN given by Eq. (15) is a universal
approximator of the solution u of the ODEs in the canonical form
or of the index-1 DAEs in the semi-explicit form (2).

Proposition 1. For the IVP problem (1) in the canonical
form or in the semi-explicit form (2) for which the Picard–Lindelöf
Theorem78 holds true, the PIRPNN solution 9Ni given by Eq. (15)
with N Gaussian basis functions defined by Eq. (17) whose shape
parameters αji are drawn i.i.d. from a uniform distribution across the
sample space, converges uniformly to the actual solution profile u(t)

in a closed time interval [t0 tf] with an upper bound of the order of

O
(

1√
N

)

with a probability 1 − δ for any small δ > 0.

Proof. Assuming that the system in Eq. (1) can be written in
the canonical form and the Picard–Lindelöf Theorem78 holds true,
then it exists a unique continuously differentiable function defined
on a closed time interval [t0 tf] given by

ui(t) = zi +
∫ t

t0

fi(s, u(s))ds, i = 1, 2, . . . m. (19)

From Eq. (15), we have

9Ni(t) = zi + (t − t0)

N
∑

j=1

wo
j e

−αj(t−tj)
2
. (20)

By the change of variables, τ = s − t0

t − t0

, the integral in Eq. (19)

becomes

∫ t

t0

fi(s, u(s))ds

= (t − t0)

∫ 1

0

fi(τ (t − t0) + t0, u(τ (t − t0) + t0))dτ . (21)

Hence, by Eqs. (19), (20), and (21), we have

In(t) ≡
∫ 1

0

fi(τ (t − t0) + t0, u(τ (t − t0) + t0))dτ ≈
N
∑

j=1

wo
j e

−αj(t−tj)
2
.

(22)

Thus, in fact, upon convergence, the PIRPNN provides an approxi-
mation of the normalized integral. By Theorem 2.1, we have that in
the interval [t0 tf], the PIRPNN with the shape parameter of the
Gaussian kernel drawn i.i.d. from a uniform distribution provides
a uniform approximation of the integral in Eq. (19) in terms of a
Monte Carlo integration method as also described in Ref. 68. Hence,
as the initial conditions are explicitly satisfied by 9Ni(t), we have
from Eq. (13) an upper bound for the uniform approximation of the
solution profile ui.

For index-1 DAEs in the semi-explicit form of (2), by the
implicit function theorem, we have that the DAE system is in
principle equivalent to the ODE system in the canonical form,

du(t)

dt
= f(t, u(t), H(t, u)), (23)

where v(t) = H (t, u(t)) is the unique solution of 0 = g(t, u(t), v(t)).
Hence, in that case, the proof of convergence reduces to the one
above for the ODE system in the canonical form. �

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-5

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

2. Computation of the unknown weights

For n collocation points, the outputs of each network Ni

≡ Ni(t1, t2, . . . tn, wo
i , pi) ∈ R

n, i = 1, 2, . . . m read

Ni = Riw
o
i ,

Ri ≡ Ri(t1, . . . , tn, pi) =

g1i(t1) · · · gNi(t1)

...
...

...
g1i(tn) · · · gNi(tn)

.

(24)

The minimization of the loss function (16) is performed over
the nm nonlinear residuals Fq,

Fq(W
o) =

m
∑

j=1

Mij

d9Nj

dtl

(tl, w
o
j) − fi(tl, 9N1(tl, w

o
1), . . . , 9Nm(tl, w

o
m)),

(25)

where q = l + (i − 1)n, i = 1, 2, . . . m, l = 1, 2, . . . n, W0 ∈ R
mN is

the column vector obtained by collecting the values of all m
vectors wo

i ∈ R
N, Wo = [Wo

k] = [wo
1, w

o
2 . . . , wo

m]T, k = 1, 2, . . . , mN.
Thus, the solution to the above non-linear least squares prob-
lem can be obtained, e.g., with Newton-type iterations such
as Newton–Raphson, quasi-Newton and Gauss–Newton methods
(see, e.g., 79). For example, by setting F(Wo) = [F1(W

o) · · ·
Fq(W

o) · · · F(nm)(W
o)]T, the update dWo(ν) at the (ν)th Gauss-

Newton iteration is computed by the solution of the linearized
system,

∇Wo(ν)FdWo(ν) = −F(Wo(ν)), (26)

where ∇Wo(ν)F ∈ R
nm×mN is the Jacobian matrix of F with respect

to Wo(ν). Note that the residuals depend on the derivatives ∂9Ni(·)
∂tl

and the approximation functions 9Ni(·), while the elements of the
Jacobian matrix depend on the derivatives of ∂9Ni(·)

∂wo
ji

as well as on the

mixed derivatives ∂29Ni(·)
∂tl∂wo

ji
. Based on (18), the latter are given by

∂29Ni

∂tl∂wo
ji

= ∂Ni(tl, w
o
i , pi)

∂wo
ji

− 2(tl − t0)αji(tl + bji − cj)e(
−αji(tl+bji−cj)

2).

(27)

Thus, the elements of ∇Wo(ν)F are given by

∂Fq

∂Wo
p

=
∑m

j=1 Mij∂
29Ni(·)

∂tl∂wo
jk

− ∂fi(tl)

∂wo
jk

,

q = l + (i − 1)n, p = j + (k − 1)N.

(28)

However, even when N ≥ n, the Jacobian matrix is expected to be
rank deficient or nearly rank deficient, since some of the rows due
to the random construction of basis functions can be nearly lin-
ear dependent.51 Thus, the solution of the corresponding system,
and depending on the size of the problem, can be solved using, for
example, truncated SVD decomposition or QR factorization with
regularization. The truncated SVD decomposition scheme leads to
the Moore–Penrose pseudoinverse (see also in Ref. 95), and the

updates dWo(ν) are given by

dWo(ν) = −(∇Wo(ν)F)†F(Wo(ν)),

(∇Wo(ν)F)† = Vε6
†
εU

T
ε ,

(29)

where 6†
ε is the inverse of the diagonal matrix with singular values

of ∇WoF above a certain threshold ε, and Uε , Vε are the matrices
with columns corresponding to left and right eigenvectors, respec-
tively. At this point in order to decrease the computational cost,
one can implement a Quasi-Newton scheme, thus using the same
pseudoinverse of the Jacobian for next iterations until convergence.

For large-scale sparse Jacobian matrices, as those arising, for
example, from discretization of PDEs, one can solve the regulariza-
tion problem using other methods such as sparse QR factorization.
Here, to account for the ill-posed Jacobian, we have used a sparse QR
factorization with regularization as implemented by SuiteSparseQR,
a multifrontal/multithreaded sparse QR factorization package.56,80

To summarize, the above scheme provides a numerical
analysis-assisted PINN in a form that approximates the integral
solution of the Picard–Lindelöf theorem based on random projec-
tions, thus providing analytically the Jacobian matrix for Newton
iterations.

III. PARSIMONIOUS CONSTRUCTION OF THE PIRPNN

A. The adaptive step-size scheme

In order to deal with the presence of stiffness and sharp changes
that resemble singularities at the time interval of interest, we propose
a adaptive step-size scheme for adjusting the interval of integration
as follows. The full time interval of integration [t0 tf] is divided into
sub-intervals, i.e., [t0 tf] = [t0 t1] ∪ [t1 t2] ∪ . . . , ∪[tk tk+1] ∪
· · · ∪ [tend−1 tf], where t1, t2, . . . , tk, . . . , tend−1 are determined in an
adaptive way. This decomposition of the interval leads to the solu-
tion of consecutive IVPs. Let us assume that the problem has been

solved up to [tk−1 tk]; hence, we have found u(k−1)
i and we are seek-

ing to advance u(k)
i in the next interval, say, [tk tk+1] with a step size

of 1tk = tk+1 − tk.
At each Newton iteration, say ν (here ν ≤ νmax = 5), we com-

pute the normalized residuals (precision to tolerance ratio) res(ν)
q for

each component Fq(W
o(ν)) of F(Wo(ν)) as1,65

res(ν)
q = Fq(W

o(ν))

AbsTol + RelTol · d9Ni

dtl

(tl, w
o(ν)
i),

(30)

where AbsTol is the absolute threshold tolerance, RelTol is the toler-
ance relative to the size of each derivative component at time tl, and
as in Eq. (25), q = l + (i − 1)n, i = 1, 2, . . . m, l = 1, 2, . . . n. Thus,
we compute the approximation error, say err(ν), as the l2-norm of the

vector of the normalized residuals res(ν) = [res(ν)
1 , res(ν)

2 , . . . , res(ν)
nm],

err(ν) =
∥

∥

∥

∥

res(ν)

∥

∥

∥

∥

l2
. (31)

Now, if at the νth iteration, for one ν ≤ νmax, err(ν) < 1, the numer-
ical solution is accepted; otherwise (if up to the last iteration
νmax, err(νmax) ≥ 1), the numerical solution is rejected.

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-6

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

In both cases, the size of the time interval is updated according
to the elementary local error control algorithm,65

1t∗k = 0.8γ · 1tk, with γ =
(

1

err

)

1

ν + 1 , (32)

where γ is the scaling factor and 0.8 is a safe/conservative factor;
1t∗k is not allowed to increase or decrease a lot, so γ is not higher
than a γmax (here set to 4) and smaller than a γmin (here set to
0.1). Thus, if the quasi-Newton scheme does not converge to the
desired tolerance within a number of iterations, say νmax, then the
step size is decreased, thus redefining a new guess t∗k+1 = tk + 1t∗k
for tk+1 and the quasi-Newton scheme is repeated in the interval
[tk t∗k+1]. Finally, we note that in the above scheme, the choice
of the first subinterval [t0 t1] was estimated using an automatic
detection code for selecting the starting step as described in Refs. 81
and 82.

B. A continuation method for Newton’s iterations

For Newton-type schemes, the speed of the convergence to the
solution depends on the choice of the initial guess, here, for the
unknown weights. Here, to facilitate the convergence of Newton’s
iterations, we address a numerical natural continuation method for
providing “good” initial guesses for the weights of the PIRPNN.

Suppose that the algorithm has already converged to the solu-
tion in the interval [tk−1 tk]; we want to provide for the next
time interval [tk tk+1], as computed from the proposed adaptation
scheme described above, a good initial guess for the weights of the
PIRPNN. We state the following proposition.

Proposition 2. Let 9(tk) ∈ R
m be the solution found with

PIRPNN at the end of the time interval [tk−1 tk]. Then, an initial
guess for the weights of the PIRPNN for the time interval [tk tk+1] is
given by

Ŵ
o = d9(tk)

dt

8T

||8||2l2
, (33)

where Ŵ
o ∈ R

m×N is the matrix with the initial guess of the output
weights of the m PIRPNNs and 8 ∈ R

N is the vector containing the
values of the random basis functions in the interval [tk tk+1].

Proof. At time tk, a first-order estimation of the solution,
9(tk+1) ∈ R

m, reads

9̂(tk+1) = 9(tk) + d9(tk)

dt
(tk+1 − tk), (34)

where
d9(tk)

dt
is known. For the next time interval [tk tk+1], the

approximation of the solution with the PIRPNNs is given by

9(tk+1) = 9(tk) + (tk+1 − tk)W
o8. (35)

By Eqs.(34) and (35), we get

Ŵ
o
8 = d9(tk)

dt
. (36)

It can be easily seen that the truncated SVD of 8 is given by

8N×1 = UN×1σ1, UN×1 = 8N×1

||8||l2
, σ1 = ||8||l2 . (37)

Thus, the pseudo-inverse of 8 is 8† = 8T

||8||2l2
. Hence, by Eq. (36),

an initial guess for the weights for the time interval [tk tk+1] is given
by

Ŵ
o = d9(tk)

dt
8† = d9(tk)

dt

8T

||8||2l2
. (38)

�

C. Estimation of the interval of the uniform
distribution based on the variance/bias trade-off
decomposition

Based on Eqs. (9) and (14), one has to choose the number
N of the basis functions, and the interval, say U = [0 αu], from
which the values of the shape parameters αi are drawn based on a
probability distribution p. The theorems of uniform convergence
(Secs. II C and II D 1) consider the problem from the function
approximation point of view. Here, we construct N random vec-
tors by parsimoniously sampling the values of the shape parameter
from an appropriately bounded uniform interval for minimizing the
two sources of error approximation, i.e., the bias and the variance in
order to get good generalization properties. In our scheme, these,
over all possible values of the shape parameter α are given by [see
Eq. (20)]

e(t) = E

N
∑

j=1

wo
j e

−αj(t−tj)
2

− In(t),

σ 2(t) = E

N
∑

j=1

wo
j e

−αj(t−tj)
2

2

− E
2

N
∑

j=1

wo
j e

−αj(t−tj)
2

 ,

(39)
where E denotes the expectation operator. In the above, overfit-
ting that is connected with a high variance occurs for large val-
ues of α and underfitting, which is connected with a high bias
(appxoximation error) occurs for small values of α.

The expected value of the kernel φ(t − tj; α) = e−a(t−tj)
2
,

t 6= tj with respect to the probability density function of the uniform
distribution of the random variable α reads

E[φ(t − tj; α)] =
αu
∫

0

fα(α)e−α(t−tj)
2
dα = 1 − e−αu(t−tj)

2

αu(t − tj)
2

. (40)

Similarly, the variance is given by

σ 2[φ(t − tj; α)] =
1
∫

e
−αu(t−tj)

2

φ2 1

αu(t − tj)
2

1

φ
dφ − E[φ]2

= 1 − e−2αu(t−tj)
2

2αu(t − tj)
2

− E[φ]2. (41)

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-7

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

At the limits of t − tj = dt = tf − t0

N
, from Eqs. (40) and (41), we get

E[φ(dt; α)] = N2

(tf − t0)
2

1 − e
−αu

(tf − t0)
2

N2

αu

,

σ 2[φ(dt; α)] = N2

(tf − t0)
2

1 − e
−2αu

(tf − t0)
2

N2

2αu

− E[φ(dt; α)]2.

(42)

The above expressions suggest that αu = N2

c2(N)

1

(tf − t0)
2
, c(N) > 0.

Indeed, our choice of such expression for αu transform (42),
taking rid of the dependence to the time-step (t − t0) analogously
to a renormalization of the input, lead to the following time-step
independent mean and variance:

E[φ(dt; α)] = c2(N)

(

1 − exp

(

− 1

c2(N)

))

,

σ 2[φ(dt; α)] = c2(N)
1 − exp

(

− 2
c2(N)

)

2
− E[φ(dt; α)]2.

(43)

This leaves us with only one parameter c = c(N) to be deter-
mined for the “optimal” estimation of the upper bound of U . Here,
the value of c(N) is found based on a reference solution, say uref

resulting from the integration of a stiff problem, whose solution
profiles contain also sharp gradients.

Thus, in order to calibrate the hyperparameters of the scheme,
once and for all, we have chosen as a reference solution the one
resulting from the van der Pol (vdP) ODEs given by

du1

dt
= u2,

du2

dt
= µ(1 − u1

2)u2 − u1, (44)

for µ = 100 and u1(0) = 2, u2(0) = 0 as initial conditions; the time
interval was set to [0 3µ], i.e., approximately three times the period
of relaxation oscillations, which for µ � 1, is T ≈ µ(3 − 2 ln 2).
The particular choice of µ = 100 results to a stiff problem, contain-
ing also very sharp gradients resembling approximately a discon-
tinuity in the solution profile within the integration interval. The
reference solution was obtained using the ode15s with absolute
and relative error tolerances set to 1 × 10−14. In order to estimate the
optimal values (c, N) (while we fixed n = 20), we computed the bias
(B)-variance(V) trade-off loss LBV function for u2 (whose amplitude
for the particular setting is about 75 times bigger than the amplitude
of u1) using 600 000 equidistant points tk in [0 3µ] and running
each PIRPNN configuration 100 times. Thus, the B-V trade-off loss
is given by

LBV = (B(9N2))
2 + V(9N2) = Eα((9N2 − uref,2)

2),

B(9N2) = Eα

(

∑

k=1

(9N2(tk, α, wo
2) − uref,2(tk))

)

,

V(9N2) = Eα

(

∑

k=1

(9N2(tk, α, wo
2) − uref,2(tk))

2

)

,

(45)

FIG. 1. Numerical solution of the van der Pol ODEs (44) with µ = 100 using
the PIRPNN in the interval [0 3µ] with respect to c and N for n = 20; RelTol
and AbsTol were set to 1 × 10−06. (a) Bias-Variance trade-off loss (45) with
respect to the reference solution as obtained with ode15s with AbsTol and
RelTol set to 1 × 10−14. (b) Computational times (s). (c) Numerical approxima-
tion accuracy (indicatively l∞ error for u2) vs execution times with the proposed
continuation method (green) and without continuation [thus initializing all weights
to zero (magenta) or randomly (blue)].

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-8

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

where expectation is estimated over the 100 runs. Based on the
above, the parsimonious selection of the values of the variables N
and c giving the best numerical accuracy and minimum computa-
tional cost are N = 20, c = 12 [see Figs. 1(a) and 1(b)]. We note that
the above parsimonious optimal values are fixed once and for all for
all benchmark problems considered here.

Finally, in order to demonstrate the efficiency of the proposed
continuation approach, in Fig. 1(c), we illustrate the l∞ numerical
approximation accuracy (indicatively for u2) with respect to the ref-
erence solution vs the required execution times with and without
(thus setting all weights to zero or randomly as initial guesses for
Newton iterations) the proposed continuation method. As shown,
the implementation of the proposed continuation scheme results in
significantly better performances.

IV. NUMERICAL IMPLEMENTATION AND RESULTS

We implemented the proposed numerical scheme in MAT-
LAB 2020b. Numerical results were obtained running on an Intel
Xeon Gold 6240R CPU @2.40GHz frequency and 35.75 MB of cache.
Each execution is a single-thread; thus, parallel encoding is not
used. The For-loop for the formation of the Jacobian matrix
∇woF was implemented via a MEX file calling a C function and the
Moore–Penrose pseudoinverse was computed with the MATLAB
built-in function pinv, with default tolerance. In all our compu-
tations, we have used a fixed number of collocation points n = 20
and a number of basis functions N = 20 with c = 12 as discussed
above. We note that a different choice of n would result in different
values of c, thus affecting step-size adaptation.

For assessing the performance of the proposed scheme, we
considered eight benchmark problems. In particular, we considered
three index-1 DAEs: the Robertson57,58 model of chemical kinetics,
a non-autonomous model of mechanics,58 and a non-autonomous
power discharge control model,58 and five stiff systems of ODEs: the
Prothero–Robinson, the van der Pol model, the Hindmarsh–Rose
neuronal model, the Belousov–Zhabotinsky chemical model,60,61 and
the Allen–Chan metastable PDE phase-field model62,63 discretized in
space with central FD. The performance of the proposed scheme
was compared against two adaptive step-size solvers of the MAT-
LAB ODE suite,4 namely, ode15s and ode23t, appropriate for
stiff ODEs and index-1 DAEs, thus using the analytical Jacobian.
Moreover, we compared the performance of the scheme with a deep
learning PINN as implemented in the DeepXDE library for scientific
machine learning and physics-informed learning40 for the solution
of the Lotka–Volterra ODEs included in the demos of the library.

In order to estimate the numerical approximation error, we
used as reference solution the one computed with ode15s set-
ting the relative and absolute tolerances to 1 × 10−14 and 1 × 10−16,
respectively. To this aim, we computed l2 and l∞ norms of approxi-
mation errors, and the mean absolute approximation error (MAE),
between the computed solutions using various schemes and the
reference solutions using grids of say M equidistant points in the
time intervals of interest. In the following, we report the afore-

mentioned error metrics, ||ε||l2 =
√

∑M
j=1 εj

2, ||ε||l∞ = maxM
j=1 |εj|,

MAE = 1
M

√

∑M
j=1 |εj|, for the component of the solution for which

the absolute error was maximum. Finally, we ran each solver for

a wide range of relative tolerances reltol, thus setting the absolute
tolerances abstol = reltol · 10−3. For each case, we ran ODE solvers
for 30 times and computed the median, maximum, and minimum
computational times. We note that a direct comparison of ode15s
and ode23t solvers and our scheme, based only on the relative and
absolute tolerances (that is fixing them and check which one results
in the best numerical approximation accuracy), cannot be done as
these tolerances/convergence errors for ode15s and ode23t are
at the level of the solution, while for our PIRPNN scheme, they are at
the level of the differential operator/first derivative.

Finally, we underline that the proposed PIRPNN scheme pro-
vides an approximate solution in the form of an analytical function
that can be evaluated explicitly at any point in the interval, while
with the odesuite solvers, for the evaluation of the solution at
any point in the interval, one needs to resort to the computationally
expensive interpolation (as implemented by the function deval83

in particular). Thus, if one needs to evaluate the solution in a dense
grid of equidistant points in order to perform tasks such as the
analysis of chaotic and quasiperiodic dynamics using, for example,
FFT, the computational cost can be considerably high. Therefore,
the comparison between solvers was made both on the grid of points
resulting from the corresponding adaptive step-size methods and on
dense grids of equidistant points.

A. Case study 1: Prothero–Robinson problem

Our first problem is the Prothero–Robinson stiff ODE bench-
mark problem3,84 given by

du

dt
= λ(u − φ(t)) + φ′(t), λ < 0. (46)

Its analytical solution is u(t) = φ(t). The problem becomes stiff for
λ � −1. For our numerical simulations, we chose φ(t) = sin(t),
u(0) = φ(0) = sin(0) = 0, and [0, 2π] as the time interval where the
solution is sought, while the parameter λ controlling the stiffness is
set equal to −1 × 105.

Note that although the analytical solution is simple and
smooth, i.e., does not exhibit any steep gradient, the problem is very
difficult to solve with a non-stiff solver (for example, using the ode45
Matlab solver employing the adaptive Dormand–Prince scheme).

Figures 2(a)–2(f) depict l2, l∞, and mean absolute (MAE)
numerical approximation accuracy with respect to the analytical
solution vs required computational times. Figures 2(a)–2(c) depict
the computational times of the corresponding adaptive step-size
solution procedure. Figures 2(d)–2(f) depict the computational
times of various solvers when the solution is sought in a grid of
10 000 equidistant points in [0 2π]. Finally, Figs. 3(a) and 3(b)
depict the l2 numerical approximation accuracy (indicatively for u2)
with respect to the reference solution vs the number of adaptive steps
[Fig. 3(a)], the number of function evaluations [Fig. 3(b)].

As it is shown, the PIRPNN outperforms ode23t in all met-
rics, while for all practical purposes, its performance is equivalent
to the ode15s with respect to computational times resulting from
the corresponding adaptive step-size solution procedure. Besides,
when the solution is sought in the dense grid of equidistant points,
the computational times resulting from the implementation of the
odesuite solvers are much larger than the ones resulting from

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-9

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 2. The Prothero–Robinson84 benchmark stiff ODE problem with λ = −1
× 105, see Eq. (46). (a)–(c) l2, l∞, and mean absolute (MAE) numerical approx-
imation errors with respect to the analytical solution u(t) = sin(t) vs execution
times (s) of various schemes using adaptation. (d)–(f) l2, l∞, and mean absolute
(MAE) numerical approximation errors with respect to the analytical solution vs
execution times (s) when the solution is sought in a grid of 10 000 equidistant
points in [0 2π] times (s).

FIG. 3. The Prothero–Robinson84 stiff ODE with λ = −1 × 105, see Eq. (46).
l2 numerical approximation error vs (a) the number of adaptive steps and (b) the
number of function evaluations.

FIG. 4. The vdP66 ODEs with µ = 100, see Eq. (44). The numerical reference
solution is obtained in the time interval [0 3µ] with ode15s with relative and
absolute tolerances set to 1 × 10−14 and 1 × 10−16, respectively. (a) Reference
solution for u1 and (b) reference solution for u2 with a zoom close to a steep
gradient. (c)–(e) l2, l∞, and mean absolute (MAE) numerical approximation errors
(indicatively for u2) with respect to the reference solution vs execution times (s) of
the corresponding adaptive step-size solution procedure. (f)–(h) l2, l∞, and mean
absolute (MAE) numerical approximation errors (indicatively for u2) with respect
to the reference solution vs execution times (s) when the solution is sought in a
grid of 600 000 logarithmically equidistant points in [0 4 · 3µ] times (s).

the implementation of the proposed PIRPNN scheme. As it is also
shown in Fig. 3, our scheme, compared to both ode15s and
ode23t, is more efficient in terms of the number of adaptive
steps needed to compute the solution, while it needs more function
evaluations than ode15s and less than ode23t.

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-10

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 5. The vdP66ODEs withµ = 100, see Eq. (44). l2 numerical approximation
error (indicatively for u2) vs (a) the number of adaptive steps and (b) the number
of function evaluations.

B. Case study 2: The van der Pol model

Our second benchmark problem is the stiff van der Pol system
of ODEs (44) introduced in Sec. III. Figures 4(a) and 4(b) depict the
reference solution profiles for u1, u2, with µ = 100 in the time inter-
val [0 3µ] as obtained with ode15swith the relative and absolute
tolerances set to 1 × 10−14 and 1 × 10−16, respectively. The relax-
ation oscillations of the vdP model exhibit both very sharp gradients
resembling discontinuities and stiffness.66 Figures 4(c)–4(h) depict
the l2, l∞ and mean absolute (MAE) numerical approximation
accuracy (indicatively for u2) with respect to the reference solution
vs the required computational times. Figures 4(c)–4(e) depict the
computational times of the corresponding adaptive step-size solu-
tion procedure; upon convergence, the approximation errors are
computed based on a uniform grid of 600 000 points in [0 3µ].
Figures 4(f)–4(h) depict the computational times of the various
solvers when the solution is sought in a grid of 600,000 equidistant
points (such a number of points is required in order to appropri-
ately trace uniformly the solution in the interval of interest due to the
presence of very steep gradients). Finally, Figs. 5(a) and 5(b) depict
the l2 numerical approximation accuracy (indicatively for u2) with
respect to the reference solution vs the number of adaptive steps
[Fig. 5(a)], the number of function evaluations [Fig. 5(b)].

As it is shown, the PIRPNN outperforms ode23t in all met-
rics, while for all practical purposes its performance is equivalent to
the ode15s with respect to the computational times resulting from
the corresponding adaptive step-size solution procedure. Besides,
when the solution is sought in the dense grid of equidistant points,
the computational times resulting from the implementation of the
odesuite solvers are much larger than the ones resulting from
the implementation of the proposed PIRPNN scheme.

As it is shown, our scheme, compared to both ode15s and
ode23t, is more efficient in terms of the number of adaptive steps
needed to compute the solution, while it needs a comparable num-
ber of function evaluations with ode15s and significantly less than
ode23t.

C. Case study 3: The Robertson index-1 DAEs

The Robertson model describes the kinetics of an autocatalytic
reaction.57 This system of three DAEs is part of the benchmark
problems considered in Ref. 58. The set of reactions reads

A
k1−→ B, B + C

k2−→ A + C, 2B
k3−→ B + C, (47)

where A, B, and C are chemical species and k1 = 0.04, k2 = 104, and
k3 = 3 × 107 are reaction rate constants. Assuming that the total
mass of the system is conserved, we have the following system of
index-1 DAEs:

dA

dt
= −k1A + k2BC,

dB

dt
= +k1A − k2BC − k3B

2,

A + B + C = 1,

(48)

where A, B, and C denote the concentrations of [A], [B], and [C],
respectively. In our simulations, we set A(0) = 1, B(0) = 0 as ini-
tial conditions of concentrations, and we solve in the time interval
[0 4 × 106] as in Ref. 85.

Figures 6(a) and 6(b) show the solution profiles of A, B, and C
as obtained with ode15s with relative and absolute tolerances set
to 1 × 10−14 and 1 × 10−16, respectively. Figures 6(c)–6(h) depict
the l2, l∞, and mean absolute (MAE) numerical approximation
errors (indicatively for A) upon convergence of the corresponding
adaptive step-size procedure, with respect to the reference solu-
tion using 40 000 logarithmically equidistant points in the inter-
val [0 4 × 106]. Figures 6(c)–6(e) depict the computational times
of the corresponding adaptive step-size solution procedure, while
Figs. 6(f)–6(h) depict the computational times required when the
solution is sought in a grid of 40 000 logarithmically equidistant
points in the interval [0 4 · 106].

Finally, Figs. 7(a) and 7(b) depict the l2 numerical approxi-
mation accuracy (indicatively for A) with respect to the reference
solution vs the number of adaptive steps [Fig. 7(a)], the number of
function evaluations [Fig. 7(b)].

As it is shown, the proposed PIRPNN scheme outperforms
ode23t in all metrics, but compared with the ode15s, the compu-
tational times resulting from the adaptive step-size solution proce-
dure are larger. However, when the solution is sought in the denser
grid of points, the performance of the PIRPNN scheme is equivalent
to one of the ode15s solver. As it is shown, our scheme is com-
parable to ode15s and significantly more efficient than ode23t

in terms of number of adaptive steps needed to compute the solu-
tion, while it needs a bigger number of function evaluations than
ode15s and significantly less than ode23t.

D. Case study 4: Hindmarsh–Rose neuronal model

This is a system of three ODEs that study the spiking-bursting
behavior of the membrane potential of a neuron.59 The equations are
as follows:

dx

dt
= y − x3 + 3x − z + I,

dy

dt
= 1 − 5x2 − y,

dz

dt
= r[4(x + 1.6) − z],

(49)

where for r = 0.005 and I = 3.25, the behavior is chaotic. We select
as initial conditions x(0) = −1, y(0) = −3.5, and z(0) = 3.

Figures 8(a) and 8(b) illustrate the reference solution profiles
for (indicatively) x, y in the interval [0 1000] as obtained with
ode15s with both relative and absolute tolerances set to 1 × 10−14

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-11

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 6. The Robertson58 index-1 DAEs, see Eq. (48). The reference solution is
obtained in the time interval [0 4 · 106] with ode15s with relative and absolute
tolerances set to 1 × 10−14 and 1 × 10−16, respectively. (a) and (b) Reference
solution profiles (indicatively for A, B). (c)–(e) l2, l∞ and mean absolute (MAE)
numerical approximation errors (indicatively for A) with respect to the reference
solution vs execution times (s) of the corresponding adaptive step-size solution
procedure. (f)–(h) l2, l∞, and mean absolute (MAE) numerical approximation
errors (indicatively for A) with respect to the reference solution vs execution times
(s) when the solution is sought in a grid of 40 000 logarithmically equidistant points
in [0 4 × 106].

and 1 × 10−16, respectively. Figures 8(c)–8(h) depict the l2, l∞, and
mean absolute (MAE) errors (indicatively for y) upon convergence
of the corresponding adaptive step-size procedure with respect to
the reference solution using 40, 000 equidistant grid points in the
interval [0 1000]. Figures 8(c)–8(e) depict the computational times

FIG. 7. The Robertson58 DAEs, see Eq. (48). l2 numerical approximation error
(indicatively for A) vs (a) the number of adaptive steps and (b) the number of
function evaluations.

of the adaptive step-size solution procedure, while Figs. 8(f)–8(h)
depict the computational times required when the solution is sought
in the dense grid of points.

Finally, Figs. 9(a) and 9(b) depict the l2 numerical approxi-
mation accuracy (indicatively for y) with respect to the reference
solution vs the number of adaptive steps [Fig. 9(a)], the number of
function evaluations [Fig. 9(b)].

As it is shown, the proposed PIRPNN outperforms the
ode23t solver in all metrics, while for all practical purposes, its
performance is comparable to one of the ode15s solver. When
the solution is sought in the mesh of 40,000 equidistant points, the
PIRPNN scheme also outperforms ode15s.

To this end, we note that the solution of the particular DAEs’
problem exhibits both stiffness and steep gradients as the vdP model
where the PIRPNN outperforms both ode15s and ode23t. As it
is also shown, our scheme, compared to bothode15s andode23t,
is more efficient in terms of number of adaptive steps needed to
compute the solution, while it needs more function evaluations than
ode15s and significantly less than ode23t.

E. Case study 5: A mechanics non autonomous
index-1 DAEs model

This is a non-autonomous system of five index-1 DAEs and it is
part of the benchmark problems presented in Ref. 58. It describes the
motion of a bead on a rotating needle subject to the gravity, friction,
and centrifugal forces. The equations of motion are as follows:

du1

dt
= u2,

du2

dt
= −10u2 + sin(t + pi/4)u5,

du3

dt
= u4,

du4

dt
= −10u4 − cos(t + pi/4)u5 + 1,

0 = gpp + 20gp + 100g,

(50)

where g = cos(t + pi/4)u3 − sin(t + pi/4)u1, gp = cos(t + pi/4)
(u4 − u1) + sin(t + pi/4)(−u − 2 − u3), and gpp = cos(t + pi/4)

(
du4
dt

− du1
dt

− u2 − u3 + sin(t + pi/4)(− du2
dt

− du3
dt

− u4 + u1). The
initial conditions are u1(0) = 1, u2(0) = −6, u3(0) = 1, and u4(0)
= −6 and a consistent initial condition for u5(0) = −10.606 601
717 798 20 was found with Newton–Raphson at t = 0, with a tol-
erance of 1 × 10−16.

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-12

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 8. Hindmarsh–Rose59 model with r = 0.005 and I = 3.25, see Eq. (49).
The numerical reference solution is obtained in the interval [0 1000] with
ode15s with relative and absolute tolerances set to 1 × 10−14 and 1 × 10−16,
respectively. (a)–(b) Reference profiles for (indicatively) x, y. (c)–(e) l2, l∞, and
mean absolute (MAE) numerical approximation errors (indicatively for y) with
respect to the reference solution vs execution times (s) of the corresponding
adaptive step-size solution procedure. (f)–(h) l2, l∞, and mean absolute (MAE)
numerical approximation errors (indicatively for y) with respect to the reference
solution vs execution times (s) when the solution is sought in a grid of 40 000
equidistant points.

Figures 10(a)–10(d) illustrate the reference solution profiles for
(indicatively) u1, u2, u3, and u5 in the interval [0 15] as obtained
with ode15s with both relative and absolute tolerances set to
1 × 10−14 and 1 × 10−16, respectively. Figures 10(e)–10(j) depict
the l2, l∞, and mean absolute (MAE) errors (indicatively for u5)

FIG. 9. The Hindmarsh–Rose59 model with r = 0.005 and I = 3.25, see Eq.
(49). l2 numerical approximation error (indicatively for y) vs (a) the number of
adaptive steps and (b) the number of function evaluations.

upon convergence of the corresponding adaptive step-size proce-
dure, with respect to the reference solution using 15 000 equidistant
grid points in the interval [0 15]. Figures 10(e)–10(g) depict the
computational times of the adaptive step-size solution procedure,
while Figs. 10(h)–10(j) depict the computational times required
when the solution is sought in the dense grid of points. Finally,
Figs. 11(a) and 11(b) depict the l2 numerical approximation accu-
racy (indicatively for u5) with respect to the reference solution vs
the number of adaptive steps [Fig. 11(a)], the number of function
evaluation [Fig. 11(b)].

As it is shown, the proposed PIRPNN outperforms the
ode23t solver in all metrics, while its performance is for all prac-
tical purposes equivalent to one of the ode15s solver, while when
the solution is sought in the mesh of 15 000 equidistant points, the
PIRPNN scheme also outperforms ode15s.

To this end, we note, that the solution of the particular DAEs
problem exhibits both stiffness and steep gradients as the vdP model
where the PIRPNN outperforms both ode15s and ode23t. As it
is shown, our scheme is comparable with ode15s and significantly
more efficient than ode23t in terms of number of adaptive steps
needed to compute the solution, while it needs a comparable num-
ber of function evaluations with ode15s and significantly less than
ode23t.

F. Case study 6: Power discharge control index-1
DAEs problem

This is a non-autonomous model of six index-1 DAEs, and
it is part of the benchmark problems considered in Ref. 58. The
governing equations are as follows:

du1

dt
= (u2 − u1)

20
,

du2

dt
= − (u4 − 99.1)

75
,

du3

dt
= µ − u6, 0 = 20u5 − u3,

0 = (3.35 − 0.075u6 + 0.001u2
6) − u4

u5

,

0 = u3

400

du3

dt
+ µµp

(1.2u1)
2

− du1

dt

µ2

(1.44u1)
3
,

µ = 15 + 5tanh(t − 10), µp = 5

cosh2
(t − 10)

.

(51)

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-13

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 10. The mechanics problem of non-autonomous index-1 DAEs,58 see
Eq. (50) . The numerical reference solution is obtained in the interval [0 15] with
ode15s with relative and absolute tolerances set to 1 × 10−14 and 1 × 10−16,
respectively. (a)–(d) Reference profiles for u1, u2, u4, and u5. (e)–(g) l

2, l∞, and
mean absolute (MAE) numerical approximation errors (indicatively for u5) with
respect to the reference solution vs execution times (s) of the corresponding
adaptive step-size solution procedure. (h)–(j) l2, l∞, and mean absolute (MAE)
numerical approximation errors (indicatively for u5) with respect to the reference
solution vs execution times (s) when the solution is sought in a grid of 15 000
equidistant points.

FIG. 11. The mechanics problem of non-autonomous index-1 DAEs,58 see
Eq. (50). l2 numerical approximation error (indicatively for u5) vs (a) the number
of adaptive steps and (b) the number of function evaluations.

The initial conditions are u1(0) = u2(0) = 0.25, u3(0) = 734, and
consistent initial conditions (u4(0) = 99.089 994 920 02,
u5(0) = 36.7 and u6(0) = 10.000 002 516 71) were found with New-
ton–Raphson with a tolerance of 1 × 10−16.

Figures 12(a)–12(d) depict the reference solution profiles for
u1, u2, u3, and u4 as obtained with ode15s with both relative and
absolute tolerances set to 1 × 10−14 and 1 × 10−16, respectively. Sim-
ilarly, to the Robertson model, the solution profiles do not exhibit
very steep gradients. Figures 12(e)–12(j) depict the l2, l∞, and mean
absolute (MAE) approximation errors (indicatively for u3) upon
convergence of the corresponding adaptive step-size procedure,
with respect to the reference solution on the basis of 40, 000 equidis-
tant points in the interval [0 40]. Figures 12(e)–12(g) depict the
computational times of the corresponding adaptive step-size pro-
cedure, while Figs. 12(h)–12(j) depict the required computational
times when the solution is sought in a grid of 40 000 equidistant
points.

Furthermore, Figs. 13(a) and 13(b) depict the l2 numerical
approximation accuracy (indicatively for u3) with respect to the ref-
erence solution vs the number of adaptive steps [Fig. 13(a)] and the
number of function evaluations [Fig. 13(b)].

As it is shown, the proposed PIRPNN scheme outperforms the
ode23t solver in all metrics for higher numerical approximation
accuracy, while the best performance with respect to the corre-
sponding adaptive step-size procedure is the one obtained with the
ode15s solver. However, when the solution is sought in the grid
of 40 000 equidistant points, the PIRPNN outperforms ode15s.
Finally, our scheme is comparable to ode15s and significantly
more efficient than ode23t in terms of the number of adaptive
steps needed to compute the solution and is comparable to ode15s
and significantly more efficient than ode23t regarding the number
of function evaluations.

G. Case study 7: The Belousov–Zhabotinsky stiff ODEs

The Belousov–Zhabotinsky chemical reactions model is given
by the following system of seven ODEs:61,86

dA

dt
= −k1AY,

dY

dt
= −k1AY − k2XY + k5Z,

dX

dt
= k1AY − k2XY + k3BX − 2k4X

2,
dP

dt
= k2XY,

dB

dt
= −k3BX,

dZ

dt
= k3BX − k5Z,

dQ

dt
= k4X

2.

(52)

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-14

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 12. Power discharge control non-autonomous index-1 DAEs problem,58 see
Eq. (51). The reference solution is obtained in the interval [0 40] with ode15s
with relative and absolute tolerances set to 1 × 10−14 and 1 × 10−16, respec-
tively. (a)–(d) Reference profiles for u1, u2, u3, andu4. (e)–(g) l

2, l∞, and mean
absolute (MAE) numerical approximation errors (indicatively for u3) with respect
to the reference solution vs execution times (s) of the corresponding adaptive
step-size solution procedure. (h)–(j) l2, l∞, and mean absolute (MAE) numerical
approximation errors (indicatively for u3) with respect to the reference solution vs
execution times (s) when the solution is sought in a grid of 40 000 equidistant
points.

FIG. 13. Power discharge control non-autonomous index-1 DAEs problem,58 see
Eq. (51). l2 numerical approximation error (indicatively for u3) vs (a) the number
of adaptive steps and (b) the number of function evaluations.

A, B, P, Q, X, Y, Z are the concentrations of chemical species and
k1 = 4.72, k2 = 3 × 109, k3 = 1.5 × 104, k4 = 4 × 107, and k5 = 1
are the reaction coefficients. The initial conditions are set as A(0)
= B(0) = 0.066, Y(0) = X(0) = P(0) = Q(0) = 0, Z(0) = 0.002.

Figures 14(a)–14(d) depict the solution profiles of A, Y, X, and
B as obtained with ode15s with both relative and absolute toler-
ances set to 1 × 10−14 and 1 × 10−16, respectively. As reported in
Ref. 87 for an acceptable solution, one needs to set relative and
absolute tolerances at least of 1 × 10−07.

Figures 14(e)–14(j) depict the l2, l∞, and mean absolute (MAE)
approximation errors (indicatively for B) upon convergence of the
corresponding adaptive step-size procedure with respect to the ref-
erence solution in 80 000 equidistant points in the interval [0 40].
Figures 14(e)–14(g) depict the computational times of the cor-
responding adaptive step-size procedure, while Figs. 14(h)–14(j)
depict the computational times required when the solution is sought
in the uniform grid of 80 000 points in [0 40].

Furthermore, Figs. 15(a) and 15(b) depict the l2 numerical
approximation accuracy (indicatively for B) with respect to the ref-
erence solution vs the number of adaptive steps [Fig. 15(a)] and the
number of function evaluations [Fig. 15(b)].

As shown, the proposed PIRPNN is less efficient than both
ode23t and ode15s, when comparing the computational times
based on the corresponding adaptive step-size procedure. Here, the
relatively higher computational cost is due to the considerably bigger
size of the Jacobian (here of size 140 × 140) formed by the proposed
PIRPNN scheme at each Newton iteration, compared to the ones
that ode15s/ode23t solvers process (here of size 7×7). Also, the
component X of the solution has a very small amplitude (its maxi-
mum amplitude is less than 1 × 10−05) while exhibits a very sharp
gradient in its solution profile. Therefore, this may need a partic-
ular treatment/weighting of the corresponding residuals. However,
considering also the computational times required when the solu-
tion is sought in a mesh of 80 000 equidistant points, the PIRPNN
outperforms the ode23t solver, and it is for any practical purposes
comparable to the ode15s. Finally, our scheme, compared to both
ode15s and ode23t, is much more efficient in terms of the num-
ber of adaptive steps needed to compute the solution, while it needs
more number of function evaluations than ode15s and less than
ode23t.

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-15

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 14. The Belousov–Zhabotinsky60,61 model, see Eq. (52). The numerical ref-
erence solution is obtained in the time interval [0 40] using the ode15s solver
with relative and absolute tolerances set to 1 × 10−14 and 1 × 10−16, respec-
tively. (a)–(d) Reference solution profiles for (indicatively) A, Y , X , B. (e)–(g) l2,
l∞, and mean absolute (MAE) numerical approximation errors (indicatively for B)
with respect to the reference solution vs execution times (s) of the corresponding
adaptive step-size solution procedure. (h)–(j) l2, l∞, and mean absolute (MAE)
numerical approximation errors (indicatively for B) with respect to the reference
solution vs execution times (s) when the solution is sought in a grid of 80 000
equidistant points in [0 40].

FIG. 15. The Belousov–Zhabotinsky60,61 model, see Eq. (52). l2 numerical
approximation error (indicatively for B) vs (a) the number of adaptive steps and
(b) the number of function evaluations.

H. Case study 8: The Allen–Cahn PDE phase-field
model

The Allen–Cahn equation is a famous reaction-diffusion PDE
that was proposed in Ref. 62 as a phase-field model for describing
the dynamics of the mean curvature flow. Here, for our illustrations,
we considered a one-dimensional formulation given by63

∂u

∂t
= ν

∂2u

∂x2
+ u − u3, x ∈ [−1 1],

u(−1, t) = −1, u(1, t) = 1,

(53)

with initial condition u(x, 0) = 0.53 x + 0.47 sin(−1.5 π x). Here,
we integrate until t = 70. For ν = 0.01, the solution is stiff,63 thus
exhibiting a metastable behavior with an initial two-hill configura-
tion that disappears close to t = 40 with a fast transition to a one-hill
stable solution, as depicted in Fig. 16(a). For our illustrations, we
used an equally spaced grid of 102 points in space and second-order-
centered finite differences. Hence, (53) becomes a system of 100
ODEs,

∂ui

∂t
= ν

(ui+1 − 2ui + ui−1)

dx2
+ ui − u3

i ,

u0 = −1, u101 = 1.

(54)

Here, for the implementation of the PIRPNN, we have used a
sparse QR decomposition as implemented in the SuiteSparseQR.56,80

Figures 16(b) depict the absolute numerical approximation error
when using the PIRPNN for relative and absolute tolerances set to
1 × 10−03 and 1 × 10−06, respectively. Figures 16(c)–16(h) depict
the l2, l∞, and mean absolute (MAE) numerical approximation
errors upon convergence of the corresponding adaptive step-size
procedure with respect to the reference solution in 70 000 × 102
equidistant points in the time [0 70] and in the space inter-
val [−1 1], respectively. Figures 16(c)–16(e) depict the compu-
tational times of the corresponding adaptive step-size procedure,
while Figs. 14(f)–14(h) depict the computational times required
when the solution is sought in the uniform spatiotemporal grid of
102 × 70 000 points.

Furthermore, Figs. 17(a) and 17(b) depict the l2 numerical
approximation accuracy with respect to the reference solution vs

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-16

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

FIG. 16. Allen–Cahn PDE63 discretized in space with central FD [see Eq. (54)].
The reference solution is obtained for ν = 0.01 in the time interval [0 70] with
the ode15s solver, with relative and absolute tolerances set to 1 × 10−14 and
1 × 10−16, respectively. (a) Contour plot of the reference solution. (b) Contour plot
of absolute approximation error computed with the PIRPNN using 1 × 10−03 for
the relative tolerance and 1 × 10−06 for the absolute tolerance. (c)–(e) l2, l∞, MAE
approximation errors with respect to the reference solution vs execution times
(s) of the corresponding adaptive step-size procedure. (f)–(h) l2, l∞, and MAE
numerical approximation errors with respect to the reference solution vs execution
times (s) when the solution is sought in the spatiotemporal grid of 102 × 70 000
equidistant points.

(a) the number of adaptive steps and (b) the number of function
evaluations.

As shown, the proposed PIRPNN scheme is less efficient than
both ode23t and ode15s when considering the computational

FIG. 17. Allen–Cahn PDE63 discretized with FD, see Eq. (54). l2 numerical
approximation error vs (a) the number of adaptive steps and (b) the number of
function evaluations (rhs of the discretized PDE).

times resulting from the corresponding adaptive step-size proce-
dure. However, when considering the computational times required
when the solution is sought in the mesh of 70 000 equidistant points
in time, the PIRPNN outperforms ode23t but still is less efficient
than ode15s. However, our proposed scheme, compared to both
ode15s and ode23t, is more efficient in terms of number of
adaptive steps needed to compute the solution, while it needs more
number of function evaluations with ode15s and significantly less
than ode23t. The relatively higher computational cost is due to
the considerable bigger size of the Jacobian required by the pro-
posed scheme at each Newton iteration (here of size 2000 × 2000)
compared to the Jacobian processed by ode15s/ode23t (here of
size 100×100). Thus, to speed up the computations in a subsequent
work, we aim in a future work at exploiting the arsenal of matrix-free
methods in the Krylov subspace88,89 such as Newton-GMRES for the
solution of such large-scale problems.

I. Comparison with the DeepXDE library: The
Lotka–Volterra ODEs

In this section, we compare the performance of the proposed
scheme with a deep learning PINN, as implemented in the DeepXDE
library.40 In particular, we consider a demo of the DeepXDE library
for the solution of the Lotka–Volterra ODEs reading,

dr

dt
= R

U
(2Ur − 0.04U2rp),

dp

dt
= R

U
(0.02U2rp − 1.06Up),

r(0) = 100

U
; p(0) = 15

U
,

(55)

where the parameters are set as U = 200, R = 20, and the solution
is sought in the time interval [0, 1]. Figure 18 shows the solution
profiles obtained with the ode15s solver with relative and absolute
tolerances set to 1 × 10−14 and 1 × 10−16, respectively.

For the considered demos, DeepXDE uses 3000 training resid-
ual points inside the domain and 3000 points for testing the ODE

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-17

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

residual, which is given by

dr

dt
− R

U
(2Ur − 0.04U2rp) = 0,

dp

dt
− R

U
(0.02U2rp − 1.06Up) = 0.

(56)

The neural network architecture employed in the DeepXDE demo is
a deep feed-forward one with six hidden layers with 64 neurons each
and hyperbolic tangent as activation function. Furthermore, in order
to enforce the prediction to be periodic and thus more accurate, in
the demo, the time input is first projected in a seven-dimensional
feature layer, which is given by

t →
[

t sin(t) sin(2t) sin(3t) sin(4t) sin(5t) sin(6t)
]

.
(57)

Finally, to hard constrain the DeepXDE to satisfy the initial con-
ditions, the 2-dim output y = (y1, y2) of the neural network is
transformed as

r̂ = 100

U
+ y1 tanh(t), p̂ = 15

U
+ y2 tanh(t). (58)

The default optimization procedure implements the Adam algorithm
with a learning rate 0.001 and 50 000 iterations, and then optimiza-
tion continues with the L-BFGS algorithm in order to achieve a
higher accuracy. Please note that the DeepXDE approach is not
adaptive and the solution is sought directly in the entire interval (i.e.,
without any step-size adaptation).

Given the above, from a computational point of view, it is
clear that it is much more efficient to proceed in an adaptive-step
employing a single-hidden layer RPNN with only 20 neurons (i.e.,
the only unknown weights are the ones that connect the hidden layer
to the output) that can be computed using a Newton-scheme with
pseudo-inverse of the Jacobian vs a DeepXDE neural network with
(7 × 64 + 642 × 5 + 64 × 2 + 64 × 6 + 2) = 21 442 unknowns (i.e.,
all the weights and biases need to be learned) that is trained by many
iterations of the Adam+L-BFGS algorithms.

In Table I, we compare the performance of the two physics-
informed machine learning schemes in terms of mean computa-
tional time in seconds and l2, l∞, and MAE for (indicatively) the
r component with respect to the reference solution computed with
ode15s setting relative and absolute tolerances to 1 × 10−14 and

FIG. 18. Lotka–Volterra40 ODEs in the interval [0, 1], see Eq. (55). (a) r(t), (b)
p(t). The numerical reference solution is obtained in the time interval [0 1] using
the ode15s solver with relative and absolute tolerances set to 1 × 10−14 and
1 × 10−16, respectively.

1 × 10−16, respectively. In particular, for the proposed scheme, we
have select a range of four relative tolerances, ranging from 1 ×
10−03 to 1 × 10−06 for the PIRPNN, and we have varied the num-
ber of hidden layer and neurons of the DeepXDE using (a) 3 × (8),
(b) 4 × 16, (c) 5 × 32, and (d) 6 × 64 as deep network architectures.
The best result, in terms of the numerical approximation accu-
racy, among the different DeepXDE architectures is taken with the
6 × 64 structure. This corresponds to a comparable accuracy result-
ing from the proposed PIRPNN when relatively large tolerances
(reltol = 1 × 10−03 or 1 × 10−04). But in terms of computational
times, the propoed PIRPNN can obtain this approximation in just
7.93 × 10−02 (s) vs the 1.73 × 103 (s) times needed by the Deep-
XDE, that is, our scheme is around 20 000 times faster for getting
a comparable numerical accuracy.

V. DISCUSSION

We presented a physics-informed random projection neural
network approach for the numerical solution of stiff ODEs and
index-1 DAEs. The proposed scheme is a ”numerical analysis-
assisted” one, in the sense that we have incorporated an adaptive
step-size as in the traditional stiff solvers and a continuation method
(a concept borrowed from the numerical bifurcation analysis the-
ory) for providing good initial guesses to facilitate the convergence

TABLE I. Lotka–Volterra40ODEs in the interval [0, 1], see Eq. (55). Mean computational time in seconds (s) and approximation errors (l2-norm, l∞-norm andMAE) for (indicatively)

the r component w.r.t. the reference solution computed with ode15s with relative and absolute tolerances set to 1× 10−14 and 1× 10−16, respectively. The PIRPNN solutions

are computed with relative tolerances ranging from 1× 10−03 to 1× 10−06, and the DeepXDE PINN solutions with 3, 4, 5, 6 hidden layers with 8, 16, 32, 64 neurons, respectively.

TIME (s) l2-error l∞-error MAE

tol = 1 × 10−03 6.75 × 10−02 2.11 × 10−02 8.72 × 10−04 1.22 × 10−04

RPNN tol = 1 × 10−04 7.93 × 10−02 2.33 × 10−03 9.75 × 10−05 1.38 × 10−05

tol = 1 × 10−05 1.19 × 10−01 1.50 × 10−04 6.27 × 10−06 8.92 × 10−07

tol = 1 × 10−06 1.24 × 10−01 1.00 × 10−05 4.14 × 10−07 6.29 × 10−08

3 × 8 6.39 × 10 2 2.31 × 101 6.50 × 10−01 1.71 × 10−01

DeepXDE 4 × 16 4.04 × 102 2.97 × 10 00 1.24 × 10−01 1.70 × 10−02

5 × 32 1.20 × 103 3.95 × 10−01 1.63 × 10−02 2.32 × 10−03

6 × 64 1.73 × 10 3 8.03 × 10−03 2.99 × 10−04 5.04 × 10−05

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-18

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha

Chaos ARTICLE scitation.org/journal/cha

of Newton iterations. Furthermore, in the case of sparse systems, we
exploit state-of-the-art numerical analysis methods such as sparse
QR decomposition with regularization. The numerical results on
eight benchmark problems show that the scheme arises as a promis-
ing alternative to well-established ODE solvers for stiff problems and
appears to be much more efficient in terms of the computational
cost than deep-learning machine learning schemes for the solution
of ODEs. Future work will be focused on the further development
and application of the scheme for solving large-scale systems of
stiff ODEs, DAEs, as well as PDEs. For this task, we aim at inte-
grating ideas from other methods such as DASSL,90 CSP,91 and
matrix-free methods in the Krylov-subspace88,89 in order to speed
up computations or even recursively recurrent neural networks that
yield iterations similar to Newton–Krylov solvers.92 We also intend
to compare its performance on more benchmark ODEs and DAEs
against other machine-learning based schemes, including (except
from other physics-informed schemes), for example, the recently
proposed Runge–Kutta Neural Network integrator for the solution
of ODEs.93

ACKNOWLEDGMENTS

This work was supported by the Italian program “Fondo Inte-
grativo Speciale per la Ricerca (FISR)”—No. FISR2020IP 02893/
B55F20002320001.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Gianluca Fabiani: Data curation (lead); Formal analysis (equal);
Investigation (lead); Methodology (supporting); Software (lead);
Validation (lead); Writing – original draft (supporting); Writ-
ing – review & editing (equal). Evangelos Galaris: Data curation
(equal); Formal analysis (supporting); Investigation (supporting);
Software (supporting); Validation (supporting). Lucia Russo: Con-
ceptualization (equal); Formal analysis (equal); Methodology (sup-
porting); Supervision (equal); Validation (supporting); Writing –
original draft (supporting); Writing – review & editing (equal). Con-
stantinos Siettos: Conceptualization (lead); Formal analysis (lead);
Methodology (lead); Supervision (lead); Writing – original draft
(lead); Writing – review & editing (equal).

DATA AVAILABILITY

Data sharing is not applicable to this article as no new
data were created or analyzed in this study. Our Matlab
software/toolbox for the solution of stiff ODEs and index-
1 DAEs, that we call RanDiffNET, is publicly available at
https://github.com/GianlucaFabiani/RPNN_for_Stiff_ODEs. Please
cite this paper, when you use or modify it for research purposes.

REFERENCES
1C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations
(Prentice-Hall, Englewood Cliffs, NJ, 1971), pp. 1–253.
2K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations (SIAM, 1995).
3C. Gear, “An introduction to numerical methods for odes and daes,” in Real-
Time Integration Methods for Mechanical System Simulation (Springer, 1990), pp.
115–126.
4L. F. Shampine and M. W. Reichelt, “The MATLAB ODE suite,” SIAM J.
Scientific Comput. 18, 1–22 (1997).
5K. Krischer, R. Rico-Martinez, I. G. Kevrekidis, H. Rotermund, G. Ertl, and
J. Hudson, “Model identification of a spatiotemporally varying catalytic reaction,”
Aiche J. 39, 89–98 (1993).
6S. F. Masri, A. G. Chassiakos, and T. K. Caughey, “Identification of nonlinear
dynamic systems using neural networks,” J. Appl. Mech. 60, 123–133 (1993).
7T. Chen and H. Chen, “Universal approximation to nonlinear operators by neu-
ral networks with arbitrary activation functions and its application to dynamical
systems,” IEEE Trans. Neural Netw. 6, 911–917 (1995).
8A. Taprantzis, C. Siettos, and G. Bafas, “Fuzzy control of a fluidized bed dryer,”
Drying Technol. 15, 511–537 (1997).
9R. González-García, R. Rico-Martìnez, and I. G. Kevrekidis, “Identification of
distributed parameter systems: A neural net based approach,” Comput. Chem.
Eng. 22, S965–S968 (1998).
10C. Siettos, C. Kiranoudis, and G. Bafas, “Advanced control strategies for
fluidized bed dryers,” Drying Technol. 17, 2271–2291 (1999).
11D. Sagias, E. Sarafis, C. I. Siettos, and G. V. Bafas, “Design of a model identifica-
tion fuzzy adaptive controller and stability analysis of nonlinear processes,” Fuzzy
Sets Syst. 121, 169–179 (2001).
12C. I. Siettos, G. V. Bafas, and A. G. Boudouvis, “Truncated chebyshev series
approximation of fuzzy systems for control and nonlinear system identification,”
Fuzzy Sets Syst. 126, 89–104 (2002).
13C. I. Siettos and G. V. Bafas, “Semiglobal stabilization of nonlinear systems
using fuzzy control and singular perturbation methods,” Fuzzy Sets and Systems
129, 275–294 (2002).
14A. Alexandridis, C. Siettos, H. Sarimveis, A. Boudouvis, and G. Bafas, “Mod-
elling of nonlinear process dynamics using Kohonen’s neural networks, fuzzy
systems and chebyshev series,” Comput. Chem. Eng. 26, 479–486 (2002).
15H. Lee and I. S. Kang, “Neural algorithm for solving differential equations,”
J. Comput. Phys. 91, 110–131 (1990).
16M. Dissanayake and N. Phan-Thien, “Neural-network-based approximations
for solving partial differential equations,” Commun. Numer. Meth. Eng. 10,
195–201 (1994).
17A. J. Meade, Jr., and A. A. Fernandez, “The numerical solution of linear ordinary
differential equations by feedforward neural networks,” Math. Computer Modell.
19, 1–25 (1994).
18R. Gerstberger and P. Rentrop, “Feedforward neural nets as discretiza-
tion schemes for ODEs and DAEs,” J. Computat. Appl. Math. 82, 117–128
(1997).
19I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solv-
ing ordinary and partial differential equations,” IEEE Trans. Neural Netw. 9,
987–1000 (1998).
20G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-informed machine learning,” Nat. Rev. Phys. 3, 422–440 (2021).
21J. Bongard and H. Lipson, “Automated reverse engineering of nonlinear
dynamical systems,” Proc. Natl. Acad. Sci. U.S.A. 104, 9943–9948 (2007).
22M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Machine learning of linear
differential equations using gaussian processes,” J. Comput. Phys. 348, 683–693
(2017).
23M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Numerical Gaussian pro-
cesses for time-dependent and nonlinear partial differential equations,” SIAM J.
Scientific Comput. 40, A172–A198 (2018).
24M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707
(2019).

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-19

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1002/aic.690390110
https://doi.org/10.1115/1.2900734
https://doi.org/10.1109/72.392253
https://doi.org/10.1080/07373939708917244
https://doi.org/10.1016/S0098-1354(98)00191-4
https://doi.org/10.1080/07373939908917683
https://doi.org/10.1016/S0165-0114(99)00153-0
https://doi.org/10.1016/S0165-0114(01)00124-5
https://doi.org/10.1016/S0165-0114(01)00136-1
https://doi.org/10.1016/S0098-1354(01)00785-2
https://doi.org/10.1016/0021-9991(90)90007-N
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1016/0895-7177(94)90095-7
https://doi.org/10.1016/S0377-0427(97)00085-X
https://doi.org/10.1109/72.712178
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1137/17M1120762
https://doi.org/10.1016/j.jcp.2018.10.045

Chaos ARTICLE scitation.org/journal/cha

25S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz, “Data-driven identification of
parametric partial differential equations,” SIAM J. Appl. Dynam. Syst. 18, 643–660
(2019).
26T. Bertalan, F. Dietrich, I. Mezić, and I. G. Kevrekidis, “On learning hamiltonian
systems from data,” Chaos 29, 121107 (2019).
27H. Arbabi, J. E. Bunder, G. Samaey, A. J. Roberts, and I. G. Kevrekidis,
“Linking machine learning with multiscale numerics: Data-driven discovery of
homogenized equations,” JOM 72, 4444–4457 (2020).
28S. Lee, M. Kooshkbaghi, K. Spiliotis, C. I. Siettos, and I. G. Kevrekidis, “Coarse-
scale pdes from fine-scale observations via machine learning,” Chaos 30, 013141
(2020).
29P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott, and
P. Koumoutsakos, “Backpropagation algorithms and reservoir computing in
recurrent neural networks for the forecasting of complex spatiotemporal dynam-
ics,” Neural Netw. 126, 191–217 (2000).
30W. Chen, Q. Wang, J. S. Hesthaven, and C. Zhang, “Physics-informed machine
learning for reduced-order modeling of nonlinear problems,” J. Comput. Phys.
446, 110666 (2021).
31Y. Chen, B. Hosseini, H. Owhadi, and A. M. Stuart, “Solving and learning
nonlinear pdes with gaussian processes,” J. Comput. Phys. 447, 110668 (2021).
32L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning nonlin-
ear operators via deeponet based on the universal approximation theorem of
operators,” Nat. Machine Intelligence 3, 218–229 (2021).
33S. Kim, W. Ji, S. Deng, Y. Ma, and C. Rackauckas, “Stiff neural ordinary
differential equations,” Chaos 31, 093122 (2021).
34J. Han, A. Jentzen, and E. Weinan, “Solving high-dimensional partial differen-
tial equations using deep learning,” Proc. Natl. Acad. Sci. U.S.A. 115, 8505–8510
(2018).
35G. Fabiani, F. Calabrò, L. Russo, and C. Siettos, “Numerical solution and bifur-
cation analysis of nonlinear partial differential equations with extreme learning
machines,” J. Scientific Comput. 89, 44 (2021).
36F. Calabrò, G. Fabiani, and C. Siettos, “Extreme learning machine collocation
for the numerical solution of elliptic PDEs with sharp gradients,” Computer Meth.
Appl. Mech. Eng. 387, 114188 (2021).
37S. Dong and Z. Li, “Local extreme learning machines and domain decompo-
sition for solving linear and nonlinear partial differential equations,” Computer
Meth. Appl. Mech. Eng. 387, 114129 (2021).
38S. Dong and Z. Li, “A modified batch intrinsic plasticity method for pre-training
the random coefficients of extreme learning machines,” J. Comput. Phys. 445,
110585 (2021).
39W. Ji, W. Qiu, Z. Shi, S. Pan, and S. Deng, “Stiff-pinn: Physics-informed
neural network for stiff chemical kinetics,” J. Phys. Chem. A 125, 8098–8106
(2021).
40L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “DeepXDE: A deep learning
library for solving differential equations,” SIAM Rev. 63, 208–228 (2021).
41E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnston, and D. Mor-
tari, “Extreme theory of functional connections: A fast physics-informed neu-
ral network method for solving ordinary and partial differential equations,”
Neurocomputing 457, 334–356 (2021).
42M. De Florio, E. Schiassi, and R. Furfaro, “Physics-informed neural networks
and functional interpolation for stiff chemical kinetics,” Chaos 32, 063107 (2022).
43Y. Lu, R. Maulik, T. Gao, F. Dietrich, I. G. Kevrekidis, and J. Duan, “Learning
the temporal evolution of multivariate densities via normalizing flows,” Chaos 32,
033121 (2022).
44S. Dong and J. Yang, “On computing the hyperparameter of extreme learn-
ing machines: Algorithm and application to computational pdes, and comparison
with classical and high-order finite elements,” J. Comput. Phys. 463, 111290
(2022).
45X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, “PPINN: Parareal physics-
informed neural network for time-dependent PDEs,” Computer Meth. Appl.
Mech. Eng. 370, 113250 (2020).
46H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring strategies
for training deep neural networks,” J. Machine Learning Res. 10, 1–40 (2009).
47S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradi-
ent flow pathologies in physics-informed neural networks,” SIAM J. Scientific
Comput. 43, A3055–A3081 (2021).

48S. Wang, X. Yu, and P. Perdikaris, “When and why pinns fail to train: A neural
tangent kernel perspective,” J. Comput. Phys. 449, 110768 (2022).
49W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings into a
Hilbert space,” Contemp. Math. 26, 189–206 (1984).
50A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning,” in Advances in Neural Information
Processing Systems 21 (NIPS 2008) (Citeseer, 2008), pp. 1313–1320.
51A. N. Gorban, I. Y. Tyukin, D. V. Prokhorov, and K. I. Sofeikov, “Approxima-
tion with random bases: Pro et Contra,” Inf. Sci. 364, 129–145 (2016).
52Y.-H. Pao and Y. Takefuji, “Functional-link net computing: Theory, system
architecture, and functionalities,” Computer 25, 76–79 (1992).
53H. Jaeger, “Adaptive nonlinear system identification with echo state networks,”
Adv. Neural Inform. Process. Syst. 15, 609–616 (2002).
54G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory
and applications,” Neurocomputing 70, 489–501 (2006).
55M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-
learning practice and the classical bias–variance trade-off,” Proc. Natl. Acad. Sci.
U.S.A. 116, 15849–15854 (2019).
56T. A. Davis, Direct Methods for Sparse Linear Systems (SIAM, 2006).
57H. Robertson, “The solution of a set of reaction rate equations,” in Numerical
Analysis: An Introduction (Academic Press, London, 1966), pp. 178–182.
58L. F. Shampine, M. W. Reichelt, and J. A. Kierzenka, “Solving index-1 daes in
matlab and simulink,” SIAM Rev. 41, 538–552 (1999).
59J. L. Hindmarsh and R. Rose, “A model of neuronal bursting using three coupled
first order differential equations,” Proc. R. Soc. London Ser. B 221, 87–102 (1984).
60B. P. Belousov, “A periodic reaction and its mechanism,” in Oscillations and
Traveling Waves in Chemical Systems, edited by R. J. Field and M. Burger (Wiley,
New York, 1985).
61A. M. Zhabotinsky, “Periodic course of the oxidation of malonic acid in a
solution (Studies on the kinetics of Beolusov’s reaction),” Biofizika 9, 306–311
(1964).
62S. M. Allen and J. W. Cahn, “A microscopic theory for antiphase boundary
motion and its application to antiphase domain coarsening,” Acta Metall. 27,
1085–1095 (1979).
63L. N. Trefethen, Spectral Methods in MATLAB (SIAM, 2000).
64G.-B. Huang, L. Chen, and C. K. Siew, “Universal approximation using incre-
mental constructive feedforward networks with random hidden nodes,” IEEE
Trans. Neural Netw. 17, 879–892 (2006).
65G. Söderlind, “Automatic control and adaptive time-stepping,” Numer. Algo-
rithms 31, 281–310 (2002).
66L. F. Shampine and C. W. Gear, “A user’s view of solving stiff ordinary
differential equations,” SIAM Rev. 21, 1–17 (1979).
67A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic
differentiation in machine learning: A survey,” J. Machine Learn. Res. 18, 1–43
(2018).
68B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in adaptive func-
tion approximation and the functional-link net,” IEEE Trans. Neural Netw. 6,
1320–1329 (1995).
69D. Husmeier, “Random vector functional link (RVFL) networks,” in Neural
Networks for Conditional Probability Estimation (Springer, 1999), pp. 87–97.
70D. J. Gauthier, E. Bollt, A. Griffith, and W. A. Barbosa, “Next generation
reservoir computing,” Nat. Commun. 12, 1–8 (2021).
71L. A. Thiede and U. Parlitz, “Gradient based hyperparameter optimization in
echo state networks,” Neural Netw. 115, 23–29 (2019).
72G.-B. Huang, “An insight into extreme learning machines: Random neurons,
random features and kernels,” Cognit. Computat. 6, 376–390 (2014).
73B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Johnson-lindenstrauss
lemma, linear and nonlinear random projections, random fourier features, and
random kitchen sinks: Tutorial and survey,” arXiv:2108.04172 (2021).
74R. Giryes, G. Sapiro, and A. M. Bronstein, “Deep neural networks with random
Gaussian weights: A universal classification strategy?,” IEEE Trans. Signal Process.
64, 3444–3457 (2016).
75F. Rosenblatt, Perceptions and the Theory of Brain Mechanisms (Spartan Books,
1962).
76A. R. Barron, “Universal approximation bounds for superpositions of a sig-
moidal function,” IEEE Trans. Inf. Theory 39, 930–945 (1993).

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-20

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1137/18M1191944
https://doi.org/10.1063/1.5128231
https://doi.org/10.1007/s11837-020-04399-8
https://doi.org/10.1063/1.5126869
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1016/j.jcp.2021.110666
https://doi.org/10.1016/j.jcp.2021.110668
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1063/5.0060697
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1007/s10915-021-01650-5
https://doi.org/10.1016/j.cma.2021.114188
https://doi.org/10.1016/j.cma.2021.114129
https://doi.org/10.1016/j.jcp.2021.110585
https://doi.org/10.1021/acs.jpca.1c05102
https://doi.org/10.1137/19M1274067
https://doi.org/10.1016/j.neucom.2021.06.015
https://doi.org/10.1063/5.0086649
https://doi.org/10.1063/5.0065093
https://doi.org/10.1016/j.jcp.2022.111290
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.1137/20M1318043
https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1016/j.ins.2015.09.021
https://doi.org/10.1109/2.144401
https://doi.org/10.5555/2968618.2968694
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1137/1.9780898718881
https://doi.org/10.1137/S003614459933425X
https://doi.org/10.1098/rspb.1984.0024
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1109/TNN.2006.875977
https://doi.org/10.1023/A:1021160023092
https://doi.org/10.1137/1021001
https://doi.org/10.1109/72.471375
https://doi.org/10.1038/s41467-021-25801-2
https://doi.org/10.1016/j.neunet.2019.02.001
https://doi.org/10.1007/s12559-014-9255-2
http://arxiv.org/abs/arXiv:2108.04172
https://doi.org/10.1109/TSP.2016.2546221
https://doi.org/10.1109/18.256500

Chaos ARTICLE scitation.org/journal/cha

77A. Rahimi and B. Recht, “Uniform approximation of functions with random
bases,” in 2008 46th Annual Allerton Conference on Communication, Control, and
Computing (IEEE, 2008), pp. 555–561.
78P. Collins, and O. U. K. M. Inst., Differential and Integral Equations: Part II
(University of Oxford Mathematical Institute, 1988).
79N. De Villiers and D. Glasser, “A continuation method for nonlinear regres-
sion,” SIAM J. Numer. Anal. 18, 1139–1154 (1981).
80T. A. Davis, “Algorithm 915, suitesparseqr: Multifrontal multithreaded rank-
revealing sparse QR factorization,” ACM Trans. Math. Software (TOMS) 38, 1–22
(2011).
81I. Gladwell, L. Shampine, and R. Brankin, “Automatic selection of the initial step
size for an ode solver,” J. Computat. Appl. Math. 18, 175–192 (1987).
82E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary, Differential Equations
I, Nonstiff Problems, with 135 Figures, 2nd ed. (Springer-Verlag, 2000), Vol. 1.
83W. H. Enright, K. R. Jackson, S. P. Nørsett, and P. G. Thomsen, “Interpolants
for Runge-Kutta formulas,” ACM Trans. Math. Software (TOMS) 12, 193–218
(1986).
84A. Prothero and A. Robinson, “On the stability and accuracy of one-step meth-
ods for solving stiff systems of ordinary differential equations,” Math. Comput.
28, 145–162 (1974).
85L. Métivier and P. Montarnal, “Strategies for solving index one dae with non-
negative constraints: Application to liquid–liquid extraction,” J. Comput. Phys.
231, 2945–2962 (2012).
86R. Belusov, “Periodicheski deistvuyushchaya reaktsia i ee mekhanism {Period-
ically acting reaction and its mechanism},” in Sbornik referatov po radiotsionnoi

meditsine (Collection of Abstracts on Radiation Medicine) (Medgiz, Moscow,
1958), pp. 145–147.
87V. Shulyk, O. Klymenko, and I. Svir, “Numerical solution of stiff odes describing
complex homogeneous chemical processes,” J. Math. Chem. 43, 252–264 (2008).
88P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, “Using Krylov methods in the
solution of large-scale differential-algebraic systems,” SIAM J. Scientific Comput.
15, 1467–1488 (1994).
89C. T. Kelley, Iterative Methods for Optimization (SIAM, 1999).
90L. R. Petzold, “Description of dassl: A differential/algebraic system solver,”
Tech. Rep. (Sandia National Labs., Livermore, CA (USA), 1982).
91M. Hadjinicolaou and D. A. Goussis, “Asymptotic solution of stiff pdes with the
CSP method: The reaction diffusion equation,” SIAM J. Scientific Comput. 20,
781–810 (1998).
92D. T. Doncevic, A. Mitsos, Y. Guo, Q. Li, F. Dietrich, M. Dahmen, and I.
G. Kevrekidis, “A recursively recurrent neural network (R2N2) architecture for
learning iterative algorithms,” arXiv:2211.12386 (2022).
93Y. Guo, F. Dietrich, T. Bertalan, D. T. Doncevic, M. Dahmen, I. G. Kevrekidis,
and Q. Li, “Personalized algorithm generation: A case study in learning ode
integrators,” SIAM J. Scientific Comput. 44, A1911–A1933 (2022).
94W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin, “Feedforward neural net-
works with random weights,” Proceedings, 11th IAPR International Conference on
Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and
Systems, The Hague, Netherlands, 30 Aug.–3 Sep. 1992 (IEEE, 1992).
95D. S. Broomhead and D. Lowe “Multivariable functional interpolation and
adaptive networks,” Complex Systems 2, 321–355 (1988).

Chaos 33, 043128 (2023); doi: 10.1063/5.0135903 33, 043128-21

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://doi.org/10.1137/0718079
https://doi.org/10.1145/2049662.2049670
https://doi.org/10.1016/0377-0427(87)90015-X
https://doi.org/10.1145/7921.7923
https://doi.org/10.1090/S0025-5718-1974-0331793-2
https://doi.org/10.1016/j.jcp.2011.12.039
https://doi.org/10.1007/s10910-006-9193-7
https://doi.org/10.1137/0915088
https://doi.org/10.1137/S1064827596303995
http://arxiv.org/abs/arXiv:2211.12386
https://doi.org/10.1137/21M1418629
https://doi.org/10.1109/ICPR.1992.201708

	I. INTRODUCTION
	II. METHODS
	A. Description of the problem
	B. Physics-informed machine learning for the solution to differential equations
	C. Random projection neural networks
	D. The proposed physics-informed random projection neural network for the solution of ODEs and index-1 DAEs
	1. Approximation with the PIRPNN
	2. Computation of the unknown weights

	III. PARSIMONIOUS CONSTRUCTION OF THE PIRPNN
	A. The adaptive step-size scheme
	B. A continuation method for Newton's iterations
	C. Estimation of the interval of the uniform distribution based on the variance/bias trade-off decomposition

	IV. NUMERICAL IMPLEMENTATION AND RESULTS
	A. Case study 1: Prothero–Robinson problem
	B. Case study 2: The van der Pol model
	C. Case study 3: The Robertson index-1 DAEs
	D. Case study 4: Hindmarsh–Rose neuronal model
	E. Case study 5: A mechanics non autonomous index-1 DAEs model
	F. Case study 6: Power discharge control index-1 DAEs problem
	G. Case study 7: The Belousov–Zhabotinsky stiff ODEs
	H. Case study 8: The Allen–Cahn PDE phase-field model
	I. Comparison with the DeepXDE library: The Lotka–Volterra ODEs

	V. DISCUSSION
	ACKNOWLEDGMENTS

