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Giosué Lo Bosco e,f,1, Salvatore Aronica a,1 

a Institute of Anthropic Impacts and Sustainability in the Marine Environment - National Research Council (IAS-CNR), Campobello di Mazara, TP, Italy 
b Institute of Marine Sciences - National Research Council (ISMAR-CNR), Napoli, Italy 
c Institute of High Performance Computing and Networking -National Research Council (ICAR-CNR), Palermo, Italy 
d Department of Biology, University of Naples Federico II, Napoli, Italy 
e Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy 
f Department of Sciences for Technological Innovation, Euro-Mediterranean Institute of Science and Technology   

A R T I C L E  I N F O   

Keywords: 
Hierarchical clustering 
K-means 
Krill 
Ross sea 
Internal validation indices 
Acoustic 

A B S T R A C T   

Acoustic surveys represent the standard methodology to assess the spatial distribution and abundance of pelagic 
organisms characterized by aggregative behaviour. The species identification of acoustically observed aggre-
gations is usually performed by taking into account the biological sampling and according to expert-based 
knowledge. The precision of survey estimates, such as total abundance and spatial distribution, strongly de-
pends on the efficiency of acoustic and biological sampling as well as on the species identification. In this context, 
the automatic identification of specific groups based on energetic and morphological features could improve the 
species identification process, allowing to improve the precision of survey estimates or to overcome problems 
related to biases in biological sampling. In the present study, we test the use of well-known unsupervised 
clustering methods focusing on two important krill species namely Euphausia superba and Euphausia crystallor-
ophias. In order to obtain a reference classification, the observed echoes were first classified according to specific 
criteria based on two parameters accounting for the acoustic response at 38 kHz and 120 kHz. Different clus-
tering methods combined with three distance metrics were then tested working on a wider set of parameters, 
accounting for the depth of insonified aggregation as well as for energetic and morphological features. The 
clustering performances were then evaluated by comparing the reference classification to the one obtained by 
clustering. Obtained results showed that the k-means performs better than the considered hierarchical methods. 
Our findings also evidenced that working on a specific set of variables rather than on all available ones highly 
impact k-means performances.   

1. Introduction 

In the last decades, marine fishery science widely used acoustic- 
based techniques to obtain information about the spatial distribution 
and abundance of economically and ecologically important pelagic (i.e. 
inhabiting the water column) organisms (Azzali et al., 2006; Bonanno 
et al., 2006; Bonanno et al., 2015; Bonanno et al., 2016; Giannoulaki 

et al., 2013; Leonori et al., 2017; Ventero et al., 2019). Several specific 
characteristics make acoustic methods an effective tool in monitoring 
pelagic populations. Some pelagic organisms are characterized by 
aggregative behaviour, thus forming large aggregations of individuals, 
called schools or swarms, that are easily identified by means of acoustic 
methods. The use of a scientific echo-sounder allows recording data on 
wide areas in a relatively small amount of time, leading to a synoptic and 
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spatially detailed view of the status of aquatic resources. Furthermore, 
using different frequencies (typically 38 kHz, 120 kHz and 200 kHz) 
may allow researchers to identify the insonified species and/or classes of 
organisms (zooplankton, gelatinous etc.). Briefly, during acoustic sur-
veys, an acoustic pulse is transmitted by a hull-mounted transducer at 
regular time intervals; when the acoustic wave, vertically travelling 
along the water column, encounter objects characterized by a different 
density, part of the energy is backscattered and recorded, thus allowing 
to map the encountered objects on the so-called echogram (Fig. 1). 

In the context of acoustic surveys carried out to monitor pelagic 
organisms, the “objects” of interest are the aggregations of living or-
ganisms inhabiting the water column (Fig. 1). In most cases, it is not 
possible to uniquely identify species based only on acoustic information 
since different species with similar acoustic responses occur in the sur-
veyed area. Thus, biological samples are needed to characterize the 
observed echoes and perform biological measurements. The biological 
sampling effort depends on several factors: the environmental hetero-
geneity of the study area, the number of species characterizing the 
considered ecosystem, the spatial overlap among species, as well as on 
the available vessel time and the operative scenarios that could make 
biological sampling particularly difficult. It is important to single out 
that the precision of survey estimates (e.g. total abundance and organ-
isms’ spatial distribution) strongly depends on the efficiency of both 
acoustic and biological sampling. Nonetheless, misclassification of 
echoes due to a bias in the species identification procedure may repre-
sent an important source of error. In this context, several authors 
investigated the possibility to perform species identification through 
semi-automatic classification procedures (Fernandes, 2009; D’Elia et al., 
2014; Fallon et al., 2016; Campanella and Christopher, 2016; Aronica 
et al., 2019). Fallon et al. (2016) used a random forest approach to 
discriminate among mackerel icefish, krill and a mixed-species group in 
the Southern Ocean, obtaining an error rate of 5.45%, 3.73% and 8.06% 
respectively. The authors evidenced that the most important variables 
permitting to discriminate the three groups were the minimum Sv value 
at 120 kHz (Sv120) and to a lesser extent the geographical position, the 
school depth and time of day. Working on small pelagic fish and in a 
different environment, D’Elia et al. (2014) adopted a random forest al-
gorithm to classify schools of small pelagic fish species in the central 
Mediterranean Sea by considering both energetic and morphological 
variables (i.e. parameters characterizing some aspect of school shape) as 
well as the depth of insonified schools. In particular, the study focused 
on three distinct pelagic fish species (anchovy, sardine and horse 
mackerel) and a fourth group considering different small pelagic fish 
species (OPS: Other Pelagic Species) that were less abundant in the study 
area. The authors reported a total successful classification rate of 76% 

and highlighted the poor discriminant power of morphological param-
eters and the importance of the school depth in the classification per-
formances. Working on a similar dataset, and considering the same 
groups, Aronica et al. (2019) adopted an artificial neural network 
approach, obtaining a successful classification rate for the considered 
groups of about 95%. In this case, the authors evidenced the importance 
of considering environmental variables (along with morphological and 
energetic ones) as they introduce in the classification procedure 
important information about the environmental preferences of consid-
ered species. 

In this work, we tested the use of unsupervised clustering algorithms 
to identify the echoes recorded during a multi-purpose survey carried 
out in the Ross Sea (Southern Ocean) during 2016/2017 austral summer 
under the umbrella of the Italian National Antarctic Research Program 
(Project P-ROSE, “PNRA16 00239′′). In particular, the analysis focused 
on two important krill species inhabiting the Ross Sea, namely Euphausia 
crystallorophias and Euphausia superba (Azzali et al., 2006; La et al., 
2015a; La et al., 2015b; Leonori et al., 2017). The Ross Sea is charac-
terized by the presence of different sub-systems following alternative 
pathways for primary production (Mangoni et al., 2017; Bolinesi et al., 
2020) and for the transfer of energy toward upper trophic levels trought 
krill species. Krill species in the Southern Ocean ecosystem represent an 
important prey item for many species such as penguins and whales and 
play a key role in the energy transfer between the lower and upper 
trophic levels, also impacting the carbon sink (Cavan et al., 2019). Due 
to their importance, a number of studies focused on their spatial dis-
tribution and abundance by means of acoustic methods (Madureira 
et al., 1993a; Brierley et al., 1998; Azzali et al., 2006; La et al., 2015b; 
Davis et al., 2017). In order to acoustically identify echoes belonging to 
different krill species, several authors analyzed the acoustic properties of 
krill species inhabiting the Southern Ocean at different frequencies 
(mainly 38 kHz and 120 kHz), focusing on the analysis of volume 
backscattering strength (Sv dB re 1m− 1) values (Madureira et al., 1993b; 
Brierley et al., 1998; La et al., 2015a; La et al., 2015b; Leonori et al., 
2017). In this context, Madureira et al. (1993b) evaluated for the first 
time the possibility to discriminate among three different krill species 
(Eupausia frigida, Euphausia superba and Themisto gaudichaudii) by 
analyzing the response at different frequencies. In particular, by 
regressing Sv values at 38 kHz and 120 kHz (Sv38, Sv120), specific 
regression coefficients were proposed for each species. Brierley et al. 
(1998), following the work of Madureira et al. (1993b) and analyzing a 
larger dataset, proposed specific regression coefficients along with their 
coefficients intervals for six species namely Eupausia frigida, Euphausia 
superba, Rhincalanus gigas, Thysanoessa macrura, Themisto gaudichaudii 
and Antarctomysis maxima. Anyway, the authors argued that considering 

Fig. 1. Example of echogram at 120 kHz. The coloured patches represent aggregations of krill organisms.  
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a higher number of species, none of them was uniquely identified based 
on Sv38 and Sv120 values, even if most of the E. superba echoes could be 
distinguished from all the others adopting specific threshold during data 
analysis. Recently, La et al. (2015b), investigated the acoustic properties 
of E. crystallorophias, providing the regression equation coefficients and 
confidence intervals for this species. From a practical point of view, it 
was observed that for E. superba the differences between Sv120 and Sv38, 
was in the range 2–12 dB, while for E. crystallorophias such difference 
ranged between 12 and 18 dB (La et al., 2015b). It is important to single 
out that, Fallon et al. (2016), working on trawl-verified acoustic ag-
gregations, observed that in the case of E. superba the above-mentioned 
rule about the difference between Sv120 and Sv38 was verified only for 
61% of the observed aggregations. In the present work, due to the lack of 
proper biological sampling, the observed aggregations related to krill 
organisms were partitioned between E. crystallorophias and E. superba by 
means of the regression equations based on Sv120 and Sv38 values. All the 
aggregations falling outside the criteria of E. crystallorophias and 
E. superba were classified as “unknown” as it was not possible to clearly 
associate them to a particular species. Based on the obtained reference 
classification, we tested different unsupervised clustering methods and 
distance metrics working on a set of energetic and morphological pa-
rameters related to the insonified aggregations to evaluate the perfor-
mance of the different unsupervised clustering methods in resembling 
the reference classification. 

2. Material and methods 

2.1. Acoustic data: acquisition and processing 

An acoustic survey was carried out in the period 5 January - 11 
February 2017 during the XXXII Antarctic expedition on-board the R/V 
“Italica” under the Italian National Antarctic Research Program and in 
the framework of the P-ROSE project (Plankton biodiversity and func-
tioning of the Ross Sea ecosystems in a changing Southern Ocean). In 
particular, acoustic data were collected utilizing an EK60 scientific echo- 
sounder at three different frequencies (38 kHz, 120 kHz and 200 kHz) 
and calibrated following standard techniques (Foote et al., 1987). The 
echo-sounder was configured to ping simultaneously at each frequency 
with a pulse duration of 1024 ms. Acoustic sampling followed an 
opportunistic strategy (Fig. 2), recording data during all transfers among 
the sampling stations for a total of about 2200 nmi. 

Acoustic raw data were then processed using Echoview© software 
(Higginbottom et al., 2000) in order to extract all the echoes related to 
aggregations of krill organisms. In the first step, the depth range for the 
analysis was defined. In particular, the region between 0 and 8.5 m 
depth was excluded thus avoiding artifacts due to the beam formation 
distance and the noise due to cavitation and waves. Similarly, the 
echogram region related to a depth higher than 350 m was excluded 
from the analysis due to the strong attenuation of the signals at 120 kHz 
and 200 kHz. In a second step, a 3×3 convolution filter was applied 
(Fallon et al., 2016) and the background noise was removed by using the 
algorithm proposed by De Robertis and Higginbottom (2007). Other 
echogram regions affected by instrumental or environmental (i.e. waves 
and ice) noise were visually identified and removed manually. Finally, 
to extract only echoes related to krill organisms, a -80 dB threshold was 
applied on 120 kHz frequency according to Choi et al. (2018). Working 
on the 120 kHz frequency (the reference frequency for krill species; 
Leonori et al., 2017), all the aggregations were thus identified through 
the school detection module in Echoview. At the end of the processing, a 
total of 1334 aggregations were identified; for each aggregation, several 
parameters related to the energetic and geometric characteristics as well 
as the average depth of each aggregation were extracted (Table 1). 

In addition, two more parameters were computed, namely: the fre-
quency response at 120 and 200 kHz, respectively computed as 

RF120 = 10∗log10(
10Sv.mean120

10Sv.mean38
) (1) 

and 

RF200 = 10∗log10(
10Sv.mean200

10Sv.mean38
) (2)  

2.2. Data preparation and exploratory data analysis 

During the survey, the bad weather conditions lead to a reduction of 
the time available for biological sampling that was limited to a low 
number of sampling stations. Under these conditions, it was not possible 
to properly characterize the observed acoustic aggregations based on the 

Fig. 2. Study area and acoustic tracks.  

Table 1 
Energetic and geometric parameters extracted for each aggregation identified by 
means of school detection module. The * symbol indicates that the variable was 
extracted for each of the frequencies.  

Parameter Units Description 

Height.mean m Average school height 
Depth.mean m Average school depth 
Length m Length of the identified school 
Thickness m Thickness of the identified school 
Perimeter m Perimeter of the identified school 
Area m2 Area of the identified school 
Image. 

compactness  
Ratio between perimeter and area 

Sv.mean ∗ dB re 1m− 1 Average recorded Sv value 
Sv.max ∗ dB re 1m− 1 Maximum recorded Sv value 
Sv.min ∗ dB re 1m− 1 Minimum recorded Sv value 
SD ∗ Standard deviation of Sv values 
Skew ∗ dB re 1m− 1 Skewness of Sv values 
H.rough ∗ dB re 1m2/m3 Horizontal dispersion of acoustic energy 

within the school 
V.rough ∗ dB re 1m2/m3 Vertical dispersion of acoustic energy within 

the school 
RF120  Frequency ratio between 120 kHz and 38 kHz 
RF200  Frequency ratio between 200 kHz and 38 kHz  
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information obtained by the biological sampling. Consequently, the 
observed aggregations were classified according to regression equations 
developed on the energetic values at two different frequencies (38 kHz 
and 120 kHz) and available in the literature (Brierley et al., 1998; La 
et al., 2015b). In particular E. Superba was identified on the basis of the 
following equation (Brierley et al., 1998): 

Sv120 = 16.8 + 1.13∗Sv38 (3) 

taking into account for 95% confidence intervals of intercept and 
slope (13.6–20.54 and 1.08–1.18 respectively). In a similar way, ag-
gregations related to E. crystallorophias were identified by (La et al., 
2015b): 

Sv120 = 5.50 + 0.89∗Sv38 (4) 

Also in this case 95% confidence intervals of intercept and slope were 
considered (3.96–7.05 and 0.88–0.91 respectively). All the aggregations 
falling outside the classification criteria for E. crystallorophias and E. 
superba were classified as unknown. Once the reference classification was 
performed, an exploratory analysis was carried out. In a first step, the 
presence of significant differences among the identified groups was 
assessed for each variable using the Kruskal-Wallis Anova test followed 
by Mann-Withney post-hoc test. Finally, since clustering methods could 
be negatively affected by extreme values, the frequency distribution and 
the skewness index of each variable was inspected in order to evaluate 
the possibility to apply specific transformations thus minimizing the 
influence of the tails. All the statistical analyses were carried out using 
the R statistical environment (R Core Team, 2020). 

2.3. Clustering methods 

The performances of different clustering methods and distances in 
resembling the reference classification were tested. In particular, the 5 
hierarchical variants Complete linkage, Single linkage, Average linkage, 
Median and Centroid were tested using three different distance metrics: 
Euclidean, Manhattan and Minkowski (with p = 3). The K-means with 
Euclidean and Manhattan distance was also tested (Minkowski distance 
was not available for k-means). In all the considered cases (i.e. the 
combination of clustering method and distances), the data were stan-
dardized to avoid scale problems. The classification based on Sv38 - Sv120 
regression allowed to classify only observations related to 
E. crystallorophias and E. superba, while all the others were labelled as 
unknown (unk for short). Thus, as the “unk” group was potentially made 
by more than one species, internal validation indices (Table 2) were used 
to test for the hypothesis of more than 3 groups. 

Internal validation indices are based on the concept of “good” cluster 

structure (Charrad et al., 2014; Hassani and Seidl, 2017). In particular, 
in the present study, 16 validation indices were used. The majority of 
them are based on the homogeneity and separation measures, i.e. the 
sum of distances between elements inside the same clusters and the sum 
of distances of elements belonging to different clusters. Others such as 
(Halkidi et al., 2000; 2001) also on cluster internal variance. Some of 
them are only useable for the case of Hierarchical clustering (Duda and 
Hart, 1973). All of them can suggest the correct number of clusters k by 
the argmax or argmin of the index, computed in the range k = 2,…,10. 

All the statistical analysis were carried out using NbClust (Charrad 
et al., 2014) package in the R statistical environment (R Core Team, 
2020). 

3. Results 

3.1. Reference classification and exploratory data analysis 

The regression-based (Eq. 3 and Eq. 4) classification clearly identi-
fied 3 distinct groups (Fig. 3); each observation was thus classified 
accordingly as E. crystallorophias (375 observations, identified as C for 
short), E. superba (703 observations, identified as S for short) and “unk” 
for all the remaining observations (256). Kruskal-Wallis ANOVA carried 
out for each considered variable evidenced the presence of significant 
differences among the three identified groups in 21 out of 31 cases 
(Table 3). 

In particular, no significant differences were found in terms of Sv. 
min200, Length, Thickness, Area, H.rough120, SD120, V.rough120 and 
Skew200. Furthermore, only for 10 variables, significant differences were 
found among all the three groups, while for the remaining ones signif-
icant differences were found only for one or two out of three compari-
sons. In particular, significant differences among the three groups were 
found for Sv.mean38, Sv.mean120, Sv.min38, Sv.max38, H.rough38, V. 
rough38, SD38, Skew38, RF120 and RF200 (Table 3, Fig. 4). 

To avoid possible bias in the clustering due to highly skewed data, 
the skewness index was computed for each variable (Table 3). In many 
cases, the skewness index evidenced the presence of moderate/high 
right-skewed variables while only Sv.min120 showed a moderate left- 
skewed distribution. According to Hair et al. (2010) and Byrne (2010), 
variables characterized by an absolute value of skewness higher than 2 

Table 2 
Internal validation indices. The Optimal number of clusters is the argmax or 
argmin of the index for k ranging from 2 to 10.  

Index Ref. biblio. Optimal number of 
clusters 

Silhouette Rousseeuw (1987) argmax 
Dunn Dunn (1974) argmax 
KL Krzanowski and Lai (1988) argmax 
Hartigan Hartigan (1975) argmin 
DB Davies and Bouldin (1979) argmin 
CH Calinski and Harabasz (1974) argmax 
Cindex Hubert and Levin (1976) argmin 
SDindex Halkidi et al. (2000) argmin 
Sdbw Halkidi et al. (2001) argmin 
Duda Duda and Hart (1973) argmin 
Beale Beale (1969) argmax 
Ratkowsky Ratkowsky and Lance (1978) argmax 
Ball Ball and Hall (1965) argmax 
Ptbiserial (Milligan, 1980; Miligan and Cooper, 

1985) 
argmax 

Gap Tibshirani et al. (2001) argmin 
Mcclain McClain and Rao (1975) argmin  

Fig. 3. Scatterplot of the observations in the Sv38 and Sv120 space, presenting 
the obtained classification according to eqs. (3) and (4). All observations 
outside the classification criteria for E. crystallorophias and E. superba were 
classified as “Unknown”. 
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should not be considered normally distributed; consequently, all the 
variables characterized by an absolute value of the skewness index 
higher than 2 were log-transformed, while in the case of Sv.min120, that 
was negatively skewed, the adopted transformation was: 

Sv.min120 t = log(max(Sv.min120 + 1) − Sv.min120) (5) 

Once the variables were transformed, the absolute value of the 
skewness index was lower than 2 in all the cases (not shown). 

3.2. Clustering 

Different hierarchical clustering methods with 3 different distance 
measures (Euclidean, Manhattan and Minkowski) were tested. Along 
with hierarchical methods, also k-means was tested but working only on 
Euclidean and Manhattan distances (as Minkowski distance was not 
available for k-means). All the above-mentioned combinations of 

methods and distances were tested on the whole data matrix (consid-
ering all the extracted parameters) and on a reduced data matrix ac-
counting only for the variables showing significant differences among all 
the three groups (reported in bold in Table 3). In a first step the degree of 
structure of dendrograms obtained by applying hierarchical methods 
was inspected. When applied to the whole data matrix, hierarchical 
methods provided a well-structured dendrogram only for Complete- 
Linkage (Fig. S1). A similar situation was evidenced when hierarchical 
methods were applied on the selected variables (reported in bold in 
Table 3); in this case, only the dendrogram obtained using Average- 
Linkage and Complete-Linkage were well structured (Figs. S2 and S3). 
In all the other cases obtained dendrograms showed a poor structure (e. 
g. Fig. S4). Consequently, the methods showing poorly structured den-
drograms were excluded from further analysis. When applied to the 
whole dataset, validation indices highlighted that the optimal k (i.e. 
number of clusters) was 4 for the Complete-Linkage with Euclidean and 
Manhattan distance, while working with Manhattan and Minkowski 
distances, the optimal k was 3. The presence of only 3 groups was also 
evidenced in the case of the k-means algorithm with Euclidean and 
Manhattan distance. The same was true when working with selected 
variables using the Average-Link, Complete-Link and k-means whatever 
the distance used. Clustering was then carried out by taking into ac-
count, for each combination of method/distance, the k value obtained 
using validation indices. Clustering results were then validated by 
comparing the regression-based (Eq. 3 and Eq. 4) classification to the 
clustering one. In this context, it is important to highlight that clustering 
output was a vector of numeric values identifying the obtained clusters 
but does not provide the link between cluster number (i.e. 1, 2, 3) and 
the regression-based labelled groups (“C”, “S”, “unk”). To link the 
reference classification and cluster numbers, the pattern of Sv.mean38 
values (Fig. 4), showing good contrast among the predefined groups, 
was used. In particular, based on the reference classification, E. superba 
(S) was characterized by highest Sv.mean38 median values, the unknown 
group (“unk”) by the lowest, while E. crystallorophias (C) showed in-
termediate Sv.mean38 median value. Thus, the obtained clusters were 
labelled according to such pattern, assigning the label “Sn” to the cluster 
showing the highest Sv.mean38 median value, “unkn” to the cluster 
characterized by the lowest while the remaining cluster 
(E. crystallorophias) was identified as (Cn). Confusion matrix (Tables 4 
and 5) was used to evaluate the performances of each selected method 
according to the number of clusters suggested by validation indices. The 
boxplots of Sv.mean38 categorized by cluster (labelled according to the 
pattern evidenced in Sv.mean38) were also generated to visually eval-
uate the obtained results (Figs. 5 and 6). When working on the whole 
dataset, the Complete Linkage method assigned most of the observations 
to a single cluster (Table 4). In particular, using the Euclidean distance, 
most of the observations belonging to C and S were allocated in a single 
cluster showing intermediate Sv.mean38 median values. Even if the 
minimum and maximum Sv.mean38 values of Cn and Sn resembled quite 
well the reference classification, the respective median values were 
lower than the reference ones (Fig. 5). Working with Manhattan dis-
tance, the obtained results showed similar problems and using the 
Minkowski distance, most of the observations were allocated to two 
clusters only (Table 4). On the contrary, when using the k-means method 
on the whole dataset, the final classification almost equally distributed 
the observations among the different groups (Table 4). Working on the 
selected variables only, hierarchical methods showed the same problems 
observed in the previous cases (Table 5 and Fig. 6). In the case of 
Complete-Linkage, a high number of “unk” observations were correctly 
classified, while most observations related to C and S were assigned in 
the same cluster (Table 5). On the contrary, working with Average 
Linkage, the “unk” observations were largely misclassified. Finally, 
when working on the selected variables with the k-means algorithm, the 
best results were obtained. In particular, using the euclidean distance 
85.1% of C, 67.6% of S and 65.6% of “unk” were correctly classified. 
Similar results were obtained by using the Manhattan distance. In such 

Table 3 
Skewness values and statistical tests results. Post-hoc tests were carried out only 
if K–W p-value was found lower than 0.01. Variables in bold present significant 
differences among the three considered groups. The symbol # indicate that the 
variable was found highly skewed and log-transformed.  

Variable Skewness K–W p. 
value 

C vs S C vs 
unk 

S vs 
unk 

Sv.mean38 − 0.71 p < 0.01 p <
0.01 

p <
0.01 

p <
0.01 

Sv.mean120 0.947 p < 0.01 p <
0.01 

p <
0.01 

p <
0.01 

Sv.mean200 − 0.138 p < 0.01 p <
0.01 

0.012 p <
0.01 

Sv.min38 0.802 p < 0.01 p <
0.01 

p <
0.01 

p <
0.01 

Sv.min120 # − 2.757 p < 0.01 0.021 0.079 p <
0.01 

Sv.min200 0.137 0.081    
Sv.max38 − 0.488 p < 0.01 p <

0.01 
p <
0.01 

p <
0.01 

Sv.max120 0.753 p < 0.01 0.056 0.006 p <
0.01 

Sv.max200 − 0.137 p < 0.01 0.001 0.083 p <
0.01 

Depth.mean 0.795 p < 0.01 p <
0.01 

0.013 p <
0.01 

Length # 5.937 0.001    
Thickness # 2.284 0.02    
Perimeter # 6.304 p < 0.01 0.248 0.094 0.004 
Area # 7.144 0.516    
Image. 

compactness # 
6.167 p < 0.01 0.261 0.001 p <

0.01 
Height 1.864 p < 0.01 0.523 p <

0.01 
p <
0.01 

H.rough38 # 24.317 p < 0.01 p <
0.01 

p <
0.01 

p <
0.01 

H.rough120 # 22.779 0.112    
H.rough200 # 7.363 p < 0.01 0.001 0.1 p <

0.01 
V.rough38 # 17.155 p < 0.01 p <

0.01 
p <
0.01 

p <
0.01 

V.rough120 # 16.103 0.176    
V.rough200 # 6.56 p < 0.01 0.001 0.09 p <

0.01 
SD38 # 21.968 p < 0.01 p <

0.01 
p <
0.01 

p <
0.01 

SD120 # 8.788 0.142    
SD200 # 6.379 p < 0.01 0.001 0.036 p <

0.01 
Skew38 # 3.423 p < 0.01 0.001 p <

0.01 
p <
0.01 

Skew120 2.36 p < 0.01 0.009 0.885 0.018 
Skew200 2.126 0.064    
RF120 1.284 p < 0.01 0.001 p <

0.01 
p <
0.01 

RF200 0.943 p < 0.01 0.001 p <
0.01 

p <
0.01  
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cases, the Sv.mean38 pattern (Fig. 6) was well resembled for C and S, 
while in the case of “unk”, even if the median value was quite similar to 
the original one, the maximum value was strongly lower than the correct 
one, evidencing the misclassification in both cases of about 30% of the 
unknown as C. It must also be noted that in both cases only a few of C 
and S were misclassified as “unkn". 

4. Discussion 

Identifying at species level the echoes recorded during acoustic 
surveys is one of the most important aspects in the estimation of the 
spatial distribution and abundance of pelagic organisms. Such a task 
represents a critical step for the interpretation of acoustic data (Horne, 
2000) and is usually accomplished by using expert echogram scruti-
nizing (knowledge-based approach) and/or looking at the species 
composition in the nearest sampling station (Simmonds and MacLennan, 
2008). It is important to highlight that the species identification process 
could represent an important source of error (Petitgas, 2003), leading to 
biased estimates of abundance and spatial distribution of targeted or-
ganisms. In this context, the possibility to improve the species identifi-
cation step through an automatic procedure is of great interest, 
especially if biological sampling was not representative due to technical 
problems. To the aim of finding specific rules to differentiate among 
different krill species, some authors analyzed the acoustic characteristics 
of krill working with different frequencies and focusing mainly on en-
ergetic values and frequency responce (Madureira et al., 1993a; Brierley 
et al., 1998; La et al., 2015b; Leonori et al., 2017; Azzali et al., 2006). In 
particular, Madureira et al. (1993a) and Brierley et al. (1998), provided 
regression parameters, based on Sv38 and Sv120 values for different krill 

species. It is important to highlight that even if Madureira et al. (1993a) 
were able to discriminate three species based on Sv38 and Sv120 values, 
the results obtained by Brierley, working on additional species, showed 
that none of them was uniquely identified, even if most of the E. superba 
echoes could be distinguished from all the others adopting specific 
threshold during data analysis. As a rule of thumb the differences be-
tween Sv38 and Sv120 values should be in the range 2–12 dB for 
E. superba and 12–18 dB for E. crystallorophias. In this context, Fallon 
et al. (2016), working on trawl-verified acoustic aggregations, observed 
that only 61% of the E. superba were characterized by a 2–12 dB dif-
ference between Sv120 and Sv38 values. In this work, we tested the use of 
several well-known and easy to implement clustering methods, 
comparing the obtained classification to the reference one accomplished 
by considering Sv120 and Sv38 values only. 

Our results showed that among the considered methods and dis-
tances, the k-means with Manhattan distance was the one performing 
better. The use of internal validation indices, to test for the hypothesis of 
more than three groups, showed that was not possible to evidence the 
presence of sub-groups within the “unknown” group. In this context, it 
must be considered that k-means is sensitive to very unbalanced groups, 
that is the case of the “unknown” that accounted for about 19% of the 
total number of observations. 

The variable selection was an important step to obtain an acceptable 
classification; all the considered methods were not able to perform a 
correct classification when variables characterized by a lack of contrast 
among the identified groups were used. The hierarchical methods, even 
in presence of a well-structured dendrogram, lead to misleading results 
probably due to the presence of outliers (even if proper transformations 
were adopted to reduce the effect of outliers and skewed distributions). 

Fig. 4. Boxplot by group of the considered variables according to the reference classification.  
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On the contrary, the k-means algorithm was more robust to the presence 
of outliers. Obtained classification rate for E. crystallorophias was 85.1% 
while was lower for E. superba (68%) and the “unknown” group (66%). 
Considering that Fallon et al. (2016) observed that E. superba backscatter 
could be underestimated, our reference classification is probably biased 
as it was developed looking at Sv38 and Sv120 variables only. Thus, 
taking into account that the k-means classification was based on a higher 
number of variables, it is possible, that some of the observations that we 
considered as misclassified effectively belong to the correct species. 

According to D’Elia et al. (2014), highlighting very poor perfor-
mances using morphometric variables only, also in our case such vari-
ables were found not useful in the clustering procedure, showing no 
significant differences among the groups identified by the reference 
classification. It must be considered that a single-beam echo-sounder can 
record only a specific slice of the insonified school, and thus is not able 
to properly characterize the difference in the shape of the different or-
ganism’s schools. Differently from our results, the above-mentioned 
authors reported a general decrease of classification rates when the 
average school depth was removed from the dataset (total successful 
rate lowered to 59%). Such a decrease in performances highlighted the 
importance of a variable accounting for specific behavioural and 
ecological aspects of small pelagic populations inhabiting the Mediter-
ranean Sea. 

In our case, the average depth of the aggregations was found not 
useful in classifying the three groups. In this context, it is important to 
single out that the acoustic data related to small pelagics in the Medi-
terranean Sea are recorded over the continental shelf only. The behav-
iour of small pelagics concerning depth is also modulated by species- 

specific ecological characteristics (Giannoulaki et al., 2008; Tugores 
et al., 2011; Bonanno et al., 2016). 

Similarly, krill species are characterized by species-specific depth 
preferences related to complex biological processes influenced by 
environmental factors. In our case during the survey very different en-
vironments, such as coastal ice-free areas, sectors closed to ice tongues 
as well as very offshore areas, were explored along with a great lat-
itudinal range. The average depth of schools for the same species 
changes with changes in the environmental conditions; as an example, 
strong winds could lead to changes in the stratification of the upper part 
of the column water, influencing biological processes and consequently 
the depth of aggregations. Such variability, if not explicitly taken into 
account by considering environmental factors, could make the average 
depth of aggregations not informative in distinguishing the different 
species, since each species may react differently according to the 
considered environment. Aronica et al. (2019), working on small pe-
lagics in a different environment, along with energetic, morphometric 
and bathymetric variables, accounted also for a set of environmental 
descriptors. Temperature, salinity, fluorescence and oxygen were 
explicitly taken into account in the classification procedure. The authors 
obtained for the considered groups a classification rate of about 95% 
highlighting the good performance of the method and the importance of 
environmental variables for the classification. Thus, environmental 
variables, carrying important information about the ecological prefer-
ence of considered species, are of great importance to improve classifi-
cation results and probably, also in our case, considering environmental 
factors could lead to better classification performance. 

Fig. 5. Boxplot of Sv.mean38 classified according to the cluster analysis results obtained working on the whole set of variables. The Sv.mean38 boxplot of the 
reference classification is also reported in the bottom-right panel. For complete Euclidean and Complete Manhattan, based on Sv.mean38 boxplot of the reference 
classification (bottom-right panel), the third and fourth clusters were identified as two sub-group of “unk” and were labelled as “unkn1” and “unkn2”. Coloured dots 
represent the median value observed for the reference classification, while coloured lines the minimum and maximum observed values. 
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Fig. 6. Boxplot of Sv.mean38 classified according to the cluster analysis results obtained working on selected variables only. The boxplot of the reference classifi-
cation is also reported in the lower-right panel. Coloured dots represent the median value observed for the reference classification, while coloured lines the minimum 
and maximum observed values. 

Table 4 
Confusion matrix related to clustering results obtained using the whole set of variables. C: Euphausia crystallorophias; S: Euphausia superba; unk: unknown. The suffix “n” 
in the column names indicate the new classification obtained by each combination of method/distance. In this context, the clusters were labelled according to the Sv. 
mean38 pattern observed in the original classification.   

Complete Linkage k-means 

Euclidean  Cn Sn unkn1 unkn2  Cn Sn unkn 
C 83.2 10.1 5.6 1.1 C 53.9 30.4 15.7 
S 82.4 16.9 0.7 0 S 56.3 42.2 1.3 
unk 41 5.1 30.9 23 unk 18.4 19.1 62.5 

Manhattan  Cn Sn unkn1 unkn2  Cn Sn unkn 
C 67.7 2.9 3.5 25.9 C 61.3 23.2 15.5 
S 82.1 4.8 0.1 12.9 S 54.1 43.2 2.7 
unk 21.5 3.5 40.2 34.8 unk 28.9 17.6 53.5 

Minkowski  Cn Sn unkn      
C 62.4 37.6 0      
S 48.2 51.8 0      
unk 74.2 19.1 6.6       
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5. Conclusions 

Improving the procedures used to identify echoes represents a 
fundamental requirement to obtain reliable estimates of the spatial 
distribution and abundance of pelagic organisms. Several authors tried 
to tackle this problem by adopting different methods and working on 
different species and ecosystems. Our results, adopting the k-means al-
gorithm, showed acceptable classification rates, that could be probably 
improved by explicitly considering, along with energetic parameters, 
the environmental factors. It is important to evidence that compared to 
other methods, the clustering algorithm considered in this work was 
found to be robust to outliers, is easier to implement and does not 
require specific assumptions. Thus k-means seems promising and could 
represent a valid tool to improve species identification procedures by 
reducing the post-processing time and obtaining more reliable esti-
mates. Nonetheless, to fully validate this method, further studies are 
needed; in particular specific tests should be carried out including 
environmental variables and testing the k-means performance on trawl- 
verified aggregations. 
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