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Abstract— This paper presents a novel control approach,
based on the interconnection and damping-assignment
passivity-based control (IDA-PBC), to achieve stable and pe-
riodic walking for underactuated planar biped robots with one
degree of underactuation. The system’s physical structure is
preserved by assigning a target port-Hamiltonian dynamics to
the closed-loop system, which also ensures passivity. The control
design ensures that the tracking error to the desired periodic
gait converges exponentially to zero, and the convergence rate
can be adjusted via gain tuning. Besides, through the hybrid
zero dynamics, the stability of the full-order system can be
retrieved from the stability of the orbit created in a lower-
dimensional manifold. The proposed approach is the first
example of a tracking controller based on the IDA-PBC applied
to underactuated biped robots. Numerical simulations on a five-
link planar biped robot with unactuated ankles validate the
approach and show the performance of the closed-loop system.

I. INTRODUCTION

Bipedal locomotion is characterized by continuous swing
phases, in which only one foot is in contact with the ground,
alternated by discrete impact events occurring at foot landing.
The stance foot rotates around the contact point with the
ground during each continuous phase, with zero control
torque. Therefore, biped robots emulating human walking
are underactuated and hybrid [1].

Hybrid zero dynamics (HZD) is a fundamental control
design tool for biped robots [2]. This approach creates a
stable periodic orbit in a lower-dimensional manifold by
zeroing some output variables defined in terms of virtual
constraints imposed via feedback. The HZD evolves on such
a lower-dimensional space and constitutes an extension of the
concept of zero dynamics [3] to hybrid systems. The lower-
dimensional manifold is hybrid invariant, that is, invariant
under both the robot’s continuous and discrete dynamics. For
planar bipeds walking along their sagittal plane only, hybrid
invariance arises from the exponential convergence of the
output variables, referred to as transverse dynamics, to the
HZD manifold [4]. The motivation is the repulsive behaviour
of the impact map, which rejects the transverse solutions far
away from the HZD manifold. Hence, an exponentially fast
convergence rate is required to counteract the reset map.
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Control strategies exploiting the HZD concept were ini-
tially based on the input-output linearization (IOL) of the
biped’s nonlinear (natural) transverse dynamics followed by
a proportional-derivative (PD) control to impose an expo-
nential convergence to the HZD manifold. Successively,
an approach based on control Lyapunov functions (CLF),
namely the rapidly exponentially stabilizing control Lya-
punov function (RES-CLF), was presented to go beyond
simple PD controller while guaranteeing a sufficiently fast
exponential converge of transverse dynamics [5]. Method-
ologies based on IOL require the total cancellation of nat-
ural dynamics. Consequently, the closed-loop robustness to
parametric uncertainties is endangered. Recently, a passivity-
based controller was presented to preserve the nonlinear
dynamics of the system [6]. Such a method performs only
partial cancellations of the nonlinear dynamics, yielding a
closed-loop system that is more robust.

All the methodologies proposed so far are rooted in the
Lagrangian modelling formalism. An alternative is the port-
Hamiltonian (pH) framework [7], which describes systems in
terms of the interconnection between energy-conserving and
energy-dissipating structures. One of the control strategies
proposed in the pH formalism is the interconnection and
damping assignment passivity-based control (IDA-PBC) [8]
which has mainly been adopted in the stabilization of under-
actuated mechanical systems [9]. This methodology reshapes
the system’s physical properties by assigning a target closed-
loop pH system with desired characteristics, preserving pas-
sivity. Recently, alternative versions of IDA-PBC were used
to generate new gaits for an underactuated compass-like
biped robot [10], [11], [12]. Instead, the basin of attraction
of the limit-cycles related to the periodic walking has been
enlarged in [13], also exploiting the energy pumping-and-
damping passivity-based control. IDA-PBC has also been
used as a tracking controller for fully actuated systems due
to the possibility of assigning a desired pH structure to the
closed-loop system [14], [15]. Consequently, the passivity
of the closed-loop system is preserved, and damping can
be injected into actuated coordinates. The methodology pre-
sented in [14] exploits the Cholesky factorization of the
inertia matrix to retrieve a closed-loop structure with a
novel, coordinates-free, kinetic energy. This is instrumental
in designing a feedback control to assign a target error system
that is uniformly globally exponentially stable (UGES). This
stability property ensures strong robustness to the closed-
loop system, motivated by total stability arguments [14]. The
approach proposed in [15] obtains coordinate-free kinetic
energy by using the square root factorization of the inertia



matrix. Both methodologies are limited to fully-actuated
mechanical systems only.

This paper proposes a novel approach to realize a stable
and periodic walking for a planar biped robot with one de-
gree of underactuation, extending the methodology presented
in [14]. The Cholesky factorization of the inertia matrix used
therein is effectively exploited to separate actuated dynamics
from unactuated ones. A feedback controller, composed of
a tracking action inspired by [14] plus a compensation
term cancelling the coupling elements between actuated and
unactuated dynamics, is designed to track suitably defined
joints trajectories. The resulting error system is the trans-
verse dynamics that, thanks to the UGES property, converge
exponentially fast to their zero dynamics manifold, with a
convergence rate depending on the damping injection. Then,
arguments from the theory of multiple Lyapunov functions
for switched systems infer the hybrid invariance of the zero
dynamics manifold. The motivation of such a control scheme
is to preserve, as much as possible, the nonlinear dynamics
of the system while increasing closed-loop robustness. The
reasons behind choosing a control strategy based on [14]
are twofold. First, like all IDA-PBC-based methodologies,
the controller preserves the pH structure of the plant. Conse-
quently, the closed-loop errors system is a passive pH system.
Second, the Cholesky factorization used in [14] can be
suitably exploited for underactuated systems, too, differently
from the factorization method in [15]. Therefore, the main
contributions of the work are(i) the proposed strategy confers
robustness to the closed-loop system by assigning the desired
error dynamics, which is a pH system preserving passivity;
(ii) to the best of the authors’ knowledge, the proposed
approach is the first example of tracking controller based
on the IDA-PBC applied to underactuated biped robots. In
particular, the novel strategy extends the method in [14] to
a class of underactuated hybrid systems.

II. THEORETICAL BACKGROUND

A. Planar Bipeds as Underactuated Hybrid Systems

This work considers planar biped robots with symmetric
and rigid legs and point feet. The gait is approximated with a
sequence of single-support phases (only one foot in contact
with the ground) followed by instantaneous double-support
(both feet in contact with the ground). These assumptions
are listed in [2] and [4, Chap. 3.2]. Single support phases
correspond to the continuous dynamics characterizing the
robot when no impact with the ground occurs. Instantaneous
double-support phases represent the impulsive discrete event
when feet strike the walking surface. Therefore, the under-
lying model is hybrid, describing the systems via a set of
differential equations plus a set of difference equations{

ẋ = f (x)+ξ (x)u(x), x ∈ X\S,
x+ = ∆(x−), x− ∈ S,

(1)

where x ∈ X is the state, x− and x+ indicate the states just
before and after an impact, respectively, X ⊆ R2n is the
admissibility domain of continuous dynamics, f : X → X is

the C1 vector field describing continuous dynamics, ξ : X→
X is the C1 vector field mapping the control input u to f (·),
S is the switching surface, and ∆ : S→ X is the C1 reset map.

In literature, biped robots are usually described using the
Lagrangian formalism, so the state of the system is described
through a set of n generalized coordinates, q∈Rn, and n gen-
eralized velocities, q̇ ∈ Rn, such that x =

[
qT q̇T ]T ∈ R2n.

Due to the point-feet assumption, the biped is underactuated
with one degree of underactuation [1]. A biped robot can
be described by n− 1 relative angles, representing body
coordinates, plus an absolute angle representing the biped’s
orientation with respect to the z-axis of an inertial reference
frame [4]. Body coordinates are related to the actuated joints,
while the absolute angle is related to the unactuated one.
Hence, the configuration of the biped can be expressed
by q =

[
qa1 · · · qan−1 qu

]T ∈ Rn, where qai ∈ R, i =
1, . . . ,n− 1, are the generalized coordinates corresponding
to the actuated joints while qu ∈ R is the coordinate related
to the unactuated ankle. Besides, the absolute angle qu is
a cyclic variable of the kinetic energy [4]. Consequently,
the inertia matrix does not depend on qu and can be thus
expressed as a function of the actuated coordinates only.

B. Virtual Constraints and Hybrid Zero Dynamics

A successful approach to realize stable periodic walking
is to design a set of virtual constraints [2] in the form of
output variables y ∈ Rm such that

y = h(qa)−hd(θ(q)), (2)

where h(·) ∈ Rm is a function of the actuated coordinates
only, while hd(·) ∈ Rm is the desired trajectory that the
actuated coordinates have to track. This is parameterized in
terms of θ(·) ∈ R, a function of q that substitutes the time
in the periodic orbit parameterization. Hence, it has to be
strictly monotonic. The desired function hd(·) is designed
using Bézier polynomials to impose constraints regarding the
feasibility of the gait (the fulfilment of constraints regarding
friction cones, for instance), its periodicity, sought gait de-
scriptors (step length and period), and energy efficiency [1].
The approaches based on HZD [2], [4], [5], [6] impose the
set of virtual constraints (2) using an appropriate control law.
The actuated variables track a given state-dependent trajec-
tory described via hd(·). Periodic walking arises when (2)
are zeroed. The dynamics of the hybrid system (1) evolve
on a lower-dimensional submanifold, and the stability of
the periodic orbit can be studied therein. In other words,
the stability of the periodic orbit of (1) is equivalent to the
stability of the HZD’s periodic orbit{

ż = fZ(z) z ∈ Z\S
z+ = ∆S∩Z(z−) z− ∈ S,

(3)

where Z ⊂ X is the HZD submanifold, while fZ(·) and
∆S∩Z(·) are the restrictions of f (·) and ∆(·) to it, respectively.
As pointed out in the Introduction, this is true for planar
bipeds if the dynamics associated with the output variables
approach exponentially fast to the HZD submanifold.



C. Passivity-Based Approach

One of the objectives of the passivity-based tracking
controller presented in this work is to preserve, as much
as possible, the original nonlinear dynamics of the system.
Among the control strategies based on HZD available in the
literature, only the passivity-based approach introduced in
[6] shares the same goal. For the sake of comparison, let
briefly summarize the main aspects of the strategy shown
in [6]. Let M ∈ Rn×n be the symmetric, positive definite
inertia matrix of the biped, N =C(q, q̇)q̇+g(q) ∈ Rn be the
drift vector with C ∈ Rn×n the Coriolis-centrifugal effects
matrix and g ∈ Rn the gravitational forces vector, B =[
I(n−1)×(n−1) 0

]T ∈ Rn×(n−1) the input mapping matrix,
and u ∈ Rn−1 the control input. Therefore, the Lagrangian
model describing the swing phase is M(qa)q̈ + N(q, q̇) =
Bu. Exploiting the natural partition between actuated and
unactuated dynamics as in [6], this equation can be split as{

Maaq̈a +Mauq̈u +Na = u,
Muaq̈a +Muuq̈u +Nu = 0,

(4)

with Na =Caaq̇a +Cauq̇u +ga and Nu =Cuaq̇a +Cuuq̇u +gu,
that can be rewritten as{

M̄(qa)q̈a + N̄(q, q̇) = u,
q̈u =−M−1

uu (Muaq̈a +Nu),
(5)

with M̄(qa) = Maa − MauM−1
uu Mua and N̄(q, q̇) =

−MauM−1
uu Nu + Na. Starting from the above equation,

[6] proposes the following control strategy

u = M̄ḧd− (Kpy+(L+Kd)ẏ)+ N̄, (6)

where L is a combination of terms belonging to M and C, not
reported here for space reasons, while Kp,Kd ∈R(n−1)×(n−1)

are positive definite gain matrices. N̄ is designed to cancel
part of the natural actuated dynamics (for further details
see [6, Sec. III-B]). Therefore, this methodology requires the
partial cancellation of the nonlinear dynamics of the plant.

D. The IDA-PBC Tracking Controller

The strategy presented in this work is rooted in the pH for-
malism and based on the tracking controller proposed in [14],
which is now briefly introduced. Even if the methodology
originally proposed in [14] was tailored for fully-actuated
mechanical systems (q ≡ qa and p ≡ pa), the subscript a
(actuated) will be used in this section to stress the difference
between the original methodology and the novel approach
which is the main contribution of the paper.

Consider a fully-actuated mechanical system represented
in the pH formalism as[

q̇a
ṗa0

]
=

[
On In
−In On

][
∇qaH0(qa, pa0)
∇pa0

H0(qa, pa0)

]
+Gua(qa, pa0) (7)

where On ∈ Rn×n and In ∈ Rn×n are the zero and the
identity matrices of the proper dimensions, respectively,
G ∈ R2n×n is the input mapping matrix, and ua ∈ Rn is
the control input. qa ∈ Rn are the generalized coordinates
and pa0 ∈ Rn are the conjugated generalized momenta. The

total (mechanical) energy of the system is described by the
Hamiltonian H(qa, pa0) =

1
2 pT

a0
M−1(qa)pa0 +V (qa), where

V ∈ R is the potential energy. As preliminary step to apply
the tracking controller proposed in [14], the following change
of momenta pa = T T (qa)pa0 is performed, where T (qa) is
the lower-triangular Cholesky factor of M−1(qa), such that
M−1(qa) = T (qa)T T (qa). With this change of momenta, (7)
becomes[

q̇a
ṗa

]
=

[
On T (qa)

−T T (qa) S(qa, pa)

][
∇qaH(qa, pa)
∇paH(qa, pa)

]
+Gva(qa, pa),

(8)
with the Hamiltonian now being H(qa, pa) =

1
2 pT

a pa+V (qa),
where the kinetic energy K(pa) = 1

2 pT
a pa does not de-

pend anymore on qa. The change of momenta introduces a
novel skew-symmetric, gyroscopic forces matrix S(qa, pa) =

∑
n
i=1[(pT

a T−1∇qiT )
T (T T ei)

T − (T T ei)(pT
a T−1∇qiT )] : Rn ×

Rn→ Rn×n with ei the i− th euclidean basis vector of Rn.
The new control input is va(qa, pa) = T T (qa)ua(qa, pa0) ∈
Rn. Let qd(t) be the reference trajectory for actuated coordi-
nates and pd(t) = T−1(qa)q̇d be the corresponding reference
momenta. Defined q̃ = qa−qd(t) and p̃ = pa− pd(t) as the
trajectory and the related momenta tracking errors, respec-
tively, the tracking controller presented in [14] is

va = − d
dt
(T−1(qa))R1q̃ + ṗd(t)− S(qa, pa)pd(t)

− T T (qa)[q̃−∇qaV (qa)] + [S(qa, pa)− R2]T−1(qa)R1q̃

− T−1(qa)R1T (qa)p̃− R2 p̃,
(9)

where R1, R2 ∈ Rn×n are positive definite dissipation matri-
ces. Defined

w1 = q̃ , w2 = T−1(qa)R1q̃+ p̃, (10)

the closed-loop pH system (8) with va as in (9) is equal to

(11)ẇ =

[
−R1 T (qa)
−T T (qa) S(qa, pa)− R2

]
∇Hd(w),

where
Hd(w) =

1
2
|w1|2+

1
2
|w2|2 (12)

is the Hamiltonian in the error variables. In [14], it is shown
that

Ḣd(w) =−||w1||2R1
−||w2||2R2

≤−δHd(w) (13)

with δ = 2min{λmin(R1),λmin(R2)} > 0, hence the equilib-
rium point of (11) is UGES implying that both q̃ and p̃ go
to zero exponentially fast, with the rate of convergence that
can be adjusted via R1 and R2. This is a fundamental property
of (11), which will be usefully exploited in the next section
to counteract the repulsive behavior of the reset map.

III. MAIN CONTRIBUTION

After a suitable momenta transformation p = T T (q)p0,
the continuous dynamics of a planar biped robot can be
described, similarly to (8), as[

q̇
ṗ

]
=

[
On T (qa)

−T T (qa) S(qa, p)

][
∇qH(q, p)
∇pH(q, p)

]
+Gv(q, p), (14)



with H(q, p) = 1
2 pT p +V (q). Differently from (8), equa-

tion (14) describes an underactuated mechanical system.
In [14], the Cholesky factorization is used only for computa-
tional reasons. Instead, in this paper, the shape of T (qa) has
a key role in designing the control law. The lower-triangular
structure of T (qa) is such that q̇a = T (qa)pa: hence, q̇a are
not influenced by pu. Moreover, since T (qa) is the Cholesky
factor of M−1(qa), it depends on qa only. Consequently, q̇a
in (14) coincides with q̇a in (8). This property is fundamental
to extend (9) to underactuated planar bipeds. Before contin-
uing, the main goal of the novel methodology is pointed out.

Problem Description: Consider an underactuated planar
biped robot modeled by (1), with the swing dynamics de-
scribed by (14). Once defined a set of virtual constraints (2)
such that a stable periodic orbit is created in the HZD
submanifold, find a passivity-based tracking controller based
on (9) such that the transverse dynamics of the closed-loop
system are equivalent to (11).

A. Fully Actuated/Unactuated Partition

To adapt (9) to track the desired trajectory for an under-
actuated planar biped, the natural partition between actuated
and unactuated variables is exploited. Let x =

[
xT

a xT
u
]T

be the state of the system, with xa =
[
qT

a pT
a
]T ∈ R2(n−1)

and xu =
[
qu pu

]T ∈ R2 the actuated and the unactuated
variables, respectively. Therefore, (14) can be rewritten as[

ẋa
ẋu

]
=

[
Jaa Jau
−JT

au Juu

][
∇xaH(x)
∇xuH(x)

]
+

[
Ga
02

]
v(x), (15)

where Jaa =
[
On−1 Taa(qa);−T T

aa(qa) Saa(qa, p)
]
∈

R2(n−1)×2(n−1) is a skew-symmetric matrix with
On−1 ∈ R(n−1)×(n−1) the zero matrix of proper dimensions,
Taa(qa) ∈ R(n−1)×(n−1) the matrix extracted from
the first n − 1 rows by n − 1 columns of T (qa),
and Saa(qa, p) ∈ R(n−1)×(n−1) the same for S(q, p).
Jau =

[
0n−1 0n−1;−Tau(qa) Sau(qa, p)

]
∈R2(n−1)×2 is the

matrix containing the coupling terms between actuated and
unactuated dynamics, Tau =

[
tua1(qa) · · · tuan−1(qa)

]T ∈
Rn−1 and Sau =

[
sa1u(qa, p) · · · san−1u(qa, p)

]T ∈ Rn−1,
while 0n−1 ∈ Rn−1 is zero vector of proper dimensions.
Finally, Juu =

[
0 tuu(qa);−tuu(qa) 0

]
∈ R2×2 is

the square matrix accounting for the unactuated
dynamics only. The new input mapping matrix is
Ga =

[
0(n−1)×(n−1) I(n−1)×(n−1)

]T ∈ R2(n−1)×(n−1).

B. IDA-PBC Tracking Controller for Underactuated Systems

The tracking controller (9) assigns the desired error dy-
namics (11), whose equilibrium is UGES, to the fully-
actuated mechanical system (8). To yield the underactuated
mechanical system (15) to an error system that is, as much
as possible, similar to (11), the control law

v = vc + vt (16)

is proposed. This control law differs from (9). In particular,
the first term, vc ∈Rn−1, is designed to transform the actuated
dynamics in (15) such as to mimic (8); the second term,

vt ∈ Rn−1, is the effective tracking contribution, inspired
to (9). The actuated dynamics in (15) are ẋa = Jaa∇xaH(x)+
Jau∇xuH(x)+Gav, equivalent to

ẋa =


q̇a = On−1∇qaV (q)+Taa pa

ṗa =−T T
aa∇qaV (q)+Saa pa

−Tau∇quV (q)+Sau pu + vc + vt .

(17)

The vector q̇a in (17) already coincide with q̇a in (8) thanks
to the particular structure of Taa, as previously outlined.
Therefore, the specific role of vc is to compensate for the
terms due to the unactauted dynamics in ṗa. Designing vc as

vc = Tau∇quV (q)−Sau pu (18)

and substituting it back in (17) yields

ẋa =

{
q̇a = Taa pa

ṗa =−T T
aa∇qaV (q)+Saa pa + vt ,

(19)

which is very similar to (8). The only difference is the term
T T

aa∇qaV (q) which, due to V (q), is function of both the
actuated and the unactuated coordinates, while T T ∇qaV (qa)
in (8) is function of the actuated coordinates only. Once
defined vc as in (18), the resulting closed loop becomes[

ẋa
ẋu

]
=

[
Jaa 02(n−1)×2
−JT

au Juu

][
∇xaH(x)
∇xuH(x)

]
+

[
Ga
02

]
vt(x). (20)

Since the forces Jau∇xuH(x), not present in (8), were re-
moved from (15), the actuated dynamics of (20) can be
now treated similarly to (8). To impose (2) through vt , the
tracking errors defined in Section II-D are replaced with q̃ =
qa−qd(θ(q)) and p̃= pa−T−1

aa (qa)q̇d , where qa≡ h(qa) and
qd(θ(q))≡ hd(θ(q)). The novel tracking controller becomes

vt = −
d
dt
(T−1

aa (qa))R1q̃ + ṗd − Saa(qa, p)pd

− T T
aa(qa)[q̃−∇qaV (q)] + [Saa(qa, p)− R2]T−1

aa (qa)R1q̃

− T−1
aa (qa)R1Taa(qa)p̃− R2 p̃,

(21)

with R1, R2 ∈R(n−1)×(n−1) positive definite matrices yielding
to the closed loop

(22)ẇ =

[
−R1 Taa(qa)
−T T

aa(qa) Saa(qa, p)− R2

]
∇Hd(w),

where w1 is defined as in (10) and w2 = T−1
aa (qa)R1q̃+ p̃,

with Hd(w) given by (12).
Remark I Equation (22) can be interpreted as the trans-

verse dynamics of the planar biped robot. Hence, the UGES
property of the zero equilibrium point of (22) implies that
the transverse dynamics converge to their zero dynamics
uniformly exponentially fast, i.e., that the zero dynamics
manifold has been made UGES. Moreover, since (22) is a
pH system, transverse dynamics are passive.

Remark II As shown in Section II.C, the control design
in (6) drops N̄ from the model. On the other hand, (18)
cancels Jau∇xuH(x), which couples actuated and unactuated
dynamics. This reshapes the actuated dynamics as in (8). In
this way, (21) can be used, leading to (22).



Fig. 1. RABBIT (left) and its physical idealization with coordinates system
(right). The figure is taken from [5].

C. Stability Analysis

The stability analysis of the orbit can be performed using
the Poincaré map of the system restricted to the HZD
manifold [2], [5], [6]. To extend the stability of the orbit
contained in the HZD manifold to the full-order system,
the complete dynamics stability analysis is performed using
the conditional stability theorem for invariant sets [16] and
the multiple Lyapunov functions theorem [17]. Albeit the
complete set of conditions is not reported here (see [6, Sec.
IV]), they can be summarized with two main requirements: i)
the Hamiltonian is decreasing during swing dynamics (i.e.,
Ḣd(w) ≤ 0); ii) the sequence of the Hamiltonian functions
measured after each impact is decreasing. The first condition
is strictly satisfied by (13). The second condition depends on
the convergence rate of the transverse dynamics w1 and w2 to
the HZD manifold. This is selected by tuning the dissipation
matrices R1 and R2, as discussed at the end of Section II.D.

IV. CASE STUDIES

The proposed methodology has been applied in simulation
to the model of a five-link bipedal robot inspired by RABBIT,
a robotic test-bed developed to study dynamic walking [18],
as done in [5] (see Fig. 1). The biped is made of the torso and
two legs equipped with revolute knees. In the single support
phase, the five-link biped can be described with a suitable set
of coordinates q ∈R5, where q1 and q2 are the femur angles
(referenced to the torso), q3 and q4 are the knee angles, and
q5 is the absolute angle of the torso. Femur and knee joints
are independently actuated while stance ankle is unactuated.
The hybrid model of RABBIT can be described as in (1)
with continuous dynamics (14) (after a suitable change of
momenta) where M and V are defined in [4].

For this specific test bed, vc = Tau∇q5V (q)− Sau p5 ∈ R4

with Tau, Sau ∈ R4. The tracking controller (21) has been
designed with Taa, Saa, R1 = 200I4, and R2 = 200I4 ∈R4×4.
Numerical simulations are performed on a standard PC in the
MATLAB environment. The code for generating the dynamic
model of RABBIT is taken from [19]. It has been numer-
ically simulated through the ODE45 routine of MATLAB
with the event detection option active to evaluate the foot-
ground hit. The designed controller is implemented at a
discrete-time step of 1 ms. In the literature, a step is defined

as two consecutive strikes between feet and ground [10],
[20]. The gait is described in terms of two parameters: the
space covered by each step (the step length, S > 0) and
its duration (the step period, T > 0). The target values are
T = 0.5 s and S = 0.4 m, respectively. Such values are
imposed through a 4×1 vector hd(θ) of 6th degree Bézier
polynomials parameterizing the desired periodic trajectory.
This trajectory has been computed solving an offline opti-
mization problem [2]. As in [2], [5], [6], θ has been selected
as the angle between the vertical and the line connecting the
stance foot to the hip. In the following, two case studies
have been analyzed. In the first one, the performance of the
presented controller is evaluated in nominal conditions, i.e.,
without parametric uncertainties affecting the model. In the
second one, the claimed robustness of the novel methodology
is assessed, i.e., it is tested in the presence of parametric
uncertainties. Moreover, a comparison with the passivity-
based controller proposed in [6] is performed. In both the
case studies, initial conditions are picked outside the periodic
orbit to show the exponential convergence of the output to
zero. The overall gait considered is made of twenty steps.

In Case Study I, the performance of the proposed method-
ology is evaluated without parametric uncertainties on the
dynamic model with parameters taken from [4]. Figure 2
depicts the limit cycles obtained corresponding to one actu-
ated variable (q1) and the unactuated one (q5). Both cycles
(blue lines) converge to the target ones (dotted red lines)
corresponding to the desired gait associated with the values
assumed by T and S, shown in Fig. 3. The time evolution
of the Hd and the tracking errors q̃ and p̃ are shown in
Fig. 4, Fig. 5, and Fig. 6, respectively, for the first four steps
(the remaining sixteen steps have not been shown not to
compromise the readability of the plots). Specifically, these
figures point out the stability of the full-order system since
Hd , q̃, and p̃ convergence exponentially fast to zero during
the swing phase, and the sequence of values assumed by Hd
at every impact is decreasing (Fig. 4 (b)).

In Case Study II, the proposed controller is tested against
the presence of parametric uncertainties. The dynamic model
parameters in the controller are affected by uncertainties in
the range 10%−40% of the nominal values. The proposed
methodology, designed with the same gains as in Case Study
I, is compared with the passivity-based controller of [6].
This has been designed using a set of gains exhibiting
performance similar to those achieved deploying the novel
controller in nominal conditions. In the simulations carried
out with the 30% of uncertainty, both controllers show a
stable behaviour of the closed-loop system. For the 40%
of uncertainty, Fig. 7 shows that the proposed methodology
does not compromise the system’s stability. Indeed, Hd keeps
decreasing during both swing phases and impact events. The
same parametric uncertainties lead the closed-loop system
to instability when controlled with the approach of [6], as
evident from Fig. 8 (b) where the sequence of Lyapunov
functions V = 1

2 (ẏ
T M̄ẏ) + 1

2 (y
T Kpy) [6] evaluated at each

impact is not decreasing.
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Fig. 2. Case Study I, limit cycles of (a) q1 and (b) q5. Green dots: initial
conditions. Blue lines: evolution of each limit cycle. Red lines: target cycles.
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Fig. 3. Case Study I, step period T and step length S. Blue bars: the
step-by-step evolution of (a) T and (b) S. The red lines show that T and S
converge to their target values 0.5 s and 0.4 m, respectively.

V. CONLCUSIONS AND FUTURE WORK

This paper proposed a tracking controller based on the
methodology presented in [14] with HZD for underactu-
ated planar biped robots. The novel approach was shown
to represent a valid alternative to existing control strate-
gies to stabilize periodic walking. In particular, numerical
simulations on a five-link walker validated the approach
showing that the novel control strategy is robust even with
strong parametric uncertainty. Future works will apply the
presented methodology to a biped robot with more degrees

of underactuation. In particular, the work will be extended to
those bipeds that are not constrained to move in the sagittal
plane only, also with compliant joints.
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Fig. 4. Case Study I, evolution of Hd . (a) Control law (16) drives Hd exponentially fast to zero. (b) Hd decreases at every impact.
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Fig. 5. Case Study I, evolution of q̃. (a) Control law (16) drives q̃ exponentially fast to zero. (b) q̃ decreases at every impact.
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Fig. 6. Case Study I, evolution of p̃. (a) Control law (16) drives p̃ exponentially fast to zero. (b) p̃ decreases at every impact.
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Fig. 7. Case Study II, Hd evolution. (a) Control law (16) drives Hd exponentially fast to zero with 40% of uncertainty. (b) Hd decreases at every impact.
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Fig. 8. Case Study II, V evolution. (a) Controller (6) in [6] drives V exponentially to zero with 40% of uncertainty but V increases at the 4ˆth impact (b).


