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Steady dipole-flow through a porous medium, and disturbed by a circular inclusion
�0 of conductivity different from the background, is solved analytically. The solution
is achieved by means of the circle theorem, which is reformulated to account for the
entry/leave of mass and energy through the boundary ∂�0. It is shown that the governing
potential is that which one would consider in absence of the disturbance supplemented
with an ad hoc (fictitious) dipole laying inside �0. Besides the theoretical interest, the
analytical solution is used to compute the effective conductivity Keff , by means of the
self-consistent approximation. Overall, Keff is found to depend upon the flow configuration,
and therefore it cannot be sought as a medium’s property (nonlocality). In particular,
Keff depends upon the joint probability density function f of the conductivity and the
distribution/size of the inclusions. Results, analyzed for a fairly general model of f ,
demonstrate that the coefficient of correlation ρ between the involved random fields is the
key parameter characterizing the structure of Keff . Indeed, the latter results larger or smaller
than that of the background, depending on whether ρ is negative or positive, respectively.
For ρ = 0, the effective conductivity is a local property and, in this case, one can apply
the superposition principle with the homogeneous conductivity replaced by the geometric
mean.

DOI: 10.1103/PhysRevFluids.7.064101

I. INTRODUCTION

We consider a steady process driven by a dipole-type configuration, and we deal with a linear
constitutive law, i.e.,

q(x) = −K ∇h(x), (1)

relating the flux q, at any position x, to the gradient of the potential h through the coefficient
K . Besides fluid mechanics, whose terminology shall be adopted in the sequel, there are other
branches of physics (such as heat transfer and electromagnetism) accounting for a constitutive law
with the same mathematical structure of (1). For example, it can be used to compute the steady
temperature generated by isolated/distributed point sources [1], a setup that is instrumental to
identify the thermal conductivity of materials. Still in the theory of heat transfer, the constitutive
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law (1) may serve to compute the temperature field in a region that is heated by a source located at
a given point, and simultaneously cooled by a sink implanted into another point. In electrostatics,
it is useful to compute the electric field in a region characterized by the presence of single and/or
distributed positive and negative point charges [2]. In addition, it is also useful in addressing the
first-order (dipole) approximation in the multipole expansion of the electric potential as determined
by localized charges. Likewise, the model (1) is used to compute the magnetic field as generated
by a current localized in a small (as compared to the length scale of interest) region of the space.
In the study of planar waves, it serves to investigate how a signal emitted from a waveguide is
detected by another one, after propagating through a dielectric of given permittivity. Finally, in the
subsurface hydrology, it is often used for identification purposes (e.g., [3]) or in situ remediation
strategies to clean up portions of polluted ground waters (e.g., [4,5]). As such, the problem at stake
finds application in numerous fields of applied physics as well as reservoir engineering.

Potential theory has provided several analytical solutions for steady flows from/toward isolated
and/or distributed sources by regarding the medium as homogeneous (see, e.g., [6]). A variation
considers a source flow disturbed by a circular inclusion of conductivity K0 �= 0, and different from
that of the background [7–9]. However, to the authors’ knowledge, an analytical solution for a
dipole-flow through a circular inclusion of nonzero permeability has not been yet achieved.

Besides the theoretical interest, and its implication toward the applications in the classical
hydrological engineering, dipole-flow disturbed by an inclusion of a different conductivity finds
application in the effective theory of disordered media (an overview in the context of fluids can be
found in [10]). In particular, here we are interested in the effective conductivity (EC), which is the
parameter to be used in the average constitutive (Darcy) equation. The EC is computed by means
of the self-consistent approximation (SCA) which is applied here to a dipole-flow. The physical
model underlying the SCA regards the porous formation as a collection of numerous, homogeneous
inclusions set at random in the space, and the fluctuation of the velocity field induced by each
inclusion is computed by assuming that it is surrounded by a homogeneous matrix of unknown
conductivity. Hence, the EC is computed by requiring that “it is equal to the conductivity of the
medium as a whole” [11]. In spite of its approximate nature, it leads (unlike the perturbation
approach; see, e.g., [12]) to a simple expression, free of any limitation upon the controlling
parameter(s). Determining the EC in dipole-type flows, has been scarcely studied, its theoretical and
practical importance notwithstanding [13,14]. To our knowledge there are only numerical studies
simultaneously accounting for the aquifer’s heterogeneity and the nonuniformity of the flow pattern
[15].

The problem at stake is very complex to solve numerically. The main difficulty is given by
the strong coupling (especially in the zones surrounding the two singularities) between the spatial
variability of Y and the nonuniformity of the flow. More precisely, to account for the very rapid
variations of the velocity in the close vicinity of the singularities, a very dense grid is required,
preventing de facto to achieve accurate solutions. This plays down significantly the ability of
numerical solutions to solve accurately flow in a tiny zone surrounding the wells. Instead, analytical
tools lead to simple (i.e., closed form) solutions which provide an explicit relationship between the
input parameters and the model output, therefore giving physical insight to the problem at stake,
without sorting to computationally heavy numerical simulations. In the present study, we show that,
with the analytical expression derived in the first part, the EC can be computed even for a dipole-flow
taking place in a heterogeneous porous formation.

II. CONFIGURATION OF THE FLOW PROBLEM AND ITS ANALYTICAL SOLUTION

We consider a steady flow taking place in an unbounded, two-dimensional domain R2. For math-
ematical convenience, we deal with the complex variable z such that x1 ≡ Re(z) and x2 ≡ Im(z)
being x ≡ (x1, x2) ∈ R2. The velocity field is generated by a dipole, with the source and the sink
at (0, 0) and (�, 0), respectively (Fig. 1). A circular inclusion �0 of radius R0 is implanted with
the center at z0. We assume that both the sink and the source lie outside �0, which is tantamount
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FIG. 1. Geometry of a dipole with the source (red) and the sink (blue) at (0,0) and (�, 0), respectively. The
flow is disturbed by a circular inclusion �0 of radius R0 and center z0. The positions z′

0 and z′′
0 identify the

fictitious dipole lying inside �0, whereas z is the current position

to requiring that R0 < r<, being r< = min{|z0|, |� − z0|} (Fig. 1). Hence, the flow domain consists
of two subdomains, i.e., R2 ≡ �∞ ∪ �0, with �0 separating the portion of R2 lying within the
inclusion from the external domain �∞. Our aim is the computation of the complex potential
w ≡ w(z) for such a configuration.

To illustrate the methodology, it is instrumental starting from the solution pertaining to an
impermeable inclusion. Toward this aim, we make use of the circle theorem [16], stating that the
complex potential resulting from the presence of an impermeable circular inclusion, of radius R0

and center in (0,0), is given by

w(z) = w�(z) + w̄�

(
R2

0

z

)
, (2)

where w� is the potential of the flow field without disturbance (the “bar” symbol denotes complex
conjugation). For a dipole flow of constant strength Q [L2/T], the unperturbed potential is w�(z) =
Q ln z − Q ln(z − �) + C, being C a (generally complex) constant. In order to apply the circle
theorem, we introduce the new variable ζ = z − z0 to shift the center z0 of the inclusion to the origin
of the ζ framework. As a consequence, the unperturbed potential writes as w�(ζ ) = Q ln(ζ + z0) −
Q ln(ζ + z0 − �) + C. Hence, application of (2) to this latter and moving back to the z framework
lead to

w(z) = Q ln z − Q ln (z − �) + Q ln (z − z′
0) − Q ln (z − z′′

0 ), (3)

where we have set z′
0 ≡ z0 − R2

0/z0 and z′′
0 ≡ z0 − R2

0/(z0 − �). In addition, we have chosen C =
Q ln(1 − �/z0). The potential (3) has a straightforward mechanical explanation: the obstacle �0

acts de facto like an extra (fictitious) dipole, whose effect is that no mass leaves/enters through
the boundary ∂�0 in order to fulfill the condition of impermeable inclusion. It is seen that z′

0 and
(0,0) are inverse points with respect to the circle �0 [16], and the same is for z′′

0 and (�, 0). As a
consequence, the two fictitious singularities z′

0 and z′′
0 lie inside �0 (Fig. 1).

We are in a position to adapt the above approach to a permeable inclusion of conductivity K0 �= 0.
In this case, flow inside �∞ is still generated by a dipole of strength \Qcut, whereas the system of
fictitious sink/source is now characterized by a strength Q∞ �= Q (to be determined):

w∞(z) = Q ln z − Q ln (z − �) + Q∞ ln (z − z′
0) − Q∞ ln (z − z′′

0 ) + C∞. (4)
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FIG. 2. Geometrical sketch pertaining to the fulfillment of the mass and energy conservation along the
boundary ∂�0 of the inclusion.

Inside �0, flow is driven by a dipole of unknown strength Q0 �= Q , i.e.,

w0(z) = Q0 ln z − Q0 ln (z − �) + C0. (5)

The strengths Q∞ and Q0 are identified by requiring the continuity of the specific (per unit
weight) energy h ≡ h(x) ([L]), i.e.,

h(x) =
{

h∞ ≡ K−1
∞ Re(w∞), x ∈ �∞,

h0 ≡ K−1
0 Re(w0), x ∈ �0,

(6)

and of the stream function ψ ≡ ψ (x):

ψ (x) =
{
ψ∞ ≡ Im(w∞), x ∈ �∞,

ψ0 ≡ Im(w0), x ∈ �0,
(7)

along the boundary ∂�0. Unlike the case of impervious inclusion, the fictitious dipole behaves (i) to
allow the flow passing through the inclusion, and (ii) to preserve energy and mass. It is convenient
to represent the position of each singularity in polar coordinates as follows:

z = |z| exp (iϑ ), z − z′
0 = |z − z′

0| exp (−iβ ), (8)

z − z′′
0 = |z − z′′

0 | exp (iγ ), z − � = |z − �| exp (−iα) (9)

(see Fig. 2). Hence, the energy h and the stream function ψ are

h∞ = K−1
∞

[
Q ln

( |z|
|z − �|

)
+ Q∞ ln

( |z − z′
0|

|z − z′′
0 |

)
+ Re (C∞)

]
, (10)

h0 = K−1
0

[
Q0 ln

( |z|
|z − �|

)
+ Re (C0)

]
, (11)

and

ψ∞ = Q (ϑ − α) + Q∞(γ − β ) + Im (C∞), (12)

ψ0 = Q0(ϑ − α) + Im (C0), (13)
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respectively. Then, the requirement of the (i) and (ii) conditions leads to

(κ Q − Q0) ln

( |z|
|z − �|

)
+ κ Q∞ ln

( |z − z′
0|

|z − z′′
0 |

)
= Re (C0 − κ C∞), (14)

( Q − Q0)(ϑ − α) + Q∞(γ − β ) = Im (C0 − C∞), (15)

where we have introduced the “contrast ratio” κ = K0/K∞. Since, according to the circle theorem,
z′

0 and O are inverse points, it results |z0 − z′
0||z0| = |z − z0|2, and concurrently triangles of vertexes

{z, z0, z′
0} and {z, z0, O} are similar (inversion theorem). By the same reasoning, triangles of vertexes

{z, z0, z′′
0} and {z, z0, �} are also similar. Hence, application of the law of sines finally leads to

|z|
|z − �| = |z0|

|z0 − �|
|z − z′

0|
|z − z′′

0 |
, z ∈ ∂�0. (16)

Insertion of (16) into (14), and taking the constants C0 and C∞ such that Re(C0 − κ C∞) = (κ Q −
Q0) ln(|z0|/|z0 − �|), provides a first equation Q0 = κ ( Q + Q∞). A second equation is obtained by
noting that, from the triangle of vertexes {O, z, �}, it yields

γ − β − π = −(ϑ − α), z ∈ ∂�0 (17)

(Fig. 2). Substitution of (17) into (15), and selecting Im(C0 − C∞) = πQ∞, gives Q0 = Q − Q∞.
This latter, together with the one above, gives

Q∞ = 1 − κ

1 + κ
Q , Q0 = 2κ

1 + κ
Q . (18)

Finally, the left constants C∞ and C0 can be determined once one of these [the other is computed
according to the conditions leading to Eqs. (18)] is fixed. In particular, the algebra simplifies
tremendously by requiring that w0(z0) = Q0 ln[z0/(z0 − �)]. As a consequence, C0 = 0 and one
has C∞ = (ln |z0| − ln |z0 − �| − ιπ )Q∞. Hence, potentials (4) and (5) are determined uniquely,
and they ultimately write as

h(x) = Q

K∞

⎧⎨
⎩

ln
( |z|

|z−�|
) + 1−κ

1+κ
ln

(
|z0|

|z0−�|
|z−z′

0|
|z−z′′

0 |
)
, x ∈ �∞,

2
1+κ

ln
( |z|

|z−�|
)
, x ∈ �0,

ψ (x) = Q

{
ϑ − α + 1−κ

1+κ
(γ − β − π ), x ∈ �∞,

2κ
1+κ

(ϑ − α), x ∈ �0.
(19)

The analytical expressions (19) of the specific energy h and stream function ψ represent one of
the main results of the present study. In particular, for κ = 1 (i.e., K0 = K∞) one recovers the well
known result valid for homogeneous media. In addition, κ = 0 provides the solution pertaining to
an impermeable inclusion (see, e.g., [17]), and therefore Eqs. (19) constitute a generalization of
previous results. In Fig. 3, we have depicted the nondimensional contour plot (red dashed lines) of
hK∞/ Q . It is seen that for κ � 1 levels of h are quite dense within �0, whereas the shape of the
isovalues is completely reversed (i.e., they are repelled by the inclusion) for κ 	 1.

The expressions (19) constitute the basis to tackle more complex problems concerning dipole-
flow within disordered (typically porous) media. In particular, the remainder of the paper is devoted
to the implementation of the above analytical results to compute the effective conductivity.

III. EFFECTIVE CONDUCTIVITY

So far, the flow domain �∞ has been considered homogeneous (constant conductivity). However,
this picture appears too simplistic as far as natural formations are concerned. In porous media, it is
in fact a rule, rather than the exception, that the conductivity is varying in the space into an erratic
manner, therefore defying any attempt to regard it as a constant. In order to account for these erratic
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κ = 1/10

κ = 10/1

Ω∞

Ω∞

Q −Q

Ω0

Ω0

Q −Q

FIG. 3. Contour plot of the scaled hydraulic head hK∞/ Q for two largely different values of the contrast
ratio κ = K0/K∞. The center of the inclusion (whose radius is R0 = �/4) is placed between the sink and the
source.

variations and the associated uncertainty, it is customary to regard the natural logarithm Y of the
conductivity as a stationary, Gaussian, random field [18]. In general, modeling Y as a random field
is equivalent to the approach adopted in a large variety of turbulent flows, such as flow in pipelines,
density-driven flows, flow through pumps and turbines, and reactive flows (a wide review can be
found in [19]). The difference is that in turbulent flows the random nature of the depending scalar
field is due to the velocity which is regarded as a given random field, whereas in the present study
the random nature of the flow variables stems from the spatial variability of the conductivity.

Before proceeding further, we wish to briefly discuss the pertinency of a two-dimensional
approach (considered in the present study) to mimic a flow pattern that, in the presence of wells,
is generally three-dimensional. In this case, the requirement is that streamlines are linear [20,21]:
a condition which is certainly met in absence of well screening and if the well is fully penetrating
(see, e.g., [22,23]). Likewise, at the regional scale [24], if the well is fully penetrating and the
aquifer’s thickness is small as compared to relevant horizontal length scale for the problem at
stake, one can resort with a two-dimensional approach. Hence, the modeling approach employed
in the sequel is relevant not only from the theoretical point of view, but also for the practical
applications.
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A central question in the theory of heterogeneous media is whether one can define an effective
constitutive law even when flow is driven by a system of isolated and/or distributed sources. While
this topic is well established in the case of a flow driven by a uniform mean velocity (see [25], and
references therein), to our knowledge there are no studies dealing with the analogous problem for
a dipole-flow. In the case of flow driven by a single source, Ref. [8] has recently derived the EC,
relating the mean flux 〈q〉 to the mean gradient ∇〈h〉 in the Darcy law, i.e., 〈q〉 = −Keff ∇〈h〉. The
important result is that the EC is position-dependent.

In the present study, we generalize such an approach to account for a system of sink/source.
Toward this aim, we adhere to the standpoint of the SCA [26]: the porous formation is sought as
a collection of a large number N of randomly arranged, homogeneous, non-overlapping circular
inclusions of different conductivity values. Generally, a two-dimensional formation exhibits hor-
izontal integral scales of the same size (see, e.g., Tables 2.1 and 2.2 in [18]), and therefore Y is
regarded as an isotropic random field. In this case, the use of circular inclusion is not limiting,
since it leads to results which match very well numerical simulations [27,28]. Instead, if one deals
with the vertical heterogeneity, the conductivity exhibits a vertical integral scale lesser than the
horizontal one. As a consequence, the heterogeneity structure is anisotropic, and adopting inclusions
like ellipses would be worthwhile (for details, see, e.g., [29–31], and references therein). Then, by
recalling that the flow domain is large enough to apply ergodicity to the conductivity values (details
about the attainment of such a requirement are discussed by [24]), one can replace the actual for-
mation with the ensemble average, and therefore the simultaneous interaction among the numerous
inclusions can be approached by focusing upon a single one implanted into a medium homogenized
by a background. It is therefore clear that, in order to apply the SCA to a dipole, solving the flow in
the configuration of Fig. 1 becomes the crucial prerequisite. For this single realization, we consider
the actual flux q as disturbed by the inclusion �0 of conductivity K0 �= K∞, and center at |z0| ≡ r0.
Thus, the fluctuation q′ is obtained by means of the Reynolds decomposition as

q′(x) = q(x) − q∞(x), (20)

being q∞(x) = −K∞∇h(x) the flux of the background �∞ where, unlike the deterministic case,
now K∞ is left unknown. Decomposition (20) is then averaged over all possible positions, sizes,
and conductivities to come up with

〈q(x)〉 = −K∞∇〈h(x)〉 + 〈q′(x)〉. (21)

From this latter, it is seen that to apply the SCA, one has to require that 〈q′〉 ≡ 0 throughout the
flow domain �∞. In a different manner, the EC is such to compensate (in the ensemble average
sense) the deviation of the flux from the mean value. This methodology is bound to be accurate if
(i) interactions between inclusions are neglected, (ii) blocks are circles, and (iii) the domain is much
larger than the single inclusions. In particular, due to the assumption of total randomness of the
location of the inclusion, the ensemble average over the position is replaced by a spatial integration
over a large circle �R of radius R 	 r0 surrounding �0, i.e.,

1

�R

∫
�R

dx q′(x) = 1

�R

∫
�0

dx [q′
0(x) − q′

∞(x)] + 1

�R

∫
�R

dx q′
∞(x), (22)

where we have set

q′
∞(x) = − Q

1 − κ

1 + κ
∇ f∞(x), q′

0(x) = Q
1 − κ

1 + κ
∇ f0(x), (23)

f∞(x) ≡ ln

( |x − x′
0|

|x − x′′
0|

)
, f0(x) ≡ ln

( |x|
|x − �|

)
, (24)

x′
0 ≡ (Re z′

0, Im z′
0), x′′

0 ≡ (Re z′′
0, Im z′′

0 ), � ≡ (�, 0). (25)
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Thus, application of the SCA leads to the following general result:〈
Keff − K0

Keff + K0
�i(R0, r0)

〉
= 0, (i = 1, 2), (26)

being

�i(R0, r0)
R→∞= 1

�R

∫
�0

dx
∂

∂xi
[ f0(x) + f∞(x)] + 1

�R

∫
�R

dx
∂

∂xi
f∞(x). (27)

The algebraic equations (26) enable one to compute the two components of the EC, once the joint
probability distribution f ≡ f (K0,R0, r0) is selected. The most important feature, which is detected
from inspection of (26), is the dependence of the EC upon the configuration through the terms (27),
a feature which prevents de facto considering Keff as a local medium’s property. However, if K0 and
(R0, r0) are uncorrelated random fields, from Eq. (26) it yields〈

Keff − K0

Keff + K0

〉
= 0, (28)

whose solution is the geometric mean, i.e., Keff ≡ KG = exp〈Y 〉 (in agreement with [32]). In this
case, one can regard Keff as a medium’s property (similarly to a mean uniform flow [24]), and
concurrently dipole-flow can be solved by superimposing two single sources of opposite strength,
with the conductivity K∞ replaced by KG.

Turning to Eqs. (26), the evaluation of the integrals appearing on the right-hand side of (27) is
achieved by means of the Green’s theorem, and the final result is

�i
R→∞= 2 n0

{
r−1

0 , i = 1,

|r0 − �|−1, i = 2,
(29)

being the ratio n0 ≡ �0/�R equal, in the limit N → ∞, to f (K0,R0) dK0 dR0. For fixed r0,
Eqs. (26), together with (29), are grouped into a single one (accounting for the fact that the
inclusion’s radius R0 is required to be lesser than min{r0, |� − r0|} ≡ r<) as follows:∫ ∞

0

∫ r<

0
dK0 dR0 f (K0,R0)

Keff − K0

Keff + K0
= 0. (30)

In particular, for � 	 r0, the sink does not impact the near field, and in (30) one can replace r< → r0,
thus obtaining the equation for the EC valid for a flow generated by a single source (in agreement
with [8]).

Based on field findings (a comprehensive review can be found in [18]), hereafter we shall assume
that K0 and R0 are both log-normally distributed (with correlation coefficient ρ). As a consequence,
one quadrature appearing in (30) is easily carried out, leading to∫ +∞

−∞
dY ′ exp

(
− Y ′ 2

2σ 2
Y

)
κ eff − expY ′

κ eff + expY ′ erfc[ξ (Y ′)] = 0 (31)

with Y ′ = Y − 〈Y 〉 (fluctuation of Y = ln K0). In addition, we have set

κ eff = Keff

KG
, ξ (u) = ρu/σY − Z</σZ√

2(1 − ρ2)
, (32)

being Z< = ln(r</ZG) the log-transform of r< normalized by the geometric mean of Z = ln R0,
whereas σ 2

Z is the variance of Z . Likewise, KG and σ 2
Y are the geometric mean and variance of Y ,

respectively.
It is easy to check that the continuous function

F (u) ≡
∫ +∞

−∞
dY ′ exp

(
− Y ′ 2

2σ 2
Y

)
u − expY ′

u + expY ′ erfc[ξ (Y ′)] (33)
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Keff

KG

σ2
Y

ρ = −0.8

−0.6

−0.4

−0.2

0.0

0.2
0.4
0.6
0.8

FIG. 4. Normalized EC as function of the variance σ 2
Y , and several values of the correlation coefficient

ρ. The EC pertaining to a mean uniform flow (green, thick, dashed line) is also shown. Other parameter:
ω ≡ Z</σZ = 0.1. The inset shows the comparison between numerical simulations (symbols) and analytical
self-consistent model (lines) of the scaled EC.

is such that F (0) < 0, F (+∞) > 0, and F ′(u) > 0 (any u ∈ [0,+∞[). As a consequence,
Eq. (31) admits a single solution κ eff (to be searched numerically). Moreover, since (33) is a convex
function of the u variable, one can consider the tangent to F ≡ F (u) in the point (0,F (0)) to
obtain a lower bound, κeff

� , of the normalized EC. The final result is

κeff
� = − F (0)

F ′(0)
. (34)

The bound (34) can be used to check the accuracy of more involved numerical codes (accounting,
for instance, for complex boundary conditions). In addition, κeff

� has been used in the numerical
solution of (31) leading to Fig. 4, showing Keff (normalized by KG) as function of σ 2

Y , and several
values of the correlation coefficient ρ. The left parameters are grouped in the term ω = Z</σZ

which, for illustration purposes, is taken equal to 0.1 (similar conclusions are drown for any other
ω ∈ R). It is seen that a negative correlation (red lines in Fig. 4) is attached to an EC larger than the
background KG, whereas the opposite happens (blue lines in Fig. 4) for ρ > 0. In order to provide
a mechanical explanation of such a behavior, we can focus on the pattern of the flow as determined
by a single inclusion �0 (see Fig. 3) embedded into a matrix of conductivity K∞ (being the EC
computed over many of such realizations).

Starting with the case of negatively correlated K0 - R0, we consider the behavior of the fluctuation
q′ at a point P0 ∈ �∞, that is chosen close to the boundary ∂�0 of the inclusion (away from ∂�0

the background flow is not impacted by q′). Thus, a reduction of R0 implies an increase of K0,
and concurrently one has κ > 1. Hence, due to the mass conservation, isoheads become denser
outside �0 (Fig. 4), and therefore the fluctuation in P0 (that still lays in �∞) is such to reduce the
background flux. As a consequence, the SCA requires the EC to increase in order to compensate
the increment of the flux passing through �0. A similar argument applies for an increase of R0
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determining a reduction of K0 (i.e., κ < 1). Indeed, in this case P0 now falls within the inclusion,
where the fluctuation q′ reduces the flux there (due to the fact that �0 behaves like a flow barrier).
Again, the EC has to increase in order to meet the requirement of the SCA.

The same reasoning is adopted to explain why, for ρ > 0, the EC is less than KG. In fact, in this
case a reduction of R0 produces a reduction of K0 (κ < 1), and concurrently the fluctuation q′ in P0

(belonging to �∞) produces an increment in the background flux. This determines a reduction
of the EC as compared with that of the background KG. Likewise, consider an increase of the
inclusion’s radius, corresponding to an increase in the conductivity K0 (κ > 1). The point P0 now
belongs to �0, where the flux has increased (the density of the isohead values drastically reduces
inside the inclusion), and again the EC reduces. For ρ = 0, one recovers the solution κeff = 1.
Moreover, it is seen that the deviation of the EC from the geometric mean KG increases/decreases
with negative/positive ρ, respectively. For comparison purposes, in Fig. 4 we have also depicted
(green, thick, dashed line) the normalized EC pertaining to a mean uniform flow (Eq. (45) in [33],
with m = 2).

To assess the analytical results, numerical (Monte Carlo) simulations have been carried out, as
well. The numerical (crossed symbols in the inset of Fig. 4) values of the scaled effective con-
ductivity Keff/KG are found in a relatively good agreement with their analytical (continuous lines)
counterparts. In particular, the Monte Carlo simulations are limited to σ 2

Y � 1, since accounting
for larger σ 2

Y values would have demanded a very dense discretization of the flow domain, thus
leading to an extremely large number of algebraic equations. In addition, a large Y variance rapidly
deteriorates any numerical approximation of the Dirac pulse (no matter how efficient is its numerical
approximation [34]). To conclude our discussion of the results, we wish to emphasize that the
analytical solution (31), being based only upon the univariate probability density function of Y ,
relies on a quite robust, seldom met (see, e.g., field data in Tables 2.1 and 2.2 in [18]) assumption
which allows one to avoid more sophisticated approaches, such as those based upon the concept of
connectivity [35,36] or training images [37].

IV. CONCLUDING REMARKS

Steady dipole-flow through a porous medium of background conductivity K∞, and disturbed
by a circular inclusion with K0 �= K∞, is solved here. The adopted method, relying upon a slight
modification of the circle theorem [16], is fairly general and therefore it can be adopted for other
flow configurations, as well.

We have derived a closed-form solution for the potential, consisting of (i) the potential pertaining
to the homogeneous domain, and (ii) a paired (fictitious) source/sink system lying inside the
inclusion, in order to account for the mass and energy conservation on the boundary of the inclusion.
The analytical solution is exact (no approximation or perturbations are employed), and it contains
the solutions of flow disturbed by an inclusion of zero conductivity as a particular case.

Besides the theoretical interest, our analytical solution provides a way of modeling the stochastic
heterogeneity of aquifers by means of the SCA. Thus, we have focused on the computation of the
effective conductivity, a topic which has been intensively studied for mean uniform flows, and only
recently it has been applied to flows generated by a single source.

The EC is derived by assuming the following: (i) The matrix surrounding each inclusion is
replaced by a homogeneous background of conductivity K∞. Such an approximation is bound to
be quite accurate if interactions between blocks are negligible. (ii) Inclusions are circular, which
is a quite accurate approximation for an isotropic medium. (iii) The domain is large compared to
that of the inclusion, in order to invoke ergodicity. Although assumptions (i)–(iii) are clearly an
approximation, they nevertheless do not limit the accuracy of the final result, as was assessed by
[28] by means of very accurate numerical simulations.

The main result is that the EC is not generally a medium’s property (nonlocality). In particular,
the EC is found lower/larger than the background KG if the coefficient of correlation ρ between the
conductivity and the position of the inclusions making up the porous medium is positive/negative,
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respectively. This is explained straightforwardly as a consequence of the mass conservation at the
boundary of the inclusion.

Our results find application in the numerical study of the advective transport through strongly
heterogeneous (large σ 2

Y ) porous formations. Not disregarded, they can also be used as a benchmark
to validate more involved (accounting, for instance, for the presence of boundaries) numerical codes
[38,39].

ACKNOWLEDGMENTS

The present study was developed within the GNCS (Gruppo Nazionale Calcolo Scientifico -
INdAM) framework. We thank the associate editor and the two referees for their comments, which
have significantly improved the early version of the manuscript.

[1] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, Oxford, 2000).
[2] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 2007).
[3] A. Zech, C. D’Angelo, S. Attinger, and A. Fiori, Revisitation of the dipole tracer test for heterogeneous

porous formations, Adv. Water Resour. 115, 198 (2018).
[4] M. Di Dato, F. P. de Barros, A. Fiori, and A. Bellin, Improving the efficiency of 3-d hydrogeological

mixers: Dilution enhancement via coupled engineering-induced transient flows and spatial heterogeneity,
Water Resour. Res. 54, 2095 (2018).

[5] G. Severino, Dispersion in doublet-type flows through highly anisotropic porous formations, J. Fluid
Mech. 931, A2 (2022).

[6] A. Chamolly and E. Lauga, Stokes flow due to point torques and sources in a spherical geometry, Phys.
Rev. Fluids 5, 074202 (2020).

[7] P. G. Ledda, L. Siconolfi, F. Viola, F. Gallaire, and S. Camarri, Suppression of von Karman vortex streets
past porous rectangular cylinders, Phys. Rev. Fluids 3, 103901 (2018).

[8] G. Severino, Effective conductivity in steady well-type flows through porous formations, Stochastic
Environmental Research and Risk Assessment 33, 827 (2019).

[9] S. W. Wheatcraft and F. Winterberg, Steady state flow passing through a cylinder of permeability different
from the surrounding medium, Water Resour. Res. 21, 1923 (1985).

[10] P. Meliga, Computing the sensitivity of drag and lift in flow past a circular cylinder: Time-stepping versus
self-consistent analysis, Phys. Rev. Fluids 2, 073905 (2017).

[11] M. Sahimi, Heterogeneous Materials I: Linear Transport and Optical Properties (Springer Science &
Business Media, 2003).

[12] B. Noetinger, L. Hume, R. Chatelin, and P. Poncet, Effective viscosity of a random mixture of fluids,
Phys. Rev. Fluids 3, 014103 (2018).

[13] J. Koplik, S. Redner, and E. Hinch, Tracer dispersion in planar multipole flows, Phys. Rev. E 50, 4650
(1994).

[14] P. Kurowski, I. Ippolito, J. Hulin, J. Koplik, and E. Hinch, Anomalous dispersion in a dipole flow
geometry, Phys. Fluids 6, 108 (1994).

[15] M. Bianchi, C. Zheng, G. R. Tick, and S. M. Gorelick, Investigation of small-scale preferential flow with
a forced-gradient tracer test, Groundwater 49, 503 (2011).

[16] L. M. Milne-Thomson, Theoretical Hydrodynamics (Courier Corporation, 1968).
[17] G. A. Bruggeman, Analytical Solutions of Geohydrological Problems (Elsevier, Amsterdam, 1999).
[18] Y. Rubin, Applied Stochastic Hydrogeology (Oxford University Press, 2003).
[19] S. B. Pope, Turbulent Flows (Cambridge, 2010).
[20] G. Dagan and S. C. Lessoff, Transmissivity upscaling in numerical aquifer models of steady well flow:

Unconditional statistics, Water Resour. Res. 43, W054311 (2007),.
[21] G. Dagan, S. C. Lessoff, and A. Fiori, Is transmissivity a meaningful property of natural formations?

Conceptual issues and model development, Water Resour. Res. 45, W03425 (2009).

064101-11

https://doi.org/10.1016/j.advwatres.2018.03.006
https://doi.org/10.1002/2017WR022116
https://doi.org/10.1017/jfm.2021.929
https://doi.org/10.1103/PhysRevFluids.5.074202
https://doi.org/10.1103/PhysRevFluids.3.103901
https://doi.org/10.1007/s00477-018-1639-5
https://doi.org/10.1029/WR021i012p01923
https://doi.org/10.1103/PhysRevFluids.2.073905
https://doi.org/10.1103/PhysRevFluids.3.014103
https://doi.org/10.1103/PhysRevE.50.4650
https://doi.org/10.1063/1.868075
https://doi.org/10.1111/j.1745-6584.2010.00746.x
https://doi.org/10.1029/2006WR005235
https://doi.org/10.1029/2008WR007410


SEVERINO, DE PAOLA, AND TORALDO

[22] D. Fernández-Garcia, T. H. Illangasekare, and H. Rajaram, Conservative and sorptive forced-gradient and
uniform flow tracer tests in a three-dimensional laboratory test aquifer, Water Resour. Res. 40, W10103
(2004).

[23] D. Fernandez-Garcia, X. Sánchez-Vila, and T. H. Illangasekare, Convergent-flow tracer tests in hetero-
geneous media: Combined experimental-numerical analysis for determination of equivalent transport
parameters, J. Contam. Hydrol. 57, 129 (2002).

[24] G. Dagan, Flow and Transport in Porous Formations (Springer, 1989).
[25] S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer

Science & Business Media, 2013).
[26] S. Kanaun and V. Levin, Self-Consistent Methods for Composites: Static Problems (Springer Science &

Business Media, 2007).
[27] A. Fiori, I. Jankovic, and G. Dagan, Effective Conductivity of Heterogeneous Multiphase Media with

Circular Inclusions, Phys. Rev. Lett. 94, 224502 (2005).
[28] I. Jankovic, A. Fiori, and G. Dagan, Effective conductivity of an isotropic heterogeneous medium of

lognormal conductivity distribution, Multiscale Model. Simul. 1, 40 (2003).
[29] G. Dagan and A. Fiori, Time-dependent transport in heterogeneous formations of bimodal structures: 1.

The model, Water Resour. Res. 39, 1112 (2003).
[30] G. Dagan and S. Lessoff, Solute transport in heterogeneous formations of bimodal conductivity distribu-

tion: 1. Theory, Water Resour. Res. 37, 465 (2001).
[31] A. Fiori and G. Dagan, Time-dependent transport in heterogeneous formations of bimodal structures: 2.

Results, Water Resour. Res. 39, 1125 (2003).
[32] P. Indelman, Averaging of unsteady flows in heterogeneous media of stationary conductivity, J. Fluid

Mech. 310, 39 (1996).
[33] G. Dagan, Models of groundwater flow in statistically homogeneous porous formations, Water Resour.

Res. 15, 47 (1979).
[34] V. Schiano Di Cola, S. Cuomo, and G. Severino, Remarks on the numerical approximation of Dirac delta

functions, Results in Applied Mathematics 12, 100200 (2021).
[35] A. Fiori, F. Boso, F. P. de Barros, S. De Bartolo, A. Frampton, G. Severino, S. Suweis, and G. Dagan, An

indirect assessment on the impact of connectivity of conductivity classes upon longitudinal asymptotic
macrodispersivity, Water Resour. Res. 46, W08601 (2010).
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