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Coherence is a fundamental notion in quantum mechanics, defined relative to a reference basis. As such, 
it does not necessarily reveal the locality of interactions nor takes into account the accessible operations 
in a composite quantum system. In this paper, we put forward a notion of localizable coherence as the 
coherence that can be stored in a particular subsystem, either by measuring or just by disregarding 
the rest. We examine its spreading, its average properties in the Hilbert space and show that it can be 
applied to reveal the real-space structure of states of interest in quantum many-body theory, for example, 
localized or topological states.
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1. Introduction

One of the most striking properties of quantum mechanics is 
the fact that the state of a quantum system can be expressed 
as a coherent superposition of different physical states, that is, 
the eigenstates corresponding to actual measurable values of some 
observable. Since these eigenstates constitute a basis of perfectly 
distinguishable states, the coefficients of this linear expansion 
also depend on the basis. All the purely quantum features are 
closely related to the presence of quantum coherence, which ex-
perimentally manifests itself in interference and quantum fluctu-
ations [1]. The passage from classical to quantum world is in-
deed believed to be due to decoherence [2]. Preserving quantum 
coherence, and thus fighting decoherence, is one of the most fun-
damental challenges [3–5] for protocols of quantum information 
processing [6].

The quantitative theory of coherence has witnessed several ad-
vances in recent years [7–9] together with its application to the 
fields of quantum metrology [10,11], quantum foundations [12,13], 
quantum biology [14] and quantum thermodynamics [15,16]. This 
approach has also motivated various efforts to extend the quan-
tification of coherence from quantum states to quantum opera-
tions [17–21]. In particular, one notion that has surfaced is that of 
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coherence-generating power for a quantum map [22–25], namely 
how much coherence can be on average be obtained by a given 
class of quantum operations.

The notion of coherence per se makes no reference to the lo-
cality of a quantum system [8]. In other words, the basis with 
respect to which coherence is defined does not necessarily require 
any underlying tensor product structure of the Hilbert space, as 
is the case, e.g., for entanglement. On the other hand, every re-
alistic quantum operation is local because of the observables one 
has access to [26]. To that end, a few approaches towards taking 
into account the subsystem structure have been proposed [27–31]. 
One of the basic ideas utilized is to consider incoherent states 
and operations that, at the same time, respect the underlying local 
structure of the Hilbert space, obtaining various hybrids between 
coherence and entanglement.

In this paper, we put forward a notion of localizable coherence, 
that is, the coherence that can be stored in a particular subsystem 
of a quantum system with a given tensor product structure. We 
investigate different protocols, that involve either disregarding or 
actively measuring a part of the system, so as to localize quantum 
coherence in the rest of it. We compute average properties of the 
introduced quantities in the Hilbert space and investigate the role 
that measurements, with or without post-selection, have in local-
izing coherence. Once one has introduced a notion of locality, we 
use this quantity to characterize the coherence of states that have 
a particular real space structure, e.g., localized or topological states.
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2. Localizing coherence

2.1. Localizing coherence by tracing out

Consider a (finite dimensional) Hilbert space H =HS ⊗HA . We 
see HS as the subsystem in which we want to store coherence, and 
HA as an environment or an ancillary system. Let dim(H) = d =
dSdA . Given a quantum state ρ ∈ B (H), a natural way of obtaining 
a quantum state over HS would be to just trace out the ancillary 
part and obtain ρS = TrA(ρ); then, picking a preferential basis B S

on HS , one could simply consider the coherence of the state ρS in 
that basis.

However, it appears immediately that this strategy cannot pro-
duce much coherence in HS . The marginal state ρS is a state 
that has decohered considerably [2] unless ρ is close to separa-
ble, which is a rare event [32]. Indeed, with high probability, the 
marginal state will be typically indistinguishable from the maxi-
mally mixed state (for dA � dS � 1) which is completely incoher-
ent.

Let us make the above observation more precise. For any mea-
sure of coherence cB with respect to a basis B , one can define the 
coherence of the reduced state cB S (ρS ) to represent coherence lo-
calized in S . We denote

C (S)
Tr,B S

(ρ) :=cB S [TrA(ρ)] . (1)

The connection between coherence and mixedness, as quantified 
by purity, is illustrated well if one uses in place of the coherence 
measure cB the (squared) 2-norm of coherence [19,22,33]. The lat-
ter is given by

c2,B(σ ) := ‖(I −DB)σ‖2
2 = Pur(σ ) − Pur [DB(σ )] , (2)

where ‖X‖2 :=
√

Tr
(

X† X
)

denotes the (Schatten) 2-norm,

DB S (X) := ∑
k χk Xχk is the dephasing superoperator, B S = {χk}dS

k=1
denotes a basis on HS consisting of rank-1 orthogonal projectors 
χk = |k〉〈k|, while Pur(ρ) := Tr(ρ2) denotes the purity.1 With re-
spect to this measure of coherence, one obtains in terms of purity,

C (S)
Tr,B S

(ρ) = Pur (TrA(ρ)) − Pur
(
DB S TrA(ρ)

)
. (3)

As it can be seen from the above equation, the purity of the re-
duced state establishes an upper bound to the coherence of the 
reduced state.

For a random pure state (i.e., an initial pure state distributed 
according to the Haar measure ρ = U |ψ〉 〈ψ | U †) the average pu-
rity is

Pur
[
TrA(U |ψ〉 〈ψ | U †)

]U = dS + dA

dSdA + 1
(4)

which implies that, for dA � dS , TrA(ρ) is typically maximally 
mixed [35]. Using this result, a straightforward calculation gives 
for the coherence

C (S)
Tr,B S

[
U |ψ〉 〈ψ | U †)

]U
= dS − 1

d + 1
. (5)

Even for dS 	 dA , one obtains an average coherence C (S)
Tr,B S

∼ 1/dS

which is exponentially small in the number of constituents in the 
S system.

1 Notice that the 2-coherence c2,B might fail to satisfy the monotonicity property 
under the action of the free operations, depending on how one defines the resource 
theory of coherence (see, e.g., [9] for more details). Nevertheless, it admits a simple 
interpretation as an escape probability [34].
2

We have seen that the more a state is entangled, the less co-
herence can be stored in the local system by just tracing out the 
ancillary part. One can evaluate the relationship between coher-
ence and entanglement by writing a pure state ρ in a Schmidt 
decomposition. Expressing

ρ =
R∑

a,b=1

cac∗
b |ξaηa〉〈ξbηb| , (6)

the reduced density matrix reads ρS = ∑R
a |ca|2 |ξa〉〈ξa|. The 2-

norm of coherence of the reduced state ρS is given by

c2,B S (ρS) =
∑

a

|ca|4 −
∑

k

(∑
a

|ca|2|〈ξa|k〉|2
)2

. (7)

Recall that two bases are mutually unbiased if the modulus of the 
inner product between any two basis states is equal to d−1/2. Then, 
from the above expression, it also follows that, for a fixed reduced 
state ρS , the coherence c2,B S (ρS ) is always maximum over a basis 
that is unbiased with respect to the Schmidt basis {|ξa〉〈ξa|}a (more 
generally, unbiased to an eigenbasis of ρS ). Therefore, in order to 
maximize coherence, one should measure it over a basis that is as 
unbiased as possible with respect to the Schmidt basis.

One can additionally consider the l1-norm of coherence2 [8], 
which reads

c1,B(σ ) := ‖(I −DB)σ‖l1 (8)

(σ above is understood as a matrix in the B basis) and, for the 
reduced state, it gives

c1,B S (ρS) =
∑
k �=k′

∣∣∣ R∑
a=1

|ca|2〈ξa|k〉〈k′|ξa〉
∣∣∣ . (9)

We will see later in section 5.2 that these expressions are useful in 
the case of quantum states with a particular structure, e.g., topo-
logically ordered states.

2.2. Localizing coherence by measurement

Let us now investigate an alternative strategy to localize co-
herence in S that involves performing an orthogonal measurement 
on the ancillary system HA . After the measurement process, the 
resulting state is in a product form (some state on HS times an 
eigenstate of the operator measured on HA ). This is a strategy 
that has been employed to localize entanglement and circumvent 
the notorious difficulties in measuring entanglement in a mixed 
state [36]. We pick some preferred basis B A := {ωi}dA

i=1 where the 
ωi := |i〉〈i| form a complete set of rank-1 projectors over HA . A 
measurement on HA of a (non-degenerate) observable diagonal in 
B A with result “i” transforms ρ to a product state of the form

ρ ′
i := TrA (ρ I S ⊗ ωi)

Tr (ρ I S ⊗ ωi)
⊗ ωi . (10)

This is the result of the measurement where one has retained the 
information about the outcome i.

For a measurement that is non-selective, since each ρ ′
i is ob-

tained with probability pi = Tr (ρ I S ⊗ ωi), the post-measurement 
state in H is

ρ ′ = DB A (ρ) :=
∑

i

TrA (ρ I S ⊗ ωi) ⊗ ωi =
∑

i

piρ
′
i (11)

2 ‖X‖l1 := ∑
i j |Xij | for a matrix X .
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where

DB A (X) =
∑

i

I S ⊗ ωi X I S ⊗ ωi , ∀ X ∈ B(H) (12)

is the dephasing superoperator with respect to the basis B A , and 
similarly DB S is the dephasing superoperator in a basis of HS . 
Note that if a basis B of H factorizes, i.e., the projectors can take 
the form B = B S ⊗ B A , then also the (total) dephasing factorizes, 
namely

DB = DB SDB A (13)

and

DB (X) =
∑

kl

χk ⊗ ωl Xχk ⊗ ωl , ∀ X ∈ B(H) . (14)

In the rest of the paper, we will always assume that the basis fac-
torizes appropriately.

At this point, given a coherence measure cB , we can define the 
following two quantities: The first one,

C (S)
B (ρ) := cB

(
DB A ρ

)
(15)

corresponds to the coherence of the post-measurement state ρ ′ , 
considered over the whole Hilbert space H. Notice that the re-
duced state TrS (ρ

′) is incoherent. The second quantity is

C (S)
ave,B(ρ) :=

∑
i

pi cB S

(
ρ ′

S,i

)
(16)

where

ρ ′
S,i := TrA

(
ρ ′

i

) = TrA (ρ I S ⊗ ωi)

Tr (ρ I S ⊗ ωi)
(17)

corresponds to the post-selected state in S . Therefore the quantity 
in Eq. (16) corresponds to the average coherence present in each 
post-measurement state, restricted to the subsystem S .

Using the definitions introduced in Eqs. (15) and (16), one could 
also define the corresponding optimal localizable coherence by 
taking the supremum over the measurement basis in a given state, 
or perform the average localizable coherence by Haar averaging 
over the states, which we will analyze later in section 4.

Let us compare the two protocols C (S)
ave,B and C (S)

B under some 
general assumptions for the coherence measure. If the measure cB

is convex it immediately follows that

C (S)
B (ρ) ≤

∑
i

picB(ρ ′
S,i ⊗ ωi) . (18)

In addition, if the measure also satisfies cB (ρ ⊗ ωi) = cB S (ρ) (for 
all i and states ρ), then one immediately gets that

C (S)
B (ρ) ≤ C (S)

ave,B(ρ) . (19)

Notice that the measures c1,B and c2,B satisfy both assumptions, 
hence also the above inequality.

Let us now compare the above quantities (that involve mea-
surement) with the earlier protocol C (S)

Tr,B S
of tracing out the ancil-

lary part. For the coherence measure c1,B it holds that

C (S)
Tr,B S

(ρ) ≤ C (S)
B (ρ) . (20)

In fact, the above inequality is true for any coherence measure 
that is monotonic with respect to the operation of partial dephas-
ing I ⊗DB A , and also to partially tracing out part A. Indeed, c1,B

has both of these properties [8]. Notice, however, that although 
3

c2,B also satisfies monotonicity under partial dephasing,3 it fails to 
satisfy monotonicity under the partial trace, as it can be checked 
explicitly by considering a product state.

Notice that the (non-selective) measurement procedure corre-
sponding to C (S)

B will not be able to localize any coherence in the 
system S if we start with a state that is already incoherent. In fact, 
if the coherence measure cB is monotonic with respect to D B A , the 
resulting coherence C (S)

B (ρ) is upper bounded by cB (ρ).
We now regard the question of finding the basis B S that maxi-

mizes each of the localizable coherence by measurements C (S)
B (ρ)

and C (S)
ave,B(ρ), for fixed B A and ρ . The optimal basis turns out to 

be simple for the case when {ρ ′
S,i}i are mutually commuting and 

the coherence measure is c2,B . Then, as we show in Appendix A, 
both localizable coherences become maximal for any B S that is 
unbiased with respect to B ′

S which simultaneously diagonalizes 
{ρ ′

S,i}i . However, we expect the answer to be more complicated 
for general scenarios.

Let us now invoke the above result to make a connection with 
entanglement. As a first simple example, let us consider a sepa-
rable pure state |ψ〉 = |ξ〉 |η〉. For any choice of the measurement 
basis B A , the assumption of mutually commuting {ρ ′

S,i}i is trivially 
satisfied, and hence an optimal B S is given by any basis that is 
unbiased to the single element |ξ〉〈ξ |.

One can also consider as an example the opposite limit of a 
maximally entangled pure state, i.e., as in Eq. (6) with dA = dB =√

d and ca = d−1/4. For a measurement basis B A related with the 
Schmidt basis {|ηa〉〈ηa|}a of the ancillary system by a quantum 
Fourier transform F , it follows that the optimal basis on the sys-
tem part is given by the Schmidt basis itself B S = {|ξa〉〈ξa|}a . This 
is because all {ρ ′

S,i}i are mutually commuting and, in fact, diagonal 
in the basis F(B S ).4 Since B S and F(B S ) are unbiased, the claim 
follows.

3. Spreading of localizable coherence

Consider a local quantum system H	 = ⊗x∈	Hx on a lattice 
	 endowed with graph distance d(x, y) and with each local sys-
tem a d-level system Hx 	Cd . We will assume that the dynamics 
is described by a local Hamiltonian, that is, a Hamiltonian sum 
of local operators H = ∑

X 
X where X ⊂ 	 and the operators 

X are bounded hermitian operators on HX = ⊗x∈XHx . The map 

 : X �→ 
X is the interaction map that specifies the physical inter-
actions between the particles in the system (including one-body 
terms). The locality of the subset of sites X ∈ 	 is specified by 
a bound on the number of sites in X , that is, |X | < R and the 
maximum distance between two sites in X , that is, diam(X) =
maxx,y∈X d(x, y) < r. The number R represents a bound to the 
maximum number of bodies in an interaction, while r specifies 
the maximum distance at which bodies can interact. In this model, 
correlations spread out with a maximum speed given by the Lieb-
Robinson bounds [37–39]. In this section we investigate whether 
also localizable coherence spreads with a given speed.

In order to establish a connection with our previous setup, we 
consider a tripartition of the Hilbert space H = HA ⊗ HC ⊗ HS . 
Here, HS denotes the Hilbert space of the system in which we 
want to localize coherence. Let the regions A, S be separated by a 
distance l. The localizable coherence in S at the time t depends on 
the details of the initial state ρ0 and on the dynamics, dictated by 
the Hamiltonian. Unitary evolution will bring the state from ρ0 to 

3 This follows from the fact that the 2-norm is monotonic under unital incoherent 
operations, such as the partial dephasing considered here.

4 One way to see this is by expressing ρ ′
S,i in the {|ξa〉〈ξa|}a basis; the resulting 

matrix is circulant (for all i) and hence diagonalizable by a Fourier transform.
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ρt = UρU † and we would like to investigate in this state the lo-
calizable coherence at S . What happens if someone at A performs 
a local quantum operation on the initial state ρ? In what follows, 
we focus for concreteness on the localizable coherence associated 
with c2,B .

The Lieb-Robinson bounds imply that it is impossible to send 
signals (up to an exponential tail) from A to S outside the light 
cone. Here we show that also C (S)

Tr,B S
(ρ) spreads ballistically ac-

cording to the maximum speed of signaling. On the other hand, a 
similar result fails to hold in general for both C (S)

B and C (S)
ave,B that 

are associated with measurements.
We now make the above claims precise. Let the initial state 

of the total system be ρ0 and assume some quantum operation is 
performed on A. Then we try to localize coherence on S after some 
time t . The quantum operation TA will be described by a CPTP 
map with support on A, i.e., its Kraus operators are of the form 
M̃i

A := Mi
A ⊗ I Ā ∀i, where X̄ thereafter denotes the complement of 

a region X . We can therefore define the input state as in that case 
as

ρ ′
0 = TA(ρ0) (21)

Finally, let U denote the unitary evolution operator to the time t
generated by our local Hamiltonian and also ρt , ρ ′

t the correspond-
ing time evolved states.

Our first result is that a Lieb-Robinson type bound holds for the 
localizable coherence C (S)

Tr,B S
, namely that∣∣∣C (S)

Tr,B S
(ρt) − C (S)

Tr,B S

(
ρ ′

t

)∣∣∣ ≤ c exp (−μl) [exp (s |t|) − 1] , (22)

where c, μ and s are positive constants. In particular, for the case 
of ρ0 = I/d, the above inequality reduces to

C (S)
Tr,B S

(
ρ ′

t

) ≤ c exp (−μl) [exp (s |t|) − 1] , (23)

expressing the fact that a state that is maximally mixed every-
where except possibly at the region A will have exponentially 
small localizable coherence C (S)

Tr,B S
outside the light cone.

Let us derive Eq. (22). We begin by first noticing that the func-
tion c2,B(ρ) is Lipschitz continuous, namely for any two states it 
holds that∣∣c2,B(ρ1) − c2,B(ρ2)

∣∣ ≤ 2‖ρ1 − ρ2‖2 . (24)

This follows from the sequence of inequalities (we set QB := I −
DB ),∣∣c2,B(ρ1) − c2,B(ρ2)

∣∣ =
∣∣∣‖QB(ρ1)‖2

2 − ‖QB(ρ2)‖2
2

∣∣∣
= (‖QB(ρ1)‖2 + ‖QB(ρ2)‖2

) ∣∣‖QB(ρ1)‖2 − ‖QB(ρ2)‖2

∣∣
≤ 2

∣∣‖QB(ρ1)‖2 − ‖QB(ρ2)‖2

∣∣
≤ 2‖QB(ρ1) −QB(ρ2)‖2 ≤ 2‖ρ1 − ρ2‖2 .

To show Eq. (22), we need to show that 
∥∥Tr S̄

(
ρt − ρ ′

t

)∥∥
2 is ex-

ponentially small outside the light cone. Since

‖ρ1 − ρ2‖2 ≤ ‖ρ1 − ρ2‖1 = sup
‖O‖∞=1

Tr [O (ρ1 − ρ2)]

let us consider TrS
[

O S Tr S̄

(
ρt − ρ̃t

)]
. We have,

TrS
[

O S Tr S̄

(
ρt − ρ̃t

)] = Tr
[

Õ S U
(
ρ0 − ρ̃0

)
U †

]
=Tr

[
Õ S(t)

(
ρ0 − ρ̃0

)] = Tr
(
(I − T ∗

A )[Õ S(t)]ρ0

)
≤∥∥(I − T ∗

A )Õ S(t)
∥∥∞ = ∥∥∑

i M̃
i †
A

[
M̃i

A, Õ S(t)
]∥∥∞

≤∑
i

∥∥[
M̃i

A, Õ S(t)
]∥∥∞ ,
4

where above we denote Õ S(t) := U † O S ⊗ I S̄ U , while in the last 
step we have used the fact that the trace preserving condition for 
TA implies that 

∥∥M̃i
A

∥∥∞ ≤ 1 ∀i. We therefore have, by combining 
the above inequality with Eq. (24), that∣∣∣C (S)

Tr,B S
(ρt) − C (S)

Tr,B S

(
ρ ′

t

)∣∣∣ ≤ 2 sup
‖O‖∞=1

∑
i

∥∥[
M̃i

A, Õ S(t)
]∥∥∞ .

Each of the above commutators satisfies a Lieb-Robinson bound 
of the form∥∥[

M̃i
A, Õ S(t)

]∥∥∞ ≤ 2‖O S‖∞ |S|exp (−μl) [exp (s |t|) − 1] (25)

hence we obtain Eq. (22) for c = 4d2
A |S|, where the positive con-

stants s and μ (specifying the Lieb-Robinson velocity) depend on 
the details of the Hamiltonian and the lattice.

As mentioned earlier, the localizable coherence by measure-
ment (selective or not) does not admit a similar Lieb-Robinson 
type bound. Indeed, considering an initial state that is sep-
arable ρ0 = ρ S

0 ⊗ ρ AC
0 , it is easy to see that the difference ∣∣∣C (S)

B (ρ0) − C (S)
B

(
ρ ′

0

)∣∣∣ �= 0, hence no bound analogue to Eq. (22)

exists for this quantity, and similarly for C (S)
ave,B .

4. Average localizable coherence

As we have seen in section 2.1, if we obtain a reduced state 
to the system S by tracing out the ancillary part A, it is ex-
pected that this reduced state will not have much coherence in 
the large Hilbert space dimension limit; typically states are max-
imally entangled [32]. In this section, we investigate the average 
value of localizable coherence in the Hilbert space by means of 
measurement, using the definitions Eqs. (15), (16). These results 
will prove useful to understand the local coherence structure of 
interesting quantum many-body states, such as many-body local-
ized (MBL) [40–42] states or topologically ordered states.

4.1. Average over global pure states

In this section, we compute the average of the localizable co-
herences C (S)

B , C (S)
ave,B over the pure states ρ in the Hilbert space 

according to the Haar measure. Since we are interested in aver-
age properties, we will be again using the l2-norm measure of 
coherence c2,B . In the following we will always assume that the 
coherence basis B = B S ⊗ B A factorizes. The two measures of co-
herence (15) and (16) then read

C (S)
B (ρ) = ∥∥(

DB A −DB
)
ρ
∥∥2

2 = Pur
(
DB A ρ

) − Pur (DBρ) (26a)

C (S)
ave,B(ρ) =

∑
i

pi
[
Pur

(
ρ ′

S,i

) − Pur
(
DB S ρ

′
S,i

)]
. (26b)

After a short calculation one can also obtain the alternative forms

C (S)
B (ρ) = cB S

(∑
i

piρ
′
i

)
=

∑
i

p2
i cB S (ρ

′
S,i) (27a)

=
∑

i

p2
i

(
Pur(ρ ′

S,i) − Pur(DB S ρ
′
S,i)

)
. (27b)

The average over the states ρ can be performed in many dif-
ferent scenarios. To start, we can average uniformly over all the 
pure states in the Hilbert space. To this end, we write ρ as 
ρU = U |ψ0〉 〈ψ0| U † for a generic reference state |ψ0〉. The average 
over ρ then becomes the Haar average over the unitary group [35].

We start with calculating C (S)
B (ρ)

ρ

. To this end, we double the 
Hilbert space as
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HS ⊗HA �→ HS ⊗HA ⊗HS ′ ⊗HA′ = H⊗H′ . (28)

We will denote as S the swap operator between H and H′ , acting 
on the corresponding basis vectors of H⊗2 as S |i j〉 = | ji〉, and also 
denote S X the swap operator between the X, X ′ partitions of the 
doubled system. Recall also that the total swap S factorizes as S =
S S ⊗ S A . We can then write the useful identities

Tr(X2) = Tr(S X ⊗ X) ∀ X ∈ B(H) (29)

and

ρ⊗2
U

U = 1

d(d + 1)
(I + S) . (30)

Exploiting the above identities we obtain

C (S)
B (ρU )

U
= Tr

[
S S ⊗ S A(D⊗2

B A
−D⊗2

B )U⊗2ψ⊗2
0 (U †)⊗2

]U

= Tr

[
S S ⊗ S A(D⊗2

B A
−D⊗2

B )
I + S S ⊗ S A

d(d + 1)

]

= 1

d(d + 1)
Tr [S S ⊗ S A (S S ⊗ P A − P S ⊗ P A)]

= 1

d(d + 1)
Tr

[
I⊗2

S ⊗ P A − P S ⊗ P A

]

= (dS)
2dA − dSdA

d(d + 1)
= dS − 1

d + 1
(31)

where we used the notation ψ0 := |ψ0〉〈ψ0|, also P A :=∑dA
i=1(|i〉 〈i|)⊗2 ∈ B(HA ⊗ HA′ ) and similarly for P S . In the third 

equality we used the fact that (D⊗2
B A

− D⊗2
B )I = 0 together with 

D⊗2
B A

(S S ⊗ S A) = S S ⊗ P A and D⊗2
B (S S ⊗ S A) = P S ⊗ P A . In the 

fourth equality we used S2
A,S = I⊗2

A,S and S A,S P A,S = P A,S .

In the limit of large Hilbert space dimension d, we have C (S)
B 	

1/dA . We see that this scheme of measurement returns on aver-
age exactly the same coherence as in the case of tracing out, see 
Eq. (5).

In the limit dS → d (and hence dA → 1) we recover the result 
from [22] about average coherence of Haar distributed pure states, 
that is,

cB(ρU )
U = d − 1

d + 1
. (32)

Now we calculate the global Haar average for C (S)
ave,B

(
Uψ0U †

)U
. 

In order to perform this calculation, it is convenient to write

C (S)
ave,B(ρ) =

∑
i

1

pi
Tr

(
S S(I⊗2 −D⊗2

B S
)[ρ(I S ⊗ ωi)]⊗2

)
.

This calculation is more challenging because of the presence of the 
probability factor p−1

i in the above equation. We now argue can 
substitute to this value its mean, with an error that becomes irrele-
vant for large Hilbert space dimension. On average, the probability 
factor for a given result “i” takes the value

pi(U )
U = Tr (ρU I S ⊗ ωi)

U = 1/dA (33)

This average value is also typical. Indeed, we can invoke Levy’s 
lemma [43] to bound the probability of having a result different 
from the average. The function pi = Tr (ρ I S ⊗ ωi) is a function 
from the (2n − 1)-dimensional sphere S2n−1 to the interval of real 
values [0, 1]. Moreover, this function is Lipschitz continuous with 
Lipschitz constant η = 1 since the maximum difference in proba-
bilities is bounded by one. We can then apply Lévy lemma with 
error ε = d−1/3 and obtain
5

Pr

(
|pi(ρ) − 1

dA
| ≥ d−1/3

)
≤ 3 exp

(
− d1/3

25π

)
(34)

which shows measure concentration of the function pi . At this 
point, we are justified to use a “mean field” approximation in the 

C (S)
ave,B(ρU )

U
calculation by substituting pi ≈ 1/dA , which we ex-

pect to be accurate for d � 1.
Computing the average we obtain

C (S)
ave,B(ρU )

U
=

=
∑

i

1

pi(U )
Tr

(
S S(I −D⊗2

B S
)(ρU I S ⊗ ωi)

⊗2
)U

≈ dA

∑
i

Tr

(
S S(I −D⊗2

B S
)ρ⊗2

U

U
(I S ⊗ ωi)

⊗2
)

= dA

d(d + 1)
Tr

(
I⊗2

S ⊗ P A − P S ⊗ P A

)
(35)

and thus

C (S)
ave,B(ρU )

U
≈ dS − 1

dS + 1/dA
. (36)

Notice that, in view of the mean field approximation, this result is 

just dA C (S)
B (ρU )

U
. We can see that in the large d limit we obtain 

a coherence of order one (e.g., in the limit of dA → ∞). Moreover, 
if dA = 1, we then recover Eq. (32).

4.2. Average over factorized states

In this section, we consider an initial product state |ψ0〉 =
|ψ0〉S ⊗ |ψ0〉A separable in the (S, A) bipartition. We are inter-
ested in computing the average localizable coherence to S ob-

tainable by measurement without post-selection, namely, C (S)
B (ρ)

ρ

. 
The density matrix ψ0 = |ψ0〉 〈ψ0| is of course of the form ψ0 =
ψ0,S ⊗ψ0,A . In the following we want to average over all the sepa-
rable states in this partition according to the Haar measure. To this 
end, we write ψ0,U = U Sψ0,S U †

S ⊗ U Aψ0,A U †
A with U = U S ⊗ U A

and the Haar average is performed over the unitaries of the form 
U S ⊗ U A .

The calculation will proceed similarly as before. Performing the 
average

(U S ⊗ U A)⊗2(ψ0,S ⊗ ψ0,A)⊗2(U †
S ⊗ U †

A)⊗2
U S ⊗U A =

= (I⊗2
S + S S) ⊗ (I⊗2

A + S A)

dS(dS + 1)dA(dA + 1)
, (37)

we obtain

C (S)
B (ρU )

U
= Tr

(
S(D⊗2

B A
−D⊗2

B )[(I⊗2
S + S S) ⊗ (I⊗2

A + S A)])
dS(dS + 1)dA(dA + 1)

= 2
Tr[I⊗2

S ⊗ P A − P S ⊗ P A]
dS(dS + 1)dA(dA + 1)

= 2
dS − 1

(dS + 1)(dA + 1)
(38)

which, for large dimension dS returns an average localizable co-
herence scaling as ∼ 2/dA . In addition, if also dA ≈ dS we obtain 
a result that is twice as large as for the average localizable coher-
ence by tracing out, Eq. (5). On the contrary, in situations where 
dA � dS � 1, this measurement protocol yields a much lower lo-
calizable coherence on the average factorized state.
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At this point, we want to set the stage so that the notion of 
localizable coherence can be used to describe different quantum 
many-body systems. In the case of a chain of dloc-level systems, 
the total Hilbert space H is the tensor product of local Hilbert 
spaces corresponding to a single spin system, that is, H = H⊗n

loc 	
(Cdloc )⊗n; and similarly the Hilbert spaces HS and HA can be 
further decomposed in tensor products of the single spins. Let us 
consider H = H⊗n

loc for n = nS + nA , i.e., nS and nA correspond to 
the number of spins in the “system” and “ancillary” partitions, re-
spectively. We denote dim(Hloc) = dloc.

In such systems, it is interesting to consider states that are fac-
torized in all the spins, or in blocks of spins. A completely factor-
ized state has the form U1 ⊗· · ·⊗ Un(|0〉 〈0|)⊗nU †

1 ⊗· · ·⊗ U †
n where 

each of the U ’s is Haar i.i.d. and |ψ0〉 is any pure state in Hloc that 
we take as reference state. Denoting ω := |0〉 〈0|⊗n the completely 
factorized state can be generically expressed as ωŨ = ⊗i U iω⊗i U †

i , 
with Ũ = ⊗n

i=1Ui .
We are interested in knowing the average localizable coherence 

(without post-selection) in completely factorized states. We have

C (S)
B (ωŨ )

Ũ
= Tr

[
S
(
D⊗2

B A
−D⊗2

B

) n∏
α=1

(
I + Sαα′

dloc(dloc + 1)

)]

where Sαα′ denotes the swap operation between spins α and α′
(its corresponding in H′). Expanding the product, we get

C (S)
B (ωŨ )

Ũ
= 1

(dloc(dloc + 1))n
(T1 − T2) (39)

where we set

T1 = Tr

[
S D⊗2

B A

[
n∏

α=1

(I + Sαα′)

]]
,

T2 = Tr

[
S D⊗2

B

[
n∏

α=1

(I + Sαα′)

]]
.

For the calculation of T1 we need to count the swap terms that in-
volve indices α that belong in the “system” part. Given a partition 
of the spins in (S, A), we define

qk
nS ,nA

(l) :=
(

nS

l

)(
nA

k − l

)
which corresponds to the different ways of choosing k out of n =
nS + nA dloc-level systems such that exactly l of them are in the 
“system” partition. We have

T1 =
n∑

k=0

k∑
l=0

(dloc)
n+lqk

nS ,nA
(l) ,

since each of the terms with l swaps in the system part contributes 
with a factor of (dloc)

n+l . The T2 term does not differentiate be-
tween the subsystems S, A, and a similar calculation gives

T2 =
n∑

k=0

(
n

k

)
(dloc)

n = (2dloc)
n .

Combining the previous expressions, we finally get

C (S)
B (ωŨ )

Ũ
= 1

(dloc + 1)n

(
n∑

k=0

k∑
l=0

qk
nS ,nA

(l)d l
loc − 2n

)
(40)

As a simple crosscheck, one can set n = nS = 1, in which case 
the result collapses to Eq. (32) for d = dloc. As we can see, if as in-
put we have product states then the localizable coherence given by 
the (non-selective) measurement protocol is a viable way of stor-
ing coherence in a subsystem.
6

Fig. 1. Schematic representation of random states resembling the MBL phase. Each 
constituent (e.g., spin in a chain) corresponds to a Hilbert space with dimension dloc
and is represented by a red circle. The gray bubbles denote the action of indepen-
dent randomizing unitaries. The system consists of two constituents (pair of filled 
red circles), acted upon by either (a) the same unitary or (b) by two different ones.

5. Applications to quantum many-body systems

In this section, we apply some of the ideas and results intro-
duced so far to the description of notable quantum many-body 
states from the coherence point of view. We are interested in states 
that can be representative of the ergodic phase (as described by 
the Eigenstate Thermalization Hypothesis [44–46] (ETH)), of the 
MBL phase, and of the topologically ordered phases. We model the 
ETH state simply like a Haar-random state in the Hilbert space. 
These states do indeed obey a volume law for the entanglement, 
and ergodicity ensures that all the states in (a subspace) of the 
Hilbert space can be reached with equal probability. In order to 
describe MBL and topologically ordered states, though, we need a 
bit more work.

5.1. Localized states

Here we want to describe states that can be representative 
of the MBL phase. Such states should be weakly entangled and 
feature an area law. However, within the correlation length ξ asso-
ciated with the localized phase, the states can be highly entangled. 
We will hence consider as representatives of MBL phase states 
consisting of products of bubbles of length ξ , such that the con-
stituents (e.g., spins) within each bubble are highly entangled but 
the splitting in-between the different bubbles enforces an area law 
for the entanglement, see Fig. 1. We model such states as the ten-
sor product of states that are Haar random within the correlation 
length ξ . These states are thus extremely localized as there is no 
entanglement at all between one bubble and another.

Equipped with the results from the previous section, we want 
to perform the average over the localizable coherence on the above 
described states. Consider N = n ·ξ identical systems that are acted 
upon by n i.i.d. unitaries, each acting on ξ systems. Each system 
has a (fixed) dimension dloc, so that d = dnξ

loc. As an example, con-
sider quantum states 
 of a spin one-half chain, so that the local 
Hilbert space at the site i is C2 and dloc = 2. A localized state with 
correlation length ξ is a state that resembles a product state of a 
system with ξ spins, that is, |
〉 = ⊗n

k=1 |φ〉k with |φ〉k ∈ (C2)⊗ξ . 
In other words, this state is the product of n bubbles of spins, each 
containing ξ spins. Within each bubble, the state can be highly 
correlated and highly entangled.

This setup is convenient to study some interesting class of 
many-body quantum states like many-body localized quantum 
states. Indeed, by averaging over bubbles of length ξ , we obtain 
a state that is highly correlated (and entangled) within each bub-
ble, but that is factorized over the bubbles. This state can be used 
as a reference state for the quantum many-body localized phase. 
On the other hand, the global Haar state is a representative of the 
ETH phase, at infinite temperature. Now, imagine to consider the 
system S made of two parts, so that N S = 2 and N A = N − 2. We 
ask whether it makes any difference for the localizable coherence 
whether these two parts are close to each other. Obviously, in the 
ETH case, it does not, as the global Haar measure does not see any 
internal structure of the states. However, in the case of averaging 
over the bubbles, there are two distinct cases, see Fig. 1.
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1. The two constituents of the systems are acted upon by the 
same unitary, i.e., they are within the same bubble. Notice that 
hence, in this case, it must be ξ ≥ 2 and n ≥ 1.

2. The two constituents of the systems are acted upon by two 
different unitaries, i.e., they belong in two separate bubbles. In 
this case ξ ≥ 1 and n ≥ 2.

As in the previous section, one can write

C (S)
B

(
U1 ⊗ · · · ⊗ Un(|0〉 〈0|)⊗nξ U †

1 ⊗ · · · ⊗ U †
n

)U1,...,Un

= 1

(dloc)
nξ (dξ

loc + 1)n
(T1 − T2)

where we set

T1 = Tr

[
S D⊗2

B A

[
n∏

α=1

(I + Sαα′)

]]

T2 = Tr

[
S D⊗2

B

[
n∏

α=1

(I + Sαα′)

]]

One can now perform a similar calculation, counting the number 
of terms with different contributions. For the case (a), we have

C (S)
B

(
U1 ⊗ · · · ⊗ Un(|0〉 〈0|)⊗nξ U †

1 ⊗ · · · ⊗ U †
n

)U1,...,Un

=
(

2

dξ

loc + 1

)n
d2

loc − 1

2
, (41)

while for case (b)

C (S)
B

(
U1 ⊗ · · · ⊗ Un(|0〉 〈0|)⊗nξ U †

1 ⊗ · · · ⊗ U †
n

)U1,...,Un

=
(

2

dξ

loc + 1

)n
d2

loc + 2dloc − 3

4
. (42)

As we can see, the ratio between the localizable coherence in 
the two cases is 2 × (d2

loc − 1)/(d2
loc + 2dloc − 3). This number is 

6/5 for qubits, where dloc = 2, and converges to 2 for large local 
Hilbert space dimension. In other words, there is more localizable 
coherence if the system is inside the localized bubble (a) than if 
the system is made of two parts far away (b). In this sense, the 
localizable coherence captures the fact that the state has the lo-
cal structure of bubbles. The representative for the ETH state is the 
random Haar state for which, on the other hand, there is no dif-
ference in where and how the system S is located. Of course, this 
is a cartoon simplified picture of the structure of ETH and MBL 
states as MBL states are not made exactly of disentangled bubbles 
(rather, bubbles entangled with area law with each other) and ETH 
states are not Haar-random but share with Haar-random volume 
law for entanglement. This result, though, suggests that localizable 
coherence could be used as a tool to detect the ETH-MBL transi-
tion [47].

5.2. Toric code

In this section, we show how the notion of localizable co-
herence can capture topological features of topologically ordered 
quantum states like the ground state of the string-net states, quan-
tum double models, or quantum lattice gauge theories [48–50]. Let 
us first show how the localizable coherence in the reduced den-
sity matrix does have a topological character. In these theories, 
the reduced density matrix ρS of the ground state has a flat spec-
trum {|ca|2}a [50]. Denote r̃ the rank of ρS . In this case, one has 
7

c2,B S (ρS ) = r̃−1 − r̃−2 ∑
k

(∑
a |〈ξa|k〉|2)2

. Choosing a mutually un-

biased basis one obtains c2,B S (ρS) = r̃−1 − d−1
S . Similarly, for the 

same states with flat entanglement spectrum, the l1-norm of co-

herence reads c1,B S (ρS) = r̃−1 ∑
k �=k′

∣∣∣∑r̃
a=1〈ξa|k〉〈k′|ξa〉

∣∣∣.
Notice that, in the particular case of the toric code (or quantum 

lattice gauge theories), the rank R is not full; first of all because 
there is area law, and then because there are prohibited configura-
tions on the boundary of the system. In fact, that correction is the 
topological “missing” entropy logγ [50] and one has r̃ = d∂ S/γ . 
If one chooses as subsystem S a thin region (without bulk) [51], 
then ∂ S = S and we obtain c2,B S (ρS) = (γ −1)/d∂ S . This has to be 
compared with other states with flat entanglement spectrum that 
are not topologically ordered, where γ = 1, hence the coherence 
vanishes. In this sense, the previous formula shows a topological 
coherence.

As a second application, we show that the localizable coher-
ence by measurement can reveal topological properties. For this 
purpose let us focus on the toric code [52]. In order to understand 
the measurement protocol, we need to go into the details of the 
model. The toric code with spins one half on the bonds of a N × N
square lattice with periodic boundary conditions is described by 
the model Hamiltonian

H = −U
∑

n

An − J
∑

p

B p , (43)

where the ‘star’ operator An = ∏
l∈n σ x

l flips all the spins (in the 
z− basis) extruding from a vertex n and the ‘plaquette’ operator 
B p = ∏

l∈p σ z
l operates with σ z on all the spins around a plaquette 

p. Denoting by G the group generated by the star operators An , 
that is, the set obtained by all the possible products of operators 
An , the ground space of the toric code Hamiltonian [49,53] can be 
written as the span of the vectors

|ψ0〉 =
∑

i, j∈{0,1}
αi j(W x

1)i(W x
2) j |G|−1/2

∑
g∈G

|g〉 , (44)

where W x
1, W x

2 correspond to the product σ x
i operators over hor-

izontal and vertical non-contractible loops of the torus. It follows 
that the ground space has degeneracy 4. Considering the quantum 
coherence of the above ground states with respect to the product 
σ z

i eigenbasis, one identifies two contributions to it: (i) from the 
coherent superposition of the 4-fold degenerate ground states (i.e., 
due to the αi j coefficients), and (ii) from the equal superposition 
of terms in the group G .

We will now show that the 2-norm localizable coherence by 
measurement C (S)

ave,B can differentiate between the aforementioned 
two types of coherence. Moreover, the topology of the region 
where measurements are performed will play a role in the result, 
revealing a topological character.

For this purpose, it is instructive to first analyze the scenario 
where one performs orthogonal and selective σ z

i measurements 
for all spins except those belonging to two strips of plaquettes, one 
horizontal and one vertical (see Fig. 2). We will refer to the ancil-
lary part consisting of the measured spins as A, while we consider 
the complement to be the system S . In fact, the exact shape of 
the two regions is not going to matter for the considerations that 
follow, except from the fact that the region S is topologically non-
contractible.

After the measurement, the resulting state is of the form

|ψ0〉 �→ ∣∣ψ ′
0

〉 ∝ (I S ⊗ |hA〉 〈hA |) |ψ0〉 . (45)

For a given measurement result hA in region A, let

|h〉 = |hS〉 |hA〉 , h ∈ G (46)
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Fig. 2. Toric code; spins reside on the edges. The system (red) non-contractible 
region consists of two strips that wrap around the torus and meet at a single pla-
quette. In the ancilla (gray) region spins are measured over the local σ z basis, and 
the region is contractible.

be a “completion”.5 Given that the region S is non-contractible, 
and the group average is invariant under group multiplication, one 
can write

|ψ0〉 ∝
∑
i, j

αi j(W x
1)i(W x

2) j
∑
g∈G

|g〉

=
∑
i, j

αi j

∑
g∈G

[
(W x

1)i(W x
2) j |gS〉

]
|g A〉

=
∑
i, j

αi j

∑
g∈G

[
(W x

1)i(W x
2) jhS gS |0S〉

]
hA g A |0A〉

and hence also∣∣ψ ′
0

〉∝∑
i, j

αi j

∑
g∈G

[
(W x

1)i(W x
2) jhS gS |0S〉

]
|hA〉〈0A | g A |0A〉 .

The only surviving term is for g ∈ G such that g A = idA . One can 
formally define the subgroup G S := {g ∈ G : g = gS ⊗ idA}. There-
fore after the measurement the normalized state is∣∣ψ ′

0

〉 = |G S |−1/2
∑
i, j

αi j

∑
g∈G S

(W x
1)i(W x

2) j |hS gS〉 |hA〉 . (47)

It is now important to observe that G S depends on the geometry 
of the partitioning (S, A) but not on the particular measurement 
result hA . For instance, for the region as in Fig. 2, |G S | = 24.

We are now ready to calculate C (S)
ave,B(|ψ0〉〈ψ0|) for B the prod-

uct σ z
i eigenbasis. A straightforward calculation for the coherence 

of the post-selected state gives

c2,B S

(
TrA

∣∣ψ ′
0

〉〈
ψ ′

0

∣∣) = 1 − 1

|G S |
∑
i, j

∣∣αi j
∣∣4 (48)

which is also independent of hA . Therefore, under the sole assump-
tion that S is non-contractible, one obtains

C (S)
ave,B(|ψ0〉〈ψ0|) = 1 − 1

|G S |
∑
i, j

∣∣αi j
∣∣4

. (49)

The resulting coherence C (S)
ave,B(|ψ0〉〈ψ0|) is sensitive to the su-

perposition within the 4-dimensional ground state subspace, while 

5 Notice that, although the part |hS 〉 might not be unique, a completion always 
exists since we have assumed that the measurement result |hA〉 occurred.
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the contribution of the corresponding group G is through the fac-
tor |G S | that depends on the geometry. More importantly, it re-
veals topological features of the (S, A) partitioning. To see this, let 
us consider what happens in the opposite case where S is con-
tractible. Then, a measurement on A always collapses the 4-fold 
superposition due to the αi j , i.e., from the measurement result on 
A one can infer the definite values of i, j ∈ {0, 1}; this is done just 
by analyzing whether or not the obtained configuration contains 
non-contractible loops along the horizontal and vertical directions. 
For a measurement result (W x

1)i(W x
2) j |hA〉, the post-measurement 

state now becomes

∣∣ψ ′′
0

〉 = |G S |−1/2
∑
g∈G S

|hS gS〉 (W x
1)i(W x

2) j |hA〉 , (50)

where the values of i, j are fixed depending on the measure-
ment outcome. Once again, the coherence of the resulting state 
c2,B S

(
TrA

∣∣ψ ′′
0

〉〈
ψ ′′

0

∣∣) is independent of hA and also i, j, therefore 
one obtains for contractible S ,

C (S)
ave,B(|ψ0〉〈ψ0|) = 1 − 1

|G S | . (51)

The analogous expressions when S is only contractible along 
only one of the horizontal/vertical directions can be obtained sim-
ilarly. Eqs. (49) and (51) therefore show that the localizable coher-
ence by measurement C (S)

ave,B(|ψ0〉〈ψ0|) is sensitive to the superpo-
sition over the 4-dimensional toric code groundspace, but only if 
the S region is non-contractible along the corresponding direction.

6. Conclusions and outlook

In this paper, we have addressed the question of quantifying co-
herence in a composite quantum system where a notion of locality 
is imposed by a tensor product structure. We have put forward a 
notion of localizable coherence as the coherence that is obtainable 
in a subsystem of a composite quantum system after either disre-
garding or by measurement on the rest of the system, that serves 
as an ancilla. We have computed the average localizable coher-
ence over the Hilbert space, including over different factorizable 
states. It results that measurement aided localizable coherence is 
more efficient than simply tracing out the ancillary system, as this 
would result in strong decoherence. As an application, we have 
shown that localizable coherence can distinguish between topo-
logical characters of many-body quantum states, for example, the 
toric code.

One of the examples discussed suggests that localizable co-
herence could be a useful quantity to characterize the ETH-MBL 
transition. This connection is explored in more detain in [47].

In perspective, localizable coherence can potentially provide 
useful insights in situations where one wants to understand the 
role of coherence in quantum systems with a tensor product struc-
ture, for instance, in quantum thermodynamics of composed sys-
tems, like quantum batteries, or in the role played by coherence 
in operator spreading [54], scrambling, and the transition to quan-
tum chaotic behavior [55] signaled by out-of-time order correla-
tion functions [56]. Further investigation of these subjects, possibly 
under the lens of localizable coherence, provides directions for fu-
ture research.
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Appendix A. Optimal coherence basis for C (S)
B (ρ) and C (S)

ave,B(ρ)

Here we determine the coherence basis B S such that, for fixed 
B A and ρ , each of the quantities C (S)

B (ρ) and C (S)
ave,B(ρ) become 

maximal for the coherence quantifier c2,B , under the assumption 
that {ρ ′

S,i}i are mutually commuting. Let B ′
S be a basis that si-

multaneously diagonalizes {ρ ′
S,i}i . We will show that the optimal 

choice is, in both cases, a basis B S that is unbiased to B ′
S .

Let us begin with C (S)
B . We have

C (S)
B (ρ) = Pur

[
DB A (ρ)

] − Pur
[
DB SDB A (ρ)

]
and hence we are looking for the choice of B S that minimizes the 
second term. By the mutually commuting assumption and setting 
B ′

S = {νi}i ,

σ := DB A (ρ) =
∑

j

p jρ
′
S, j ⊗ ω j =

∑
i j

qi jνi ⊗ ω j ,

where {qij}i j are elements of a (bipartite) probability distribution. 
We can hence write

Pur
[
DB S (σ )

] = Pur
[
(U † ⊗ I)DB ′

S
(U ⊗ I)(σ )

]
= Pur

[
DB ′

S
(U ⊗ I)(σ )

]
where U is a unitary that connects the bases B ′

S and B S , and the 
last step follows since purity depends only on the spectrum. In 
other words, optimizing the basis B S is equivalent to fixing the 
basis to B ′

S and optimizing the unitary U .
The above step reduces the problem to a classical one, since by 

evaluating the above expression one gets

Pur
[
DB S (σ )

] = Pur [(M ⊗ I)q] , (A.1)

where M(U ) is the unistochastic matrix [57] with elements M(U )

ki =
Tr [νkU(νi)], while the purity on the RHS is that of a probability 
vector (and not of a density matrix). In other words, now the prob-
lem reduces to specifying the unistochastic matrix M that mini-
mizes the purity of a fixed probability vector q as in Eq. (A.1).

The answer to the above is easily obtained using the theory of 
majorization [58]. It amounts to recalling that purity is a Schur-
convex function and hence the action of a bistochastic matrix 
monotonically decreases the purity. The minimum is therefore ob-
tained for M(U ) = 1/dS for all vectors q, which corresponds to B S
ki

9

and B ′
S being unbiased. Notice that the choice is independent of q, 

which is a consequence of the simplifying assumption about mu-
tual commutativity.

Regarding C (S)
ave,B(ρ), first notice that the probability {pi} in 

Eq. (16) is independent of B S . In addition, each of the cB S (ρ
′
S,i)

obtain their maxima simultaneously also for B S and B ′
S being 

unbiased. This also follows from the above arguments by setting 
dA = 1.
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