
Journal of Functional Foods 116 (2024) 106162

1756-4646/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Modulation of the Nuclear factor erythroid 2-related factor 2 (Nrf2) 
pathway by the probiotic Limosilactobacillus reuteri DSM 17938 prevents 
diet-induced rat brain dysfunction 

Arianna Mazzoli a, Maria Stefania Spagnuolo b, Martina Nazzaro a, Angela Di Porzio a, 
Valentina Barrella a, Antonio Dario Troise b, Sabrina De Pascale b, Andrea Scaloni b, 
Gianluigi Mauriello c, Susanna Iossa a,d,e,*, Luisa Cigliano a,e,* 

a Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, 80126 Naples, Italy 
b Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy 
c Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Italy 
d NBFC, National Biodiversity Future Center, Palermo 90133, Italy 
e Task Force on Microbiome Studies, University of Naples Federico II, Italy   

A R T I C L E  I N F O   

Keywords: 
Western diet 
Oxidative stress 
Fructose 
Mitochondria 
Frontal cortex 
Memory 

A B S T R A C T   

Dietary patterns high in fat and sugar promote brain dysfunction, but the preventive efficacy of probiotics has 
been little explored. This study investigated whether the administration of Limosilactobacillus reuteri DSM 17938 
(L.reuteri; 108 CFU/day) counteracts cognitive dysfunction and brain redox unbalance induced in male Wistar 
rats fed a western diet (WD) for 8 weeks. 

The results showed that L. reuteri prevented the WD-associated impairment in brain memory function, as 
evaluated by NOR test, and consistently increased specific molecular markers of synaptic plasticity. The con-
dition of oxidative stress induced by WD, namely enhanced oxidation to proteins and lipids, increased oxidants- 
producing enzymes as well as reduced nuclear Nrf2 and Nrf2-dependent antioxidant enzymes, was ameliorated 
by the probiotic. Unexpectedly, mitochondria displayed a diet-induced increase in oxidative capacity, not 
modified by the probiotic. A protective effect of the probiotic on gut absorption of fructose and its further de-
livery to brain was evidenced as mechanism involved in cortex redox homeostasis. These findings evidence the 
potential utility of L. reuteri against WD-induced brain dysfunction and implicate the Nrf2 pathway as a potential 
mechanism for this effect.   

1. Introduction 

The Western diet (WD), rich in saturated fats and added sugars, like 
sucrose or high-fructose corn syrup, markedly contributing to the 
increased intake of fructose, originated in western countries, but is now 
diffused also in eastern and developing countries (Imamura et al., 2015). 
Since this diet is responsible for the significant development of several 
metabolic diseases (Clemente-Suárez et al., 2023), unraveling its impact 
on health is of critical importance for the identification of new strategies 

able to mitigate its damaging effects. In particular, WD promotes 
cognitive dysfunction (López-Taboada et al., 2020; Spagnuolo et al., 
2020), even if the molecular mechanisms driving this impairment are 
not fully understood. In this context, one possibility is that WD con-
sumption induces oxidative stress in the brain, which in turn is 
responsible for organ dysfunction and cognitive disturbances. Indeed, 
the brain is more sensitive to oxidative damage compared to other or-
gans due to its higher levels of oxygen consumption and weaker anti-
oxidant defenses (Cobley et al., 2018); moreover, the relationship 
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between oxidative stress and cognitive decline is well documented 
(Salim, 2017; Hajjar et al., 2018; Kandlur et al., 2020; Li et al., 2023). 

An important role in the protection against brain oxidative damage is 
played by nuclear factor erythroid 2-related factor 2 (Nrf2) (Johnson 
et al., 2008), which, under redox stress conditions, interacts with the 
antioxidant response element, regulating phase II antioxidant responses 
(Cigliano et al., 2019; Heurtaux et al., 2022). Stimulation of Nrf2 might 
represent a way to ameliorate brain health; indeed, recent investigations 
focused on the study of natural products that can positively regulate the 
Nrf2 pathway to reduce oxidative damage to the nervous system (Mor-
atilla-Rivera et al., 2023). As a matter of fact, Nrf2 activity can be 
modified by daily consumption of specific food and phytochemicals, 
such as specific polyphenols, curcumin, flavonoids (Moratilla-Rivera 
et al., 2023), but less is known on the potential impact of probiotics, 
despite huge growing data evidencing the importance of the gut-brain 
axis (Dinan and Cryan, 2017; Schächtle and Rosshart, 2021; Boehme 
et al., 2023) and pointing to the probiotic administration as a strategy to 
counteract diet-induced brain dysfunction (Ji et al., 2021; Jena et al., 
2022; Lof et al., 2022). In this context, a recent study showed the anti-
oxidant activities of novel peptides from Limosilactobacillus reuteri DSM 
17938-fermented food (Tyagi et al., 2023), as well as the effect of the 
administration of this probiotic on the serum levels of serotonin and 
brain-derived neurotrophic factor (BDNF) in humans (Riezzo et al., 
2019). In addition, we recently showed the beneficial impact of L. reuteri 
in counteracting WD-induced metabolic derangement in gut and liver 
(Abuqwider et al., 2023; Di Porzio et al., 2023). However, a compre-
hensive investigation on the potential efficacy of this probiotic strain in 
WD-induced cognitive dysfunction and redox alterations is still lacking. 

Therefore, the main objective of this study was to investigate 
whether the intake of L. reuteri DSM 17938 can counteract cognitive 
dysfunction and brain redox unbalance induced in WD-fed male rats. In 
particular, we investigated whether behavioral changes elicited by WD 
and concomitant probiotic administration could be related to redox 
homeostasis, Nrf2-mediated antioxidants molecules and molecular 
markers of synaptic and memory function. 

2. Materials and methods 

2.1. Materials 

Bovine serum albumin fraction V (BSA), non-fat milk, salts and 
buffers were purchased from DelTech (Naples, Italy). Fuji Super RX film, 
FujiFilm Man-X Developer, and FujiFilm Man-X Fixer were from Labo-
ratorio Elettronico Di Precisione (Naples, Italy). Water, methanol and 
acetonitrile were of mass spectrometry grade and were obtained from 
Merck (Darmstadt, Germany). Along with derivatizing agents 3-nitro-
phenyhydrazine (3-NPH), N-(3-dimethylaminopropyl)-N′-ethyl-
carbodiimide (EDC) and quinic acid, all the analytical standards 
including lithium acetoacetate, sodium β-hydroxybutyrate, and internal 
standards 13C2-acetic acid, 13C3-propionic acid and 13C4-butyric acid 
were purchased from Sigma-Merck (Darmstadt, Germany). Pyridine was 
obtained from Fisher Scientific (Bremen, Germany). 

2.2. Cultivation of L. Reuteri DSM 17938 

L. reuteri DSM 17938 was kindly provided by BioGaia (Noos S.r.l.; 
BioGaia AB, Stockholm, Sweden). It was cultured in MRS Broth (OXOID 
Ltd., Basingstoke, Hampshire, England) at 37 ◦C, checked for purity and 
maintained on MRS Agar (Oxoid). Free cells of the strain were routinely 
cultured and counted on MRS Agar at 37 ◦C for 48 h, under aerobic 
conditions. 

2.3. Animals and treatments 

All experimental procedures involving animals were approved by the 
“Comitato Etico-Scientifico per la Sperimentazione Animale” of the 

University of Naples Federico II and were authorized by the Italian 
Health Ministry (137/2022-PR). This work complies with the animal 
ethic principles and regulations of the Italian Health Ministry. The au-
thors ensured that all the experimental steps were taken to minimize the 
pain and suffering of the animals. 

Male Wistar rats (Charles River, Calco, Lecco, Italy) of 90 days were 
caged in a temperature-controlled room (23 ± 1 ◦C) with a 12 h light/ 
dark cycle (06.30 – 18.30 h). 

The rats were divided in three groups and treated for 8 weeks with a 
control diet (C group, N = 8), or with a high fat - high fructose diet (D, N 
= 8 and DR groups, N = 8). In addition, DR rats daily received 0.5 mL of 
a 10 % sucrose solution containing 108 CFU of L. reuteri for the entire 
treatment period (8 weeks) while C and D rats received the same amount 
of sucrose solution without probiotics. Sucrose solution with or without 
probiotics was presented by an operator every day at the same hour 
through a needless syringe and voluntarily consumed by rats. The 
composition of the two diets is shown in Supplementary Table S1. Body 
weight was monitored during the experimental period. 

At the end of the experimental period, the rats were anesthetized 
with sodium pentothal (40 mg kg − 1 i.p.), euthanized by decapitation, 
and frontal cortex and ileum were harvested and dissected as previously 
described (Spagnuolo et al., 2020; Mazzoli et al., 2021). Freshly pro-
cessed aliquots of frontal cortex from the different animal groups were 
used for the measurement of mitochondrial oxygen consumption, while 
pieces of each sample were immediately snap frozen in liquid nitrogen 
and stored at − 80 ◦C for further analyses or fixed for 
immunofluorescence. 

2.4. Behavioral test 

Behavioral analyses were carried out on rats 3 days before eutha-
nasia. Behavioral experiments were conducted between 9:00 A.M. and 
13:00 P.M. during the light phase of the 12/12 h light/dark cycle in 
dedicated testing sound-attenuated rooms. The apparatus used for the 
novel object recognition test consists of a sound-proof square arena (40 
cm × 40 cm × 10 cm; l × w × h). The rat behavior was recorded with a 
video camera. The procedure included three phases: habituation, 
training, and testing. Animals were brought to the testing room 30 min 
before the experiment to familiarize with the environment. During the 
habituation phase, the animal was individually placed in the middle of 
the empty arena for 5 min; subsequently, each rat took a training trial 
followed by a testing trial. During the training trial, each rat was indi-
vidually placed into an open-field arena, containing two identical ob-
jects equidistant from each other, and allowed to explore the objects for 
5 min. Thirty minutes later, the test session took place, during which one 
copy of the familiar object and a new object were placed in the same 
location as during the training trial. Each rat was placed in the apparatus 
for 5 min, and the time spent exploring each object was recorded. The 
objects used in this study were different in shapes and colors but iden-
tical in size. The objects were fixed on the floor of the box to avoid their 
movement. At the end of each test, the arena was sanitized to eliminate 
any odor that could interfere with the response of the following rat. 

The location preference in the training phase and recognition index 
(RI) in the testing phase were calculated using the following formulas: 

Location preference = Time exploring one of the identical objects/ 
Time exploring the identical object pairs × 100 %. 

Recognition index (RI) = Time exploring novel object/(Time 
exploring novel object + Time exploring familiar object) × 100 %. 

Location preference was used as an environmental control, which 
should be 50 % to rule out the influence of the location of the object. 

Rearing behavior was evaluated as stereotyped behavior and was 
defined as the lifting of the two front paws off the ground and with the 
body fully extended (Kleven et al., 1996). Observations were made 
during a 5 min period, and the behavior was considered present if the 
animal showed uninterrupted signs for at least 3 sec. Behavior was 
videotaped for the entire 5 min of each test and then analyzed off line by 
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the same researcher that carried the evaluation and that was blind to the 
condition to which the rat was assigned. Data are presented as duration 
(s) of time standing on hind legs with body fully extended. 

All the above recordings were then later scored by independent 
raters that were blind to the experimental conditions. 

2.5. Preparation of frontal cortex extracts 

Aliquots of frozen frontal cortex (50 mg) were homogenized in seven 
volumes of RIPA buffer (150 mM NaCl, 50 mM Tris- HCl pH 8.0, 0.5 % 
sodium deoxycholate, 0.5 % NP-40, 0.1 % SDS pH 8.0) as previously 
reported (Spagnuolo et al., 2014). Nuclear extracts used for detecting 
Nrf2 translocation to the nucleus were isolated as previously reported 
(Zvonic et al., 2004). 

2.6. Oxidative stress parameters 

Nitro-tyrosine (N-Tyr) concentration was measured by ELISA in both 
plasma and frontal cortex samples diluted 1:8,000, 1:16,000, and 
1:32,000 with coating buffer (7 mM Na2CO3, 17 mM Na-HCO3, 1.5 mM 
NaN3, pH 9.6), according to a previously published procedure (Spag-
nuolo et al., 2015). In details, aliquots (50 µL) of diluted samples were 
incubated (overnight, 4 ◦C) in the wells of a microtitre plate (Nunc 
MaxiSorp, distributed by VWR International. Milan, Italy). After four 
washes with T-TBS (130 mM NaCl, 20 mM Tris-HCl, 0.05 % Tween, pH 
7.4) and four washes with high-salt TBS (500 mM NaCl, 20 mM Tris-HCl, 
pH 7.4), the wells were blocked with TBS containing 0.5 % BSA (1 h, 
37 ◦C). After washing, the wells were incubated (1 h, 37 ◦C) with 50 µL 
of rabbit anti-N-Tyr antibody (CVL-PAB0188, Covalab, distributed by 
SIAL, Rome, Italy; 1: 1000 dilution in T-TBS containing 0.25 % BSA) 
followed by 60 µL of Goat anti-rabbit horseradish peroxidase-conjugated 
IgG (Immunoreagents, Raleigh, NC, USA; 1:5000 dilution in T-TBS 
containing 0.25 % BSA). Peroxidase-catalysed color development from 
o-phenylenediamine was measured at 492 nm. Results are reported as 
OD per mg of total proteins. 

Lipid peroxidation was determined according to Fernandes et al. 
(2006) by measuring thiobarbituric acid-reactive substances (TBARS) 
(Fernandes et al., 2006). Aliquots of frontal cortex homogenates were 
added to 0.5 mL of ice-cold 40 % TCA. Then, 2 mL of a aqueous solution 
containing 0.67 % thiobarbituric acid and 0.01 % of 2,6-di-tert-butyl-p- 
cresol were added. The mixtures were heated at 90 ◦C for 15 min, then 
cooled in ice for 10 min and centrifuged at 850 x g for 10 min. The 
supernatant fractions were sampled and lipid peroxidation was spec-
trophotometrically measured at 530 nm. The amount of thiobarbituric 
acid-reactive substances formed was calculated using a molar extinction 
coefficient of 1.56 x 105 M− 1cm− 1 and expressed as nmol thiobarbituric 
acid-reactive substances/g tissue. 

SOD activity was measured in a medium containing 50 mM KH2PO4, 
pH 7.8, 20 mM cytochrome c, 0.1 mM xanthine, and 0.01 units of 
xanthine oxidase. Determinations were carried out spectrophotometri-
cally (550 nm) at 25 ◦C, by monitoring the decrease in the reduction rate 
of cytochrome c by superoxide radicals as generated by the xanthi-
ne–xanthine oxidase system. One unit of SOD is defined as the concen-
tration of the enzyme that inhibits cytochrome c reduction by 50 % in 
the presence of xanthine + xanthine oxidase (Flohè & Otting, 1974). 

Catalase activity was measured in 50 mM KH2PO4, pH 7.0, con-
taining 10 mM H2O2 and 0.25 % Triton X-100. Determinations were 
carried out spectrophotometrically (240 nm) at 25 ◦C, by monitoring the 
decrease in the absorbance due to the decomposition of H2O2. The rate 
of H2O2 loss from the solution was linear when the natural log of the 
absorbance was plotted against time, due to the usual first-order kinetics 
exhibited by catalase (Maehly & Chance, 1954). Linear regression 
analysis was carried out to calculate the first-order reaction rate con-
stant, and the resulting values were then referred to the unit of tissue 
weight. 

Glutathione reductase (GR) activity was measured by monitoring the 

decrease of NADPH absorbance at 340 nm, at 30 ◦C (Mazzoli et al., 
2023). The reaction mixture contained potassium phosphate buffer, 2 
mM EDTA, 2 mM NADPH (in 10 mM Tris-HCl, pH 7), and 20 mM 
oxidized glutathione. The activity was calculated using the NADPH 
molar extinction coefficient, ε = 6.22 × 10− 5, considering that one unit 
of GR is defined the amount of enzyme that catalyzes the reduction of 1 
µmol of NADPH per minute. The specific activity was expressed in mU 
per g of tissue. 

NADPH oxidase activity was assayed according to a modification of a 
method previously described (Bettaieb et al., 2014). Briefly, tissues 
(1:10 w/v) were homogenized in ice-cold Krebs buffer and then 
centrifuged at 800 x g, at 4 ◦C, for 10 min. The supernatant was collected 
and then centrifuged at 30,000 x g for 2 h at 4 ◦C. The pellet (membrane 
fraction) was re-suspended in Krebs buffer and the protein concentration 
was measured. Aliquots containing 100 µg of protein were added to 
Krebs buffer containing 500 µM NADPH. The change in absorbance at 
340 nm was followed for 10 min, at 30 s intervals. 

2.7. Mitochondrial analyses 

Freshly isolated frontal cortex samples were homogenized (1:1000, 
w/v) in Mir05 medium containing 110 mM sucrose, 60 mM potassium- 
lactobionate, 20 mM Hepes, 20 mM taurine, 10 mM KH2PO4, 6 mM 
MgCl2, 0.5 mM EGTA, and 0.1 % w/v fatty acid-free BSA, pH 7.0. 

Homogenates (2 mg) were transferred into calibrated Oxygraph-2 k 
(O2k, Oroboros Intruments, Innsbruck, Austria) 2-mL chambers. Oxygen 
polarography was performed at 37 ± 0.001 ◦C (electronic Peltier regu-
lation), and oxygen concentration (μM) and oxygen flux (pmol O2 s− 1 
mL− 1) were real-time recorded and corrected automatically for instru-
mental background by DatLab software (Oroboros Intruments, Inns-
bruck, Austria). 

After addition of the homogenates, the O2 flux was allowed to sta-
bilize. A substrate, uncoupler, inhibitor titration (SUIT) protocol was 
applied to assess qualitative and quantitative mitochondrial changes 
(Burtscher et al., 2015). After stabilization, leak respiration supported 
primarily by electron flow through complex I of the respiratory chain 
was evaluated by adding the substrates malate (0.5 mM), pyruvate (5 
mM), and glutamate (10 mM). Electron transfer was coupled to phos-
phorylation by the addition of 2.5 mM ADP, assessing phosphorylating 
respiration with electron transfer supported by complex I. Succinate (10 
mM) was added to the chamber to induce maximal phosphorylating 
respiration with parallel electron input from complexes I and II. Oligo-
mycin (2.5 µM) was added to assess leak respiration when substrates and 
ADP were provided, but ATP synthase is inhibited. Maximum capacity of 
the electron transport chain was obtained by addition of the uncoupler 
carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP, 0.5 µM). 
Rotenone (0.5 μM) was added to inhibit complex I; hence, the maximal 
capacity supported by complex II alone was determined. Residual oxy-
gen consumption was established by the addition of the inhibitor anti-
mycin A (2.5 µM) and the resulting value was subtracted from the fluxes 
in each run, to correct for non-mitochondrial respiration. All samples 
were run in duplicates and the mean values were used for the analysis. 

Procedures to test mitochondrial integrity were routinely carried out 
at the beginning of each measurement, by evaluating the stimulating 
effect of 10 mM exogenous cytochrome c on mitochondrial respiration in 
the presence of complex I- linked substrates and ADP. 

2.8. Western blotting 

Aliquots of frontal cortex proteins (30 µg) were fractionated by 
denaturing and reducing electrophoresis (Spagnuolo et al., 2018) on 
12.5 % (to titrate Nrf2, synaptophysin, BDNF; cAMP response element- 
binding protein, CREB; superoxide dismutase, SOD; catalase; gluta-
thione reductase, GR; respiratory mitochondrial complexes I-V, 
OXPHOS; Glucose transporter 5, Glut-5) or 10 % (Glycogen synthase 
kinase 3 beta, GSK; N-methyl-D-aspartic acid receptor, NMDAR; post- 
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synaptic density protein 95, PSD-95; synaptotagmin I, peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha, PGC-1α; 
uncoupling protein-2, UCP2; protein kinase B, Akt) polyacrylamide gels. 
Proteins blotting onto PVDF or nitrocellulose membrane (GE Health-
care; Milan, Italy), washing and blocking steps were carried out ac-
cording to previously published procedures (Cigliano et al., 2018; 
Cigliano et al., 2019). 

After blocking the membranes were incubated with primary anti-
bodies (overnight, at 4 ◦C), washed and then treated (1 h, at 37 ◦C) with 
the appropriate peroxidase-conjugated secondary antibodies. The spe-
cific dilution of each antibody is shown in Supplementary Table S2. As 
the amount of phosphorylated Akt, GSK and CREB were expressed 
relative to total Akt, GSK and CREB level, respectively, after revelation 
of the immunocomplexes, the membrane was stripped (Spagnuolo et al., 
2018) and then incubated with rabbit anti-Akt or mouse anti-GSK or 
rabbit anti-CREB (Supplementary Table S2). As the accurate quantifi-
cation of each mitochondrial complex required the use of different di-
lutions of secondary antibody for optimizing band intensities 
(D’Ambrosio et al., 2023), we used GAM-HRP IgG diluted 1:90,000 for 
the detection of complex I, 1:70,000 for complex II, 1:150,000 for 
complex III, IV, and V. For loading control, after detection of each an-
tigen, the membranes were stripped and incubated (overnight, 4 ◦C) 
with mouse anti-β-actin IgG (1:1,000 in 0.25 % v/v non-fat milk) fol-
lowed by GAM-HRP IgG (1:30,000 in 0.25 % v/v non-fat milk; 1 h, 
37 ◦C). Nuclear amount of Nrf2 was assessed by using histone H3 for 
normalization (Supplementary Table S2). Signal detection was carried 
out using the Excellent Chemiluminescent Kit Westar Antares (Cyanagen 
s.r.l., Bologna, Italy). Densitometric analysis of chemidoc or digital 
images of X-ray films exposed to immunostained membranes was per-
formed with Un-Scan-It gel software (Silk Scientific, UT, USA). 

2.9. Evaluation of monoamine oxidase activity 

Monoamine oxidase (MAO) activity was measured spectrophoto-
metrically following the conversion of benzylamine to benzaldehyde, as 
previously described (Spagnuolo et al., 2023). 

2.10. Immunofluorescence analysis 

Paraffin embedded sections of frontal cortex from all the animal 
groups were stained with the phospho(Ser133)-cAMP response element- 
binding protein (p-CREB) specific monoclonal antibody (Ser 133) (87G- 
3) (Cell Signaling Technology; 1:1,000 in dilution in PBS containing 2 % 
w/v BSA; overnight, at 4 ◦C), and DAPI (Sigma Aldrich, Saint Louis, MO, 
USA). For the analysis, images were acquired with 40x magnification 
and 3 random fields/section per rat were analyzed using ImageJ (Na-
tional Institutes of Health, Bethesda, MD, USA). Images were captured 
and visualized using a Zeiss Confocal Microscope LSM 700 at 40x 
magnification, using a drop of immersion oil (Immersoil 518F, Zeiss). 

2.11. Metabolic parameters 

Glucose levels were measured with a commercial kit (glucose assay 
kit: catalogue n. 4058, GS Diagnostic) on frontal cortex and plasma 
samples taken after 6 h of fasting from a small tail clip. The amounts of 
fructose and uric acid in gut, plasma and frontal cortex samples were 
measured by colorimetric enzymatic methods, using commercial kits 
according to the manufacturer’s instruction (Fructose assay kit: cata-
logue n. FA-20, Sigma Aldrich, St. Louis, MO, USA; Uric acid kit: cata-
logue n. 4059, GS Diagnostics SRL, Guidonia Montecelio, Rome, Italy). 

2.12. Quantification of ketone bodies 

Ketone bodies in rat plasma samples were quantified according to a 
previous procedure (García-Rivera et al., 2022), with minor modifica-
tions focused on the optimal chromatographic separation of hydrazone 

derivatives through a core–shell C18 column. Briefly, 10 µL of plasma 
was spiked with 1 µL of SCFA carbon labelled internal standard mix 
including 13C2-acetate, 13C3-propionate and 13C4-butyrate (final con-
centration 0.05 mM for each compound). Plasma proteins were 
precipitated with the addition of 60 µL of 75 % v/v methanol, while 
derivatization was achieved through the mixing of suspensions with 60 
µL of 3-NPH (200 mM) and 10 µL of EDC (120 mM in 6 % pyridine). 
Upon incubation at room temperature (22 ◦C) for 45 min under gentle 
shaking in an orbital shaker, derivatization reaction was stopped with 
the addition of 10 µL quinic acid (200 mM). Samples were centrifuged at 
15,000 rpm for 5 min at 4 ◦C, and supernatants diluted up to 1 mL with 
10 % v/v methanol. Samples were centrifuged again at 4 ◦C, for 5 min, at 
15,000 rpm, then analyzed without any further dilution by liquid 
chromatography-high resolution mass spectrometry. Quantitation of 
ketone bodies and SCFA hydrazone derivatives was achieved by a U- 
HPLC system (Ultimate 3000 RS, Thermo Fisher Scientific) interfaced to 
a linear ion trap hybrid Orbitrap high resolution mass spectrometer 
(LTQ Orbitrap XL, Thermo Fisher Scientific). Chromatographic separa-
tion encompassed the use of a Kinetex C18 PS column (100 x 2.1 mm, 
2.6 µm; Phenomenex, Torrance, CA), thermostated at 40 ◦C; analytes 
were eluted with the following gradient of solvent B (minutes/%B): (0/ 
5), (5/5), (12.3/35), (13.3/85), (14/99), (16/99). Mobile phases con-
sisted of water (solvent A) and acetonitrile (solvent B), and the flow rate 
was 0.2 mL/min. LC stream was interfaced to an electrospray ion source 
(ESI) working in negative ion mode, scanning the ion in the m/z range 
100–400; resolution was set at 30,000 (FWHM at m/z 200), capillary 
temperature was 300 ◦C, while sheath and auxiliary gases were set at 25 
and 15 arbitrary units, respectively. Analyte profile data in full MS mode 
were collected using Xcalibur 2.1 (Thermo Fisher Scientific). Calibration 
curve was obtained with the internal standard technique in the linearity 
range 0.001–1 mM by using the same procedure detailed above for 
plasma samples. Wherever the respective internal standard was not 
available, chemical similarity was used to select the appropriate com-
pounds for recovery assessment and matrix effect minimization: 13C4- 
butyric acid was used as internal standard for β-hydroxybutyrate, and 
13C2-acetic acid and 13C3-propionic acid were used as internal standards 
for acetoacetic acid. Analytical performances are detailed in Supple-
mentary Table S3. Along with analytical reference standards matching, 
hydrazone derivative identity was further confirmed by product ion scan 
experiments set up on an Exploris 120 hybrid quadrupole high resolu-
tion mass spectrometer by using the same chromatographic profile 
described for quantitation experiments. Specifically, the analyzer reso-
lution was set at 60,000 (FWHM at m/z 200), working in the scan m/z 
range 100–400. Product ion scan properties included Orbitrap resolu-
tion at 60,000 (FWHM at m/z 200) and the quadrupole resolution was 
set at 1. H-ESI parameters were as follows: negative ion static spray 
voltage was − 3.2 kV, ion transfer tube and vaporizer temperature were 
set at 320 ◦C and 300 ◦C, respectively; sheath gas flow and auxiliary gas 
flow were 45 and 10 arbitrary units, respectively. 

2.13. Statistical analysis 

Data were expressed as mean values ± SEM. The program GraphPad 
Prism 9.3.1 (GraphPad Software, San Diego, CA, USA) was used to verify 
normal distribution of data and to compare groups with one-way 
ANOVA followed by Bonferroni post-test. P < 0.05 was considered sig-
nificant in the reported analyses. 

3. Results 

3.1. Body weight and plasma glucose 

Body weight time course is reported in Supplementary Fig. S1, 
showing that Western diet elicited a significant increase in body weight 
gain both in D and DR rats. No variation in fasting plasma glucose levels 
was evidenced in D and DR rats compared to C rats (C = 120±5 mg/dL; 
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D = 124±5 mg/dL; DR = 118±4 mg/dL). 

3.2. Behavioral analysis 

We performed the novel object recognition (NOR) task to reveal diet- 
linked deficits in episodic and recognition memory and found that the 
novel object recognition index was significantly decreased in the WD-fed 
rat group (D) compared with the control ones (C), while the concomitant 
administration of WD-fed animals with L. Reuteri (DR) prevented this 
alteration (Fig. 1B). Location preference was used as an environmental 
control and no difference was found between the 3 groups of rats 
(Fig. 1A). The total exploration time of objects during the testing phase 
was comparable among the different animal groups (data not shown). 

We also examined another unconditioned behavioral effect, i.e., 
rearing. WD feeding induced a significant increase in the rearing time in 
D rats compared to that of C counterparts; this alteration was counter-
acted by the concomitant administration of L. reuteri (DR rats) (Fig. 1C). 

Notably, the administration to control rats (C) of L. reuteri (CR group; 
N = 8) had no effect on behavioral tasks, as no differences in the 
recognition index or rearing time were observed between C and CR rats 
(Supplementary Fig. S2). 

3.3. Neurotrophins and synaptic proteins 

The working memory is modulated by different molecules in cortex. 
Among these key players, we evaluated the protein level of the gluta-
mate receptor NMDAR, which was found reduced following WD in the 
frontal cortex of D rats, and this decrease was prevented by concomitant 
L. reuteri administration (Fig. 2A). Further, the extent of phosphoryla-
tion of CREB, which regulates transcription and translation of proteins/ 
receptors required for memory and synaptic plasticity (Impey et al., 
2004; Barco et al., 2006), including BDNF, was reduced in D rats 
compared to C. Also in this case, the treatment with the probiotic was 
effective in preventing this alteration (Fig. 2B, Supplementary Fig. S3). 
In agreement with the decrease of the activating phosphorylation of 
CREB, a significant WD-dependent decrease of BDNF, a key cerebral 
factor involved in a wide range of neurophysiological processes 
(Kowiański et al., 2018), was observed in D rats (Fig. 2C). Notably, the 
alteration of BDNF was prevented by the concomitant administration of 
L. reuteri. Given the role played by BDNF in synaptic transmission, we 
further evaluated the amounts of two pre-synaptic proteins, namely 
synaptophysin and synaptotagmin I (Fig. 2D, E), and the post-synaptic 
protein PSD-95 (Fig. 2F), which play a relevant role in synaptic plas-
ticity (Won et al., 2017). WD led to decreased levels of all three proteins, 
while the concomitant treatment with the probiotic prevented the 
alteration in these synaptic markers (Fig. 2D-F). 

3.4. Oxidative balance 

To investigate whether WD affects the redox homeostasis in frontal 

cortex, lipid peroxidation as marker of oxidative damage to lipids, and 
N-Tyr as marker of oxidative damage to proteins, were evaluated in this 
brain compartment. Enhanced oxidative damage to proteins and lipids 
was observed in WD-fed rats. Interestingly, the concomitant treatment 
with L. reuteri in DR rats was associated to a significant decrease of both 
oxidation markers (Fig. 3A, B). Similar results in both TBARS and N-Tyr 
were revealed in plasma samples of C, D and DR rats (Supplementary 
Fig. S4). 

In line with the condition of oxidative stress in the frontal cortex of 
WD-fed rats, we observed a significant increase of critical oxidant- 
producing enzymes, namely NADPH oxidase and MAO (Snezhkina 
et al., 2019), while the activity of these enzymes was unaltered in DR 
rats, namely WD-fed rats that received concomitant administration of 
L. reuteri (Fig. 3C, D). Also, a WD-related decrease of two proteins, both 
playing a role in contrasting oxidative stress (Kumar et al., 2022; Shel-
bayeh et al., 2023), namely UCP2 and PGC-1α, was observed in frontal 
cortex of D rats compared to C rats, while the above decrease was pre-
vented, in DR rats (Fig. 3E, F), by the concomitant administration of 
L. reuteri. 

3.5. Mitochondrial activity and cortex metabolism 

Since redox balance is strictly linked to mitochondrial function, the 
mitochondrial oxidative capacity was also analyzed. Unexpectedly, 
cortex mitochondria displayed a diet-induced increase in oxidative ca-
pacity which was not modified by the probiotic (Fig. 4A), although no 
significant variation in the amount of respiratory complex I, II, III, IV or 
V was measured (Fig. 4B). The increased mitochondrial oxidative ca-
pacity could be an adaptive mechanism to maintain cerebral energetics 
in face of changes in fuel availability. Although glucose concentrations 
in plasma were not different between the 3 groups of rats, cortex levels 
of glucose were found increased in WD-fed rats, thus suggesting a con-
dition of brain glucose hypometabolism (Fig. 5A). The administration of 
WD-fed rats with L. reuteri maintained the frontal cortex glucose at levels 
comparable to those of the controls (Fig. 5A). Interestingly, plasma ke-
tone bodies acetoacetate and β-hydroxybutyrate were significantly 
higher in D rats compared to C rats (Fig. 5B, C). The WD-induced in-
crease of acetoacetate level was prevented by the treatment with 
L. reuteri (Fig. 5B). This metabolic fuel profile was coupled to a signifi-
cantly lower degree of inhibitory phosphorylation of GSK in D rats 
compared to controls, which was prevented in DR rats (Fig. 5D). In 
contrast to the regulation of GSK, we observed a significant activation of 
the Akt pathway, expressed as p-Akt/Akt ratio, in D group (Fig. 5E). This 
phenomenon was not observed in DR rats that experienced WD plus 
L. reuteri. 

3.6. Analysis of the Nrf2 pathway 

The pathway of Nrf2, the key transcriptional activator of genes 
responsible for the maintenance of redox homeostasis (Heurtaux et al., 

Fig. 1. Location preference (A), Recognition index (B) and rearing time (C) during Novel Object Recognition test in control (C), Diet (D) and Diet-Reuteri (DR) rats. 
Location preference was calculated as the percentage of time spent in exploring one of the two identical objects within the training session. The Recognition index 
was calculated as the percentage of time spent exploring the novel object in the testing session. Values are the means ± SEM of 8 different rats. *P<0.05, ** P<0.01 
compared to C rats; #P<0.05 compared to D rats (one-way ANOVA followed by Bonferroni post-test). 
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2022), was investigated in brain cortex of different rat groups. The nu-
clear protein level of Nrf2 was found reduced by the WD, while the 
concomitant administration of L. reuteri prevented this decrement 
(Fig. 6A). 

Both protein levels and activities of Nrf2 pathway-modulated en-
zymes catalase, GR and SOD, were measured. SOD and GR levels were 
reduced in D rats and the treatment with L. reuteri was able to prevent 
these alterations in DR rats (Fig. 6B, C). No changes of catalase protein 
level were associated with WD treatment (Fig. 6D). 

Also, a parallel decrease of the activity of SOD, catalase and GR was 
associated with WD (Fig. 7A-C). While administration of L. reuteri in WD- 
fed rats (DR) was found effective in preventing diet-induced changes of 
both SOD and GR activities, no similar effect was observed for the 
catalase activity. 

3.7. Fructose and uric acid level in Gut, plasma and cortex 

To delineate the mechanism underlying brain alteration of redox 
homeostasis we focused on the role of fructose. To obtain information on 
the absorption of fructose into the gut and its metabolism, as well as its 
circulating levels and delivery to the brain cells, we quantified the levels 
of fructose and uric acid, one of the main products of fructose meta-
bolism, in the ileum of C, D and DR rats. Significant increases in ileum 
levels of fructose and uric acid were found in D rats compared to C rats, 
while this increase was prevented in DR rats (Figure 8A, B). In line with 
this result, the amount of fructose in plasma of D rats was higher 
compared to C, but no difference was measured between C and DR rats 
(Fig.8C). Moreover, the levels of the sugar were also higher in the frontal 
cortex of D rats respect to C animals, with the probiotic L. reuteri being 
effective in preventing fructose changes (Fig.8E). Accordingly, the 
amount of fructose specific transporter Glut-5 was found increased in D 
rats compared to C rats, but no difference was detected between C and 
DR rats (Supplementary Fig. 5). 

4. Discussion 

The present study deals with the critical issue of the ability of the 
probiotic L. reuteri to modulate western diet-induced alterations in brain 
function. Although different public awareness campaigns are underway 
to discourage the adoption of unhealthy diets rich in fats and/or sugars, 
less attention is paid to the search for strategies to limit the corre-
sponding brain damage. In this frame, the relationships between diet- 
related changes in the gut-brain axis and cognitive flexibility has now 
emerged as a turning point for promoting healthy dietary regimen 
(Dinan and Cryan, 2017; Schächtle and Rosshart, 2021; Boehme et al., 
2023). Nevertheless, while the impact of prebiotics or plant-derived 
metabolites on brain cognition has been deeply investigated in recent 
years (Kennedy, 2014; Chu et al., 2023; Varesi et al., 2023), few data are 
available on the efficacy of probiotics in contrasting diet-induced brain 
dysfunction (Ohland et al., 2013; Jena et al., 2022). In this study, we 
provide the first experimental evidence that L. reuteri supplementation 
ameliorates WD-related cognitive impairment, as assessed behaviorally 
and at molecular level in the frontal cortex. This result is of interest 
taking into account that we recently reported that the L. reuteri admin-
istration in western diet-fed rats does not modify the microbiota 
(Abuqwider et al., 2023). 

The NOR test, one of the most employed approaches to examine 
working memory (Ennaceur et al., 1997; Ennaceur and Delacour, 1988) 
was used to evaluate short-term memory. The recognition of the novel 
object was significantly decreased in D rats, suggesting an impairment of 
the object memory induced by WD. This alteration was not due to 
changes in exploratory motivation during the sampling phase of the 
task, since exploration of both objects is identical for both groups 
(Akkerman et al., 2012). Interestingly, L. reuteri supplementation was 
effective for the improvement of learning-related memory cognition. 

The working memory, which relates to the ‘temporary operation and 
storage of information’, is mainly stored in the prefrontal cortex of the 
brain (Khan and Muly, 2011), where NMDA receptor, once activated, 

Fig. 2. Western blot quantification (with representative blots) of N-methyl-D-aspartic acid receptor (NMDAR) (A), Brain derived neurotrophic factor (BDNF) (C), 
synaptophysin (D), Synaptotagmin (E), PSD-95 (F), and immunofluorescence quantification (magnification 40x, scale bar=100μm) of phospho-cAMP response 
element-binding protein (p-CREB) (B) in frontal cortex from control (C), Diet (D) and Diet-Reuteri (DR) rats. Values are the means ± SEM of 8 different rats. *P<0.05, 
** P<0.01, ***P<0.001, **** P<0.0001 compared to C rats; #P<0.05, ###P<0.001, ####P<0.0001 compared to D rats (one-way ANOVA followed by Bonferroni 
post-test). 
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leads to the conversion of the transcription factor CREB into its active 
form, namely p-CREB (Miyamoto, 2006; Yan et al., 2016), which initi-
ates transcription and translation of proteins/receptors required for 
memory and synaptic plasticity (Impey et al., 2004; Barco et al., 2006), 
including BDNF that is critical for neuronal circuitry function. Here, we 
report that L. reuteri supplementation prevents the WD-induced decrease 
of frontal cortex levels of NMDA receptor, p-CREB and BDNF. Hence, we 
can speculate that the protective effect of the probiotic on the levels of 
these players contributed to preserve neuronal plasticity, learning and 
memory of WD-fed rats. 

Besides trophic factors, presynaptic proteins are important molecules 
regulating cognitive and other complex functions in the frontal cortex. 
In this context, worth mentioning are synaptophysin, which is involved 
in the regulation of the kinetics of synaptic vesicle endocytosis (Kwon 
and Chapman, 2011), synaptotagmin I, a major calcium sensor for 
transmitter release (Courtney et al., 2019) and PSD-95, pivotal for the 
protein scaffolding in excitatory neurons (Pinto et al., 2013). The levels 
of these synaptic markers were reduced in adults D rats, in agreement 
with results previously obtained in the brain of middle-aged rats fed a 
western diet (Mazzoli et al., 2020). The finding of decreased amounts of 
synaptic proteins, together with behavioral changes in D rats, is in good 
accordance with the previous results showing that PSD-95 deficiency 

disrupts cortex-associated function and behavior, particularly learning 
and working memory (Coley and Gao, 2019). The dysfunction of BDNF 
and PSD-95 could also be at the basis of the increased rearing (index of 
stress condition) found in D rats, since these mediators are known to be 
involved in anxiety-like behavior (Feyder et al., 2010; Murínová et al., 
2017). Interestingly, the L. reuteri supplementation was able to totally 
prevent changes in the levels of all three proteins in DR rats. Overall, it is 
conceivable that L. reuteri-induced increase in the activation of CREB, in 
the levels of BDNF and synaptic proteins underlies the maintenance of 
the cognitive status of WD plus probiotic-fed rats. 

One of the main culprits for the cognitive dysfunction associated 
with an unbalanced diet is the alteration of brain redox homeostasis 
(Ionescu-Tucker and Cotman, 2021; Sharma, 2021). In agreement, in the 
current study, we observed that impaired behavioral performance in 
WD-fed rats is associated with increased protein and lipid oxidation. The 
higher degree of oxidative damage was found associated, in D rats, with 
the concomitant reduction of the levels of UCP2 and PGC-1α, two key 
factors for neuroprotection, antioxidant response and synaptic plasticity 
(Valle et al., 2005; Cheng et al., 2012; Hermes et al., 2016). The 
observed decrease of PGC-1α was also in line with the alteration of 
synaptic proteins and BDNF levels, as BDNF expression is regulated by 
PGC-1α (Xia et al., 2017). All observed alterations were fully prevented 
in WD-fed rats concomitantly receiving the probiotic. 

Although mitochondrial dysfunction is often found at the basis of 
oxidative imbalance, an unexpected increase in mitochondrial respira-
tory capacity was evidenced in the frontal cortex of D rats. One possible 
explanation could be that this increase represents an adaptive mecha-
nism to maintain cerebral energetics in response to alterations in cortex 
metabolic activity, since it has been shown that BDNF levels correlate 
with glucose oxidation in cortical neurons (Burkhalter et al., 2003). 
Indeed, the levels of cortex glucose were found increased in WD-fed rats, 
thus suggesting a condition of glucose hypometabolism, in 

Fig. 3. Quantification of Nitro-tyrosine (N-Tyr) (A), and thiobarbituric acid 
reactive substances (TBARS) (B), NADPH oxidase (C) and Monoamine oxidase 
(MAO) (D) activities, and Western blot quantification (with representative 
blots) of Uncoupling protein 2 (UCP2) (E) and peroxisome proliferator- 
activated receptor gamma coactivator 1-alpha (PGC-1α) (F) in frontal cortex 
from control (C), Diet (D) and Diet-Reuteri (DR) rats. Values are the means ±
SEM of 8 different rats. ** P<0.01, ***P<0.001, **** P<0.0001 compared to C 
rats; #P<0.05, ##P<0.01, compared to D rats (one-way ANOVA followed by 
Bonferroni post-test). 

Fig. 4. Mitochondrial respiratory activity (A) and Western blot quantification 
(with representative blots) of mitochondrial complexes (B) in frontal cortex 
from control (C), Diet (D) and Diet-Reuteri (DR) rats. Mitochondrial respiration 
(panel A) was measured in the presence of complex I-linked substrates pyruvate 
+ glutamate + malate (PGM), adenosintriphosphate (ATP), complex II-linked 
substrate succinate (S), ATP synthase inhibitor oligomycin (O), uncoupler 
carbonylcyanide p-trifluoromethoxyphenyl-hydrazone (FCCP) and inhibitor of 
complex I rotenone (R). Values are the means ± SEM of 8 different rats. 
*P<0.05, compared to C rats (one-way ANOVA followed by Bonferroni 
post-test). 
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concomitance with a reduced phosphorylation of GSK, which is a 
downstream marker of insulin signaling. A condition of decreased 
glucose utilization is usually associated with an increased utilization of 
ketone bodies (Giménez-Cassina et al., 2012). Interestingly, both plasma 
ketone bodies acetoacetate and β-hydroxybutyrate were higher in D rats 
compared to C rats. Indeed, elevated plasma levels of the ketone bodies 
acetoacetate and β-hydroxybutyrate were already observed in untreated 
diabetic patients or high fat fed animals (Andersen et al., 2017; Sikder 
et al., 2018; Yamasaki et al., 2023), in line with results obtained in our 
experimental paradigm. Concomitant probiotic administration in WD- 
fed rats fully restored glucose utilization by cortical cells, probably 
through the maintenance of BDNF levels, and totally reestablished the 
plasma levels of acetoacetate, even though β-hydroxybutyrate concen-
trations were reduced with respect to WD-fed animals but remained 
higher compared to controls. These latter results open an interesting 

perspective in which mitochondrial function and oxidative balance are 
not necessarily linked, at least in the brain likely because maintaining 
ATP production in this tissue is of priority compared to other tissues in 
which mitochondrial dysfunction and oxidative stress are very often 
found after nutritional insult (García-García et al., 2020). 

ROS can be also produced in the cytosol by a large panel of active 
oxidoreductases including NADPH oxidase and MAO (Snezhkina et al., 
2019; Heurtaux et al., 2022). Indeed, we found increased activity of both 
enzymes in D rats compared to controls, suggesting that, in our experi-
mental paradigm, they represent relevant promoters of free radical 
production. Furthermore, Akt activation was observed in the frontal 
cortex of rats receiving the western diet. This result well agrees with 
previous evidence describing the role of this kinase in activating NADPH 
oxidase (Chen et al., 2003; Hoyal et al., 2003; Zhang et al., 2016). 
Consistent with the prevention of oxidative damage exerted by L. reuteri, 

Fig. 5. Glucose cortex content (A), plasma levels of acetoacetic acid (B) and β-hydroxybutyrate (C), Western blot quantification (with representative blots) of 
phospho-Glycogen synthase kinase 3 beta (pGSK) (D), and phospho-protein kinase B (pAkt) (E) in frontal cortex from control (C), Diet (D) and Diet-Reuteri (DR) rats. 
Values are the means ± SEM of 8 different rats. *P<0.05, ** P<0.01, **** P<0.0001 compared to C rats; #P<0.05, ##P<0.01, ###P<0.001 compared to D rats 
(one-way ANOVA followed by Bonferroni post-test). 

Fig. 6. Western blot quantification (with representative blots) of nuclear factor -erythroid 2-related factor 2 (Nrf2) (A), superoxide dismutase (SOD) (B), glutathione 
reductase (GR) (C), and catalase (D) in frontal cortex from control (C), Diet (D) and Diet-Reuteri (DR) rats. Values are the means ± SEM of 8 different rats. ** P<0.01, 
*** P<0.001 compared to C rats; ##P<0.01, compared to D rats (one-way ANOVA followed by Bonferroni post-test). 
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all the above increases were not detected in DR rats. 
Our results highlighted a role for decreased Nrf2 signaling as a local 

mediator of WD-induced oxidative stress within the brain. Nrf2 is a key 
regulator of the antioxidant response system, being activated in settings 
of oxidative damage and promoting increased antioxidant enzyme ac-
tivity, thus being a promising target for the treatment of brain diseases 
(Hashimoto, 2018; Uruno and Yamamoto, 2023). In fact, we found that 

increased oxidative stress following the WD was associated with 
impaired Nrf2 signaling, with following decreased activities/amounts of 
SOD, CAT and GR in D rats. In addition, the present study provides, for 
the first time, direct evidence that L. reuteri exerts a protective role 
against brain dysfunction associated with the WD consumption, at least 
partly by increased translocation into the nucleus of the redox tran-
scription factor Nrf2 accompanied by higher expression of the down-
stream antioxidant enzymes. 

To get insight into the possible mechanism through which L. reuteri 
administration influenced brain physiology and considering that the 
probiotic had no effect on the microbiota reshaping (Abuqwider et al., 
2023), we focused on the well-known prooxidant effect of fructose and 
its metabolites (Spagnuolo et al., 2020), already shown by us in a model 
of fructose-induced cortex dysfunction (Spagnuolo et al., 2023). It was 
previously outlined that excessive dietary fructose intake increases 
reactive species and oxidative damage, downregulates Nrf2 and blocks 
its antioxidant pathway (Jaiswal et al., 2015; García-Arroyo et al., 2019; 
Batandier et al., 2020). Our group also previously reported that a 
fructose-rich diet reduced the Nrf2 protein content and the activity of 
Nrf2-dependent enzymes, namely G6PD and GSR, in the brain cortex of 
young and adult rats (Spagnuolo et al., 2020). Indeed, due to the un-
controlled metabolism of fructose in the cells, ATP can be depleted 
resulting in an activation of adenosine monophosphate deaminase, and 
subsequently, the production of the prooxidant uric acid (Staltner 
et al.,2023), which activates NADPH oxidase (Lanaspa et al., 2012; 
Sanchez-Lozada et al., 2012) and causes a burst of intracellular oxidative 
stress (Johnson et al., 2020). Further, high fructose decreases miRNA- 
200a, a non-coding RNA, that is reported to activate Nrf2, thus inhib-
iting the Nrf2 antioxidant response (Zhao et al., 2018). 

We hypothesized that the probiotic acted essentially by metabolizing 
part of the fructose transiting the gastrointestinal tract and thus limiting 
its absorption and delivery to peripheral organs (including brain) 
considering that it has been recently reported that L. reuteri utilizes 
fructose as a source of reducing power (Oh et al., 2019). To test this, we 
evaluated the content of fructose and its metabolite uric acid in ileum, 
and we found that their concentrations significantly increased after WD. 
These changes were not observed in probiotic-treated rats, thus indi-
cating that fructose entry in the ileum was limited. In line, also the 
plasma levels of fructose were increased in D rats compared to C rats but 
were lower in DR ones. Consequently, the amount of fructose reaching 
the brain and converted in uric acid in frontal cortex was found 
increased by WD but significantly reduced in probiotic-treated rats. 
Accordingly, the amount of the specific fructose transporter Glut-5 
raised in D rats with respect to C, and this increase was prevented by 
probiotic treatment, in agreement with the reduction in fructose found 
in the brain. Therefore, from this set of data it emerges that the ability of 
the probiotic to metabolize fructose in the gastrointestinal tract can limit 
sugar absorption, thus preventing uric acid increase and the following 
oxidative stress of cortex cells (Figure 9). The intricate connection 

Fig. 7. Enzymatic activity of superoxide dismutase (SOD) (A), catalase (B) and glutathione reductase (GR) (C), in frontal cortex from control (C), Diet (D) and Diet- 
Reuteri (DR) rats. Values are the means ± SEM of 8 different rats. ** P<0.01, *** P<0.001, ****P<0.0001 compared to C rats; ##P<0.01, compared to D rats (one- 
way ANOVA followed by Bonferroni post-test). 

Fig. 8. Fructose and uric acid levels in ileum (A and B respectively), plasma (C 
and D respectively), and frontal cortex (E and F respectively) from control (C), 
Diet (D) and Diet-Reuteri (DR) rats. Values are the means ± SEM of 8 different 
rats. *P<0.05, ** P<0.01, compared to C rats; #P<0.05, ###P<0.001 
compared to D rats (one-way ANOVA followed by Bonferroni post-test). 
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between dietary habits, gut microbiota, fructose metabolism and brain 
dysfunction can be tackled through the fine tuning of the microbial 
population. These results open new scenarios for an integrated inter-
vention study based on the molecular effects of microbial metabolites 
and their mechanistic effects on brain function. 

In this context we believe that these results pave the way to dive deep 
into the probiotics preventive effect against brain dysfunction associated 
with unhealthy eating habits, which are typical of today’s society. 
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