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ABSTRACT

Monitoring of sewer networks (SNs) is an important task whose planning can be related to various purposes, for example contaminant detec-

tion and epidemiological studies. This paper proposes two different approaches for the identification of a monitoring system in SNs. The first

one proposes the identification of the best monitoring points starting from the knowledge of the hydraulic behavior of the system with

respect to specific sensor threshold values through an optimization procedure that maximizes the reliability in detecting a contaminant. A

new mathematical model is developed and a global optimization solver is employed to perform the optimization procedure. The second

approach is based on the complex network theory (CNT) tools, adopting the in-relevance-based harmonic centrality, and does not require

any hydraulic simulation. The metric is evaluated for each node of the network and provides a range of nodes, classified with respect to

their importance, useful to identify suitable locations for sensors. With reference to both a benchmark and a real SN, the comparison

between the results achieved by both strategies indicates that the two approaches provide comparable solutions in terms of sensor location.
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HIGHLIGHTS

• Comparison between two different approaches for monitoring planning in sewer networks.

• Use of a global optimization solver to find the optimal location of sensors maximizing the network reliability.

• Use of the in-based harmonic centrality as a tool to identify suitable locations for sensors referring to only topological information.

• Despite being based on different concepts, the two approaches provide comparable results.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Sewer networks (SNs) are complex systems aimed at the collection and transport of wastewater (sanitary systems) or waste-
water and rainwater (combined systems) up to the treatment plant (Simone et al. 2022b).

In recent decades, the need to propose new monitoring strategies for such complex systems has become increasingly

urgent, mainly for factors related to the identification of illicit intrusions, as well as to the control of specific contaminants
and to the limitation of the potential environmental impact (Gromaire et al. 2001). More recently, SNs monitoring has
been proposed to support epidemiological studies (Larsen & Wigginton 2020).

The sensor location problem solved with optimization algorithms has been the focus of attention of many researchers,
mainly relying on heuristic approaches. Banik et al. (2015a, 2015b) proposed a source identification methodology, based
on a pre-screening aimed at reducing the network size, for identifying the set of candidate nodes for sensors. Banik et al.
(2017a, 2017b) proposed optimization-based strategies aimed at the optimal location of sensors in sewer systems. Tinelli
et al. (2017) investigated the optimal location of sensors with evolutionary algorithms, selecting the contamination events
based on information about the network in terms of topology and operation. The problem of the optimal location of sensors
was also addressed by Yazdi (2018), who proposed the use of a new procedure relying on evolutionary algorithms and

entropy theory. Sambito et al. (2020) developed an approach for positioning water quality sensors based on the Bayesian
decision network in order to facilitate the early isolation of illicit intrusions, focusing on soluble conservative pollutants,
such as metals. The approach identifies the optimal sensor location gaining advantage from additional information, such

as topology, thus reducing the computational effort needed to obtain the solution.
The monitoring of pollutants and pathogens in sewers has also been tackled with approaches based on backtracking algor-

ithms, which represent a technique for evaluating the presence of contaminants and their diffusion process through a
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backward process, from downstream to upstream. This process is aimed at supporting the identification of candidate pos-

itions to host monitoring measures. Rodríguez-Alarcón & Lozano (2019) proposed an approach based on complex
network theory (CNT) tools and a backtracking algorithm to evaluate potential spill or contaminant release with respect
to all nodes of the system. Simone et al. (2022a) proposed a strategy based on network topology and a backtracking algorithm

to model the diffusion of pollutants along the Urban Drainage Network (UDN), by using only information derived from Hor-
ton’s hierarchy. Chachula et al. (2021) proposed a backtracking strategy by using the time-series of sensor measurements in an
array of localization of contamination events providing good information on contaminant events with few sensors. Guadagno
et al. (2023) proposed a backtracking methodology, based on the calculation of the impact coefficient related to the dilution

and decay of contaminants in SNs, to locate sensors with only one steady hydraulic simulation.
Most of the presented approaches are very effective but also very cumbersome, both for the hydraulic simulations they

require and for the expensive calculation times. Furthermore, it could also happen, particularly with very large and complex

systems, that the lack of information (e.g., flow) makes such analyses difficult or even unreliable. In this context, the CNT is
proposed as a useful approach for the analysis of complex real systems, which is gaining momentum. With reference to SNs,
various works have been proposed to evaluate the vulnerability, resilience, and operability of such systems (Reyes-Silva et al.
2020; Hesarkazzazi et al. 2022; Simone 2023) but also aspects related to monitoring. Simone et al. (2022b) proposed the use
of CNT-tailored centrality metrics in the analysis of sewers for vulnerability/resilience assessment, optimal monitoring design
and spread of contaminants. They highlighted the importance of topology in the study of sewer systems, showing how their

behavior is the result of the interaction between the role of nodes and network topology. Zuluaga et al. (2020) used the net-
work theory together with differential equations to model and simulate water quality parameters in a hydrological network.
García-Usuga et al. (2020) used PageRank’s centrality to identify well-monitored nodes in UDNs more susceptible to contami-
nation. Halverson & Fleming (2015) proposed the use of CNT tools for systems of streamflow gauges. Their goal was to

evaluate whether this approach could be meaningful when applied to hydrometric data, and, more specifically, whether it
may help to guide decisions in stream gauge placement. Results showed that the betweenness metric is effective in identifying
key points for sensors’ placements, especially in bridges between communities.

Considering the potential of the CNT tools for the analysis of real systems and the performance of optimization algorithms,
the aim of this paper is to model the sensor placement problem, i.e., determining the candidate positions to host monitor sen-
sors for detecting the presence of contaminants or pathogens in the system, using both an optimization procedure and a

complex network theory approach (Simone et al. 2023).
The obtained optimal solutions, with respect to a specific objective are compared with CNT results to evaluate the effec-

tiveness of the topological approach. In fact, obtaining promising comparison would mean validating the topological
approach for several preliminary and complementary applications relative to the analysis and management of SNs, while

reducing the computation effort.
The first strategy is based on an optimization procedure aimed at searching for the best location of a fixed number of water

quality sensors, in order to maximize the reliability of the whole system to detect a target substance. This strategy relies on the

development of a mathematical model, which is solved using a global optimization solver. The proposed optimization pro-
cedure allows one to obtain the global optimum of the problem, depending on the accuracy of the mathematical model.

The second one uses a CNT centrality metric tailored accounting for both information on the connectivity structure and on

the intrinsic relevance of nodes of the system (Giustolisi et al. 2020; Simone et al. 2020). The strategy considers the different
roles of nodes (e.g., inlet nodes, connection nodes, and outfall nodes) embedding the information about their intrinsic rel-
evance as inflows and the presence of spatial constraints (e.g., slope). The in-relevance-based harmonic centrality is

computed for all nodes of the direct graph of the SN to support the monitoring system planning.
The main goal of the paper is to understand whether the simpler and less computationally expensive CNT-based approach

furnishes comparable results in terms of sensor positioning with respect to the optimization solver.
It is important to highlight that, despite providing very promising results with short computational effort, the topological

approach requires a deep knowledge of the used tools, in order to be able to implement the procedure in the most effective
way and to guarantee a reliable interpretation of the results, as well as a full competence of the hydraulic systems in order to
validate the consistency of the achieved results.

The paper is organized as follows. The next section reports a description of the two methodologies, the third section pre-
sents and compares the results of the analyses applied both to a benchmark SN and to a real one. Concluding remarks are
drawn in the last section.
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2. METHODS

Determining the suitability of a node for the detection of a contaminant in SNs is essential for planning an efficient monitor-
ing system. This paper presents two modeling approaches for optimal sensor placement aimed at detecting target substances
in SNs.

The first methodology proposes an optimization problem based on one single objective function, that is, the maximization
of the network reliability when a spill of contaminant occurs within the system.

The second methodology investigates the sensor monitoring problem from a more topological perspective, using a metric

proposed by the CNT and adapted to infrastructural systems like SNs.

2.1. The optimization methodology

The first strategy is deterministic optimization, relying on the analytical properties of the problem to generate a sequence of

points converging to a global optimum or an approximately global optimum. Deterministic methods include linear program-
ming (LP), non-linear programming (NLP), mixed-integer linear programming (MILP), and mixed-integer non-linear
programming (MINLP) (Belotti et al. 2013; Morani et al. 2023). Most of the available MILP/MINLP solvers can achieve
global optima only in convex problems (Belotti et al. 2009). The only solvers managing to find global optima in both

convex and non-convex problems are the global optimization solvers.
In this study, the optimization procedure is performed by the SCIP (Solving Constraint Integer Programs) (Vigerske &

Gleixner 2018) solver, which is a global optimization solver implementing a spatial branch and bound and various heuristics.

Given a network consisting of L links and N nodes, the aim of the optimization procedure is to find the best location of a
fixed number of sensors to maximize the network reliability (RN) in case of pollutant introduction. In this study, the optim-
ization procedure has been decoupled by the hydraulic and quality modelling of the network, thus flow velocity (V) and

pollutant concentration (C) are preliminarily computed by means of the external software SWMM (Rossman 2017).
The network can be modelled as a directed graph so that each link l (l ¼ 1,… , L) has a proper direction and the discharge

flows from the initial node (i) to the final node ( f ). In this study, each node of the network is a possible candidate for the
installation of a sensor, and it has been modelled by means of a binary variable (In), which is equal to 1 if the device is

installed, and 0 otherwise. According to the proposed procedure, the sensors should be located in order to maximize the
reliability of the network, which means maximizing the number of detected points when a pollutant is inserted within the
network. In this study, the pollutant entrance is assumed in only one node at a time and the network reliability is assessed

over several scenarios, differing by the node assumed as an inlet point.
A further variable of the optimization is represented by the pollutant detection (di,s), which is defined for each node

i (i¼ 1,… , N) and for each scenario s (s ¼ 1,… σ). Such a binary variable has been properly modelled by means of a set

of constraints, written for each link l (l ¼ 1,… , L) of the network:

di,s ¼ Ii Bs
i þ If B

s
f þ (1� If)(1� Ii)(d f,sB

s
i ) (1)

where Bs
i is a parameter equal to 1 if the concentration at the ith node (Ci,s) is greater than a threshold concentration (C0), 0

otherwise. The parameter Bs
i results from the concentration values obtained by the quality simulation performed by the soft-

ware SWMM.
It is worth underlining that the outfall (ω) is not constrained by Equation (1), since it cannot be the initial node of any links.

In order to properly define the pollutant detection at the outfall node, the following constraint has been defined:

dv,s ¼ Iv Bs
v (2)

According to Equation (2), the pollutant at the outfall is detected only in case of device installation (i.e., Iv equal to 1) and

concentration value greater than the threshold value (i.e., Bs
v equal to 1).

Finally, a further constraint has been considered in order to set the total number of sensors (Ns) installed within the net-
work:

Xn
i¼1

In ¼ Ns (3)
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As an objective function of the optimization, the system reliability has been considered and defined as follows:

maximize rN ¼

Ps
s¼1

PN
i¼1

di,s

Ps
s¼1

PN
i¼1

Bs
i

0
BBB@

1
CCCA (4)

2.2. In-relevance-harmonic based methodology

Centrality is one of the most studied concepts in CNT. Several centrality metrics have been proposed (Freeman 1978; Borgatti
2005; Newman 2010) to evaluate the most central element in real systems with respect to both different physical phenomena
and the way information flows in the network. The proposed approach recalls the concept of harmonic centrality and inves-

tigates the possibility of using this metric to efficiently plan a quality monitoring system in SNs. Its application is justified
because the harmonic centrality assumes that information through the network moves only along the shortest possible
paths, just as happens in SNs, for which the shortest paths between the various pairs of nodes are uniquely determined by

the slope of the system.
The harmonic centrality represents a metric that detects the ability of each node to disseminate and receive information in

the system based on the concept of proximity. The original formulation of the harmonic centrality, HC
i , is mathematically

expressed as (Rochat 2009):

HC
i ¼

XN
j¼1

1
dij

(5)

where dij is the distance from node i to node j in the network.
The standard metric is extended to embed the information about the intrinsic relevance of the nodes (outfall, connection

nodes, etc.) through the function f (Ri, Rj), obtaining the relevance-harmonic centrality (Giustolisi et al. 2020) mathematically

expressed as:

HC
i ¼ Ri

XN
j¼1

1
dij

(6)

The intrinsic relevance of the ending nodes, Ri and Rj, of each link, is a piece of information depending on the type of net-
work and analysis to perform.

Several functions f(Ri, Rj) have been proposed to account for the intrinsic relevance of the analysis:

f (Ri, Rj) ¼ Ri � Rj

f (Ri, Rj) ¼
(Ri þ Rj)

2
f(Ri, Rj) ¼ Ri

f(Ri, Rj) ¼ max [Ri, Rj]
f(Ri, Rj) ¼ SRpath
f(Ri, Rj) ¼ PRpath

8>>>>>>>><
>>>>>>>>:

(7)

The strategy here proposed is performed using the function f (Ri, Rj)¼ (Ri�Rj), corresponding to the product of the intrinsic

relevance of the ending nodes i and j of each pipe l. It is considered as the one that best highlights the role of intrinsic rel-
evance in the connections between nodes for the specific considered problem. The intrinsic relevance of nodes is assumed
equal to the inflow for each node, proportional to the quantity of contaminant introduced.

It is important to note that, since the SNs are direct networks, it is necessary to use a specific version of the harmonic cen-
trality, i.e., the in-harmonic (Simone et al. 2023), which, in the specific case, corresponds to the one that collects the
information entering the nodes.
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Therefore, the in-relevance harmonic centrality is evaluated for each node of the systems considered and the analysis pro-

vided a node importance ranking, normalized in the range [0, 100]. Nodes with higher values of the metric represent the
points where most of the information disseminated on the network is concentrated and are, most likely, the best candidate
to host sensors/sampling points.

3. RESULTS AND DISCUSSION

3.1. Benchmark SN

The benchmark SN reported in Figure 1 (Simone et al. 2023) is considered to perform the two approaches. The network
model is composed of 77 nodes (manholes), 79 links (sewer pipes), and 1 outfall. The flow directions are imposed by the
slope of the pipes.

3.1.1. Application of the optimization methodology

For the analysed case study, each node of the network has been assumed as the possible inlet of the pollutant. Therefore, the
total number of analysed scenarios (σ) is equal to the total number of nodes (N). Regarding the inserted pollutant, the inflow
concentration has been assumed equal to 1 mg/l. The pollutant has been considered to decay with a first-order kinetic, with

Figure 1 | Benchmark SN layout with flow direction.
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the decay coefficient set as 0.2 h�1, consistent with the study of Hart & Halden (2020) targeting SARS-COVID-19 as a

contaminant.
Once a threshold concentration value (C0) and a number of installed sensors (Ns) are fixed, the optimization process is

accomplished by the solver SCIP in less than 1 s. The achievement of the global optimum is extremely fast since SCIP is a

very high-performance solver for MILP problems.
It is worth underlining that, by increasing the number of installed sensors, the value of the objective function (i.e., the net-

work reliability) progressively increases up to the maximum value (i.e., 1). In particular, Figure 2 reports the value of the
objective as a function of the number of sensors for the case C0 ¼ 0:008 mg/l, showing that four sensors are sufficient for

reaching the maximum value.
Figure 3 reports the selected optimal positions for the four sensors. It is possible to note that one of the sensors is installed

in correspondence with the outfall, as foreseeable, and the other three are located in points that receive important flow rates

within the network. Moving upstream, i.e., where the dilution effect is mild due to the smaller flows, the installation of
additional sensors is worthless, since the coverage of this part of the network in terms of pollutant detection is already
ensured by the downstream sensors.

3.1.2. In-relevance-harmonic-based methodology

The in-relevance-harmonic centrality is applied to the case study to understand whether it can provide useful information
about the sensor location. The intrinsic relevance is set equal to the lateral inflow for each node, which is proportional to
the concentration of contaminant introduced as mg/l. The obtained in-relevance-harmonic values are graphically shown
in Figure 4. The maximum value of the metric occurs for node 78, i.e., the system outfall. This result indicates that the outfall

is the most suitable node to detect the information of other nodes and, thus, it can be considered a good candidate for sensor
placement, consistently with the well-known knowledge of SN functioning. Increasing the number of sensors to be installed
in the network, it is possible to refer to the metric values and select the nodes immediately less central than the outfall. The

Figure 2 | Objective function variability depending on the number of installed sensors for C0¼ 0.008 mg/l.
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results indicate nodes 76 and 59 as good information receptors. It is evident that node 76 is an alternative to node 78 since
they are connected to each other. The analysis suggests that node 76 receives a lot of information about the system, being

close to the outfall, and therefore represents an excellent position to host a sensor, but at the same time its proximity to
the outfall makes it an alternative, to be considered, perhaps, as a sensor backup and for step-testing during monitoring
campaigns.

Therefore, the analysis suggests placing two sensors in nodes 78 and 59. As the number of sensors to be positioned
increases, the ranking of metric values allows for immediately identifying the most suitable position to host them. According
to such an interpretation of the metric, nodes 50 and 27 follow as candidate nodes for hosting sensors.

The analysis provides null values of the metric for all extremal/ head nodes because no information arrives at these points.
This result implies that these points are not suitable candidates for hosting measurements.

The results of the analysis show that the in-relevance-harmonic centrality is effective in evaluating the ability of the nodes to

receive contaminants and therefore it could be effective in the study related to the spread of contaminants and the planning of
monitoring systems.

3.1.3. Optimization procedure vs. in-relevance-harmonic centrality

Comparing the results of the proposed methodologies, the nodes identified through the in-relevance-harmonic centrality
(Figure 4) are very close to the ones individuated by the optimization method (Figure 3), by considering a threshold value

of C0¼ 0.008 mg/l. Both approaches indicate, indeed, that nodes 78, 59 and 50 as the best candidates for either the position-
ing of sensors or the collection of samples to detect target pollutants, showing that, despite being based on different concepts
and approaches, the two strategies provided quite comparable results.

Figure 3 | Network layout with indication of the optimal positions for the sensors according to the optimization procedure.
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Although this result confirms the validity of the topological approach in addressing the study of SNs, it is important to
underline that such analysis requires technicians who are able to implement and adequately interpret the CNT tools with

respect to the SNs operation, as well as to evaluate the feasibility of the results with respect to their hydraulic behavior.

3.2. Real SN

A further comparison between the two approaches is performed with a larger and real SN, proposed in Hesarkazzazi et al.
(2022), and redrafted to consider dry weather conditions setting the lateral inflows and excluding the sub-catchments. The

network model is composed of 531 nodes, 530 pipes, and 1 outfall. The flow directions are imposed by the slope of the
pipes (Figure 5).

3.2.1. Application of the optimization methodology

As for the benchmark network, each node of this real network has been assumed as a possible inlet of the pollutant, with an
input concentration equal to 1 mg/l. The pollutant has been considered to decay with a first-order kinetic with a decay coeffi-
cient set as 0.2 h�1. Despite its larger size compared to the benchmark network, once the threshold concentration value (C0)
and the number of installed sensors (Ns) are fixed, the optimization process is performed in a fraction of a second.

Figure 6 shows the trend of the objective function with the number of sensors for three different values of threshold con-
centration. According to this figure, given a value of threshold concentration, the network reliability increases progressively
up to the maximum value, i.e., 1. By increasing the threshold concentration, the total number of sensors ensuring the total

coverage of the network (i.e., rN ¼ 1) increases accordingly. Indeed, given a threshold concentration equal to 0.003 mg/l,
the coverage of the network is ensured by installing 4 sensors. Increasing the threshold concentration to 0.008 and
0.01 mg/l, the total number of sensors increases to 8 and 11, respectively.

Figure 4 | Network layout with the in-relevance-harmonic centrality values for all nodes.
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Moreover, with reference to the threshold concentration equal to 0.008 mg/l, Figure 7 reports the selected optimal pos-
itions for the required eight sensors.

3.2.2. In-relevance-harmonic-based methodology

The in-relevance-harmonic centrality is applied to the real case study and the results are graphically shown in Figure 8. As for

the previous case study, the intrinsic relevance for each node is set equal to the lateral inflow, which is proportional to the
concentration of contaminant introduced as mg/l. The collection capacity varies from node to node, and for all head nodes is
null, because they spread the contaminant in the network, but they do not collect it.

The maximum value of the metric is at the outfall, i.e., node 531, which makes it, as expected, the most suitable node to host
a sensor. The ranking of Figure 8 is indicative of the ability of each node to collect information derived from other nodes in
the system. In particular, it is possible to note that the metric identifies several main paths in the network, characterized by
the presence of nodes with high intrinsic relevance (yellow nodes), corresponding to endpoints of separate branches, and in

any case, connected to other well-connected nodes. Obviously, each node can receive information only from the nodes adja-
cent to it, and the ability to collect information from some nodes is greater than that of the others due to their topological
relevance. Most of the nodes with high values of the metric are located near the only outfall, along the main path directed

towards this point. A second important path intersects the main one close to the outfall (in the red node), while another
path of medium importance is located in the northwest area of the network. The remaining part of the nodes takes on
very low or even zero metric values.

Figure 5 | Real network layout with flow direction.
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Figure 6 | Objective function variability depending on the number of installed sensors for three different values of threshold concentration.

Figure 7 | Position of installed sensors for C0¼ 0.008 mg/l using the optimization procedure.
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The selection of the nodes to be indicated as candidate positions for the installation of sensors should consider metric
values in the range [20, 100]. This criterion leads to the identification of seven nodes as candidate positions for sensors,

obviously belonging to the main routes mentioned before.
Overall, such a metric trend allows for tracing the detection of contaminants in the network and highlighting the points that

are most characterized by this process.

3.2.3. Optimization procedure vs. in-relevance-harmonic centrality

The comparison of the results obtained by the in-relevance-harmonic centrality and the optimization procedure performed
assuming a threshold concentration equal to 0.008 mg/l highlighted that the two procedures provide comparable results

since the points selected for either sensor installation or sampling are very close. In fact, the nodes contained in the range
chosen for the topological metric enclose the ones provided by the optimization or indicate adjacent positions. In both
cases, the candidate nodes to host the sensors are located along the same path.

However, it is worth noting that the solution achieved by the optimization procedure varies depending on the threshold

concentration. Indeed, assuming worse quality sensors (i.e., increasing the threshold concentration), the number of installed
sensors ensuring the full coverage of the network increases accordingly. The solution provided by the topological metric,
instead, remains unchanged, being only based on the network topology.

In order to evaluate whether the topological approach is still efficient even considering different sensors, i.e., different
threshold values, Figure 9 shows the optimization solutions obtained by using two different threshold concentrations, i.e.,
assuming smaller and larger values than the one considered in Figure 7, set as 0.003 mg/l (a) and 0.01 mg/l (b), respectively.

Figure 8 | In-relevance-harmonic centrality values for all nodes of the real case study network.
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Results highlight that the nodes selected by the optimization solver still lie within the range of nodes with high metric
values. Particularly, considering the optimization performed using a threshold value equal to 0.003 mg/l (Figure 9(a)), the

analysis suggests installing only four sensors, specifically in the neighborhood where the topological approach provides
higher values of the metric (Figure 8), which corresponds to the first sensors selected in the case C0 ¼0.008 mg/l (Figure 7).
Again, considering the optimization performed using a threshold value equal to 0.01 mg/l, the suggested locations of the
additional sensors are reported in Figure 9(b). The position of the new devices defines a further path of monitoring in the

network, just as occurs for the topological metric (Figure 8). They still include the eight locations selected in the test
C0 ¼ 0.008 mg/l (Figure 7), demonstrating good robustness of the optimal solution with respect to the threshold value.

Overall, it is evident that the analysis with the topological metric cannot be as exhaustive and complete as the results pro-

vided by the optimization for the various threshold values, and this is not the objective. However, the single solution provided
by the topological metric encloses important information that allows us to proceed progressively to an efficient position of
sensors in the network without a more complex optimization method application. This result is surprising considering

that the used metric is applicable from the first stages of the study, requiring only data relating to the system topology without
performing any simulation.

As already explained, the topological approach provides very promising results using only information on the system top-

ology. However, it is worth underlining the importance of knowledge requirements for technicians implementing the
topological approach, who need to have full competence in the hydraulic operation of the SNs, in order to best implement
the procedure and evaluate the reliability of the results coherently with the behavior of the system. Conversely, the determi-
nistic approach allows for obtaining the global optimum of the problem once a mathematical model is developed and the

hydraulic behavior of the system is known. The assessment of the found optimal in terms of quality cannot be made when
the optimization is performed by means of heuristic procedures, in which the relation between input parameters and
output variables is not conclusively determined. However, with reference to deterministic optimization, the achieved opti-

mum is global with respect to the search space associated with the developed mathematical model, i.e., the effectiveness
of the optimum depends on the accuracy of the mathematical model and its efficiency in interpreting the behavior of the con-
sidered system.

Figure 9 | Sensor installation according to the optimization procedures performed for threshold concentration equal to 0.003 mg/l (a) and
0.01 mg/l (b).

Journal of Hydroinformatics Vol 25 No 6, 2335

Downloaded from http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2023.296/1334499/jh2023296.pdf
by guest
on 02 January 2024



Finally, several advantages may result from coupling the proposed approaches in one single procedure, where the topolo-

gical approach first provides the user with a preliminary selection of the most suitable nodes for sensor location, among
which the deterministic optimization searches for the best solution based on both hydraulic and mathematical constraints.
Indeed, in large-size problems (i.e., large SNs), the implementation of a deterministic optimization may require high compu-

tational effort, thus the integration of both approaches in a two-step procedure may allow for a faster convergence of the
solver without affecting the quality of the found solution.

4. CONCLUSIONS

The present paper addresses the problem of the optimal location of sensors within SNs based on two different approaches.
The first approach relies on deterministic optimization aiming at finding the best location and number of sensors to maximize
the reliability of the network for the detection of a target substance. The second approach uses a relevance-based CNT cen-

trality metric, which does not require any simulation, but only the knowledge of the topological scheme and the flow inputs.
In particular, the in-relevance-harmonic centrality, which evaluates the ability of each node to disseminate and receive infor-
mation, is used to sort the nodes of the network based on their importance. The two approaches were first tested on a
benchmark network, and then a real SN was assumed as a case study. According to the results, the two approaches provide

comparable solutions in terms of sensor location within the networks. Indeed, the nodes selected by the optimization pro-
cedure lie within the range of the nodes with the highest values of the topological metric.

Considering the promising results achieved by the topological approach, the proposed metric can be used as a very efficient

complementary tool for the design of SN monitoring systems in complex schemes.
Indeed, when large-size networks are considered, the optimization procedure can be significantly demanding and a prelimi-

nary selection of the most suitable nodes for sensor location can be crucial to tackling the computational complexities

affecting the problem. Therefore, an integrated procedure could be investigated in future studies, based on the use of the
CNT centrality to reduce the research space and speed up the optimization procedure.
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