
Applied Mathematics and Computation 458 (2023) 128230 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Time discretization in the solution of parabolic PDEs with 

ANNs 

Francesco Calabrò∗, Salvatore Cuomo, Daniela di Serafino, Giuseppe Izzo, 
Eleonora Messina 

Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Universitá degli Studi di Napoli Federico II, Member of the 

INdAM-GNCS Research Group, Italy 

a r t i c l e i n f o 

Keywords: 

Numerical methods for parabolic PDEs 

Scientific machine learning 

Extreme learning machine 

Physics-informed methods 

a b s t r a c t 

We investigate the resolution of parabolic PDEs via Extreme Learning Machine (ELMs) Neu- 

ral Networks. An Artificial Neural Network (ANN) is an interconnected group of nodes - 

where activation functions act- organized in numbered layers. From a mathematical point 

of view, an ANN represents a combination of activation functions that is linear if only 

one hidden layer is admitted. In the present paper, the ELMs setting is considered, and 

this gives that a single hidden layer is admitted and that the ANN can be trained at a 

modest computational cost as compared to Deep Learning Neural Networks. Our approach 

addresses the time evolution by applying classical ODEs techniques and uses ELM-based 

collocation for solving the resulting stationary elliptic problems. In this framework, the θ- 

method and Backward Differentiation Formulae (BDF) techniques are investigated on some 

linear parabolic PDEs that are challenging problems for the stability and accuracy proper- 

ties of the methods. The results of numerical experiments confirm that ELM-based solution 

techniques combined with BDF methods can provide high-accuracy solutions of parabolic 

PDEs. 
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1. Introduction 

Mesh-based schemes are widely discussed numerical approaches for solving Partial Differential Equations (PDEs). Finite 

Difference Methods (FDMs), Finite Element Methods (FEMs), and Finite Volume Methods (FVMs) all belong to this class 

of numerical methods [33] . They require the generation of grid points or elements, usually the discretization of differen-

tial/integral formulas, and the solution of discrete equations, often with iterative algorithms. Mesh-based approaches suffer 

from several problems: firstly, the shape complexity of the computational domain where the grid generation itself could be- 

come very difficult or even infeasible; moreover, the problem discretization could create a bias between the mathematical 

nature of the PDE and its approximating model. 

In recent years, starting from [30] , Artificial Neural Networks (ANNs) have been considered an interesting alternative 

methodology to overcome the drawbacks of mesh-based numerical schemes. ANNs are taken as trial space for the approxi- 

mation of the solution of a PDE, i.e. the approximate problem solutions are determined by a learning approach that consists
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in defining an optimization algorithm in which losses due to ANN approximations of PDEs and boundary conditions (BCs) 

are minimized. This approach requires sampling points inside the domain and on the boundary, which can be randomly 

selected. When the numerical approximation of the unknown solution is guided by the resolution of the underlying PDE, 

the methods are referred to as physics informed [8,28] . 

Recently, it has been demonstrated that PDEs can be solved by considering a specific ANN called Extreme Learning 

Machine (ELM). An ELM is a feed-forward neural network with a single hidden layer that randomly assigns the input layer

weights and analytically determines the output weights, see [24] . Thanks to this architecture, the weights of the hidden

layer need not be learned. This makes ELMs faster than typical deep neural networks, where optimization methods may 

lead to prohibitively slow learning speeds. We point out that ELMs are variants of the random projection networks originally 

proposed in [35] , and a review of the relation between this and other theories regarding random networks can be found

in [6] . Overall, randomized Neural Networks boost the learning task with benefits on the numerical scheme in terms of

efficiency, while maintaining high accuracy. The first use of ELMs for differential problems can be found in [13] , where

the authors implemented a model called Physics Informed Extreme Learning Machine (PIELM), and then ELMs have been 

successfully applied to solve Ordinary Differential Equations (ODEs) and stationary PDEs [5,10,12,13,15] . ELMs are mesh- 

free methods and thus they can easily address complex geometries of PDE domains [13] . Moreover, ELMs are universal

approximators [25,26] and hence can potentially represent any continuous function. 

In this paper, we consider ELMs for the numerical resolution of a linear parabolic equation. Following what is discussed 

in [5] , we use collocation for the resolution of stationary elliptic problems but address separately the time marching. The

resolution of the elliptic problem has provided a very good accuracy with a modest computational cost in situations where 

classical methods fail to give good results. Moreover, it has very nice properties of generalization and has been applied

to nonlinear problems in [15] . As is usually done in time-dependent problems, we aim to separate the time dependence

by representing the unknown solution as a combination of stationary functions where the coefficients of the combination 

change in time. 

Now we show how collocation can be applied to our differential problem. Let u (t, x ) be the solution to the following: 

∂u 

∂t 
= L (u ) + f (t, x ) , B(u ) = g(t, x ) , (1) 

where L is intended as a linear elliptic operator acting only on the spatial variables, B is a boundary operator and f, g are

given source and boundary data, and in the boundary operator we include also the inital condition. We assume that the data

f, g are sufficiently smooth and that the operators L , B pose an unique solution, for details see [38] and references therein.

We are interested in the numerical resolution of Eq. (1) constructed by splitting the time and the space dependencies. In

this paper we develop the approximate solution such that the component in space is an ANN of ELM type, as we present in

the next section. Thus, the solution has the following expression: 

u (t, x ) ≈ u 

h (t, x ) = 

∑ 

i 

w i (t) σi ( x ) . (2) 

The main assumption of our collocation method is that we are able to compute the action of the operators 

L (σi ( x )) , B(σi ( x )) . (3) 

From now on we denote by { x j } the set of points where the previous quantities are evaluated. In the rest of the paper

the boundary operator will be of Dirichlet type, so that the satisfaction the boundary conditions both for the stationary 

problem and the satisfaction of the initial condition for the time problem are of the same type. Then, two strategies are

possible for the time marching, and these lead to different classes of methods, as specified below. 

1. In the first class we focus on the unknown functions w i (t) after applying the operator L (or some approximation to it)

to the functions σi . In this case we make a semi-discretization in space and then solve a system of ODEs, which is linear

if the PDE is linear. In order to describe this approach, we apply the operators ∂ 
∂t 

and L to the solution in (2) : 

∂ 

∂t 
u 

h (t, x ) = 

∂ 

∂t 

( ∑ 

i 

w i (t) σi ( x ) 

) 

= 

∑ 

i 

σi ( x ) 
d 

dt 
w i (t) , (4) 

L (u 

h (t, x )) = L 

( ∑ 

i 

w i (t) σi ( x ) 

) 

= 

∑ 

i 

w i (t) L (σi ( x )) . (5) 

Now we impose that (4) and (5) solve exactly problem (1) at the given points x j . Let G = (g ji ) be matrix where g ji =
σi ( x j ) , and let L = (l ji ) be the matrix where l ji = L (σi ( x j )) . With these positions, the final resolution corresponds to

solving 

G 

d 

dt 
w (t) = L w (t) + f (t) (6) 

where w (t) = (w i (t)) i is the vector of the unknowns and f (t) = ( f (t, x j )) j is the vector of the source terms. We refer

to [37] for details. 
2 
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2. In the second class of methods we define 

˜ u 

[ n ] ( x ) = 

∑ 

i 

w 

[ n ] 
i 

σi ( x ) , (7) 

where w 

[ n ] 
i 

= w i (t n ) and { t n } is a discretization of the time interval with fixed time spacing �t . Then the unknowns

are the coefficients w 

[ n ] 
i 

, which are computed by solving a boundary problem. In this case, we first perform a semi-

discretization in time and then solve an elliptic stationary problem, which is linear if the PDE is linear. As an example,

let us consider the well-known θ-method, which includes the explicit Euler method for θ = 0 , the backward (implicit)

Euler method for θ = 1 and the trapezoidal (Crank-Nicolson) method for θ = 1 / 2 . At each time step, we look for the

function ˜ u [ n ] ( x ) in the hypothesis that ˜ u [ n −1] ( x ) is known, i.e. given or computed. Then, the method solves the following:

˜ u 

[ n ] ( x ) − ˜ u 

[ n −1] ( x ) 

�t 
= (8) 

θ
[
L ( ̃  u 

[ n ] ( x )) + f (t n , x ) 
]

+ (1 − θ ) 
[
L ( ̃  u 

[ n −1] ( x )) + f (t n −1 , x ) 
]
, 

that is 

−θ�tL ( ̃  u 

[ n ] ( x )) + 

˜ u 

[ n ] ( x ) = 

˜ u 

[ n −1] ( x ) + θ�t f (t n , x ) + (1 − θ )�t 
[
L ( ̃  u 

[ n −1] ( x )) + f (t n −1 , x ) 
]
. 

The last equation can be regarded as an elliptic equation. 1 The right-hand side consists of given functions and quantities

that can be explicitly evaluated. 

The first class is more natural for problems where the diffusion is dominated by the transport, leading to hyperbolic-type 

behaviors, or where stiffness arises in time. In these cases, one can easily adopt different time discretizations. Moreover, 

the first class of methods can be profitably applied when the matrix involved in the problem has a structure that can be

exploited. The introduction and study of different time-marching procedures have been proposed also for the parabolic case, 

for both traditional methods [16,17] and newer ones, such as Isogeometric Analysis [1,2,14] and Physics-Informed Neural 

Networks [8] . 

On the other hand, the differential problem that has to be solved in the case of ELMs involves a usually dense (and

not a-priori banded) matrix and the properties of this matrix are difficult to establish. In the authors’ opinion, the ELM

collocation can be more successfully applied in the second class of time-marching methods, as we discuss in this paper. A

main advantage is that one can apply different strategies for the resolution of the elliptic problem at different time steps,

e.g. by changing the collocation points. 

The aim of this work is to explore how the time approximation affects the resolution of time-dependent parabolic PDEs 

when the time marching is made according to the second class of methods described before. This is done here for the first

time for parabolic problems where the resolution at fixed times is done by collocation with ANNs trained by ELM. The use

of implicit methods for advancing in time well combines with the proposed collocation solution, as a matter of fact the

resolution at fixed time can take information at previous time step in general locations. Indeed, each computed solution at 

fixed time step is a linear combination of functions, so that this can be evaluated in arbitrary grid points when this solution

becomes part of a forcing term for the new resolution. This can be used to adapt the location of the collocation sites if

some properties of the problem in hand are known. Other collocation methods, such as the finite difference methods and 

the time marching procedure in the first class described before cannot in principle change the location of the grid points.

For the location of space grid points, we have performed the numerical tests with equispaced, Chebychev, and randomly 

perturbed equispaced points. In particular, in the last case, the perturbation changes at each time step, so to test the ability

of the method to deal with points that vary in time. 

For the time marching, we start from the above-mentioned θ-method and then apply Backward Differentiation Formula 

(BDF) methods to overcome some difficulties, see [7,22] . BDF methods show good accuracy and nice convergence properties 

while keeping the computational cost unchanged with respect to the implicit θ-method. Moreover, when the time step is 

chosen to be constant, they are easy to implement. 

The numerical tests fully confirm the reported results concerning stability and order of convergence of the proposed 

time-discretization schemes also when combined with the ELM-based collocation method. In the case of the parabolic prob- 

lems presented here, this reveals that BDF methods are to be preferred to the well-established Backward Euler or Trapezoidal 

rules because the latter are unable to deal with accuracy requirements, as they are slowly convergent and can suffer from

order reduction or numerical instabilities. Finally, we notice that with the proposed procedure the challenging task of the 

transition between the initial condition and the rest of the evolution is successfully addressed. In fact, we consider initial 

conditions that do not satisfy the other boundary conditions and obtain good solutions. 

The rest of this paper is organized as follows. In Section 2 we briefly discuss the use of Single hidden-Layer Feedfor-

ward Networks (SLFNs) as function approximators, focusing on the selection of the Activation Functions (AFs) and on the 
1 Notice that it reveals to an explicit method – the forward Euler method – in the case θ = 0 . 
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application of ELMs as collocation methods for the solution of PDEs. In Section 3 we present BDF solvers, which are used

as time-marching methods in the ELM-based resolution. The results of numerical experiments, reported in Section 4 , show 

that our approach is able to provide accurate solutions to linear, but challenging, parabolic PDE problems, according with 

the order of the time-marching procedure and the theoretical results on ELMs. Some conclusions are given in Section 5 . 

In the following, vectors are written in boldface, i.e. v , while scalars are written in lightface, i.e. v . The i -th entry of a

vector v is denoted v i and the scalar product of v and w is denoted v · w . Finally, ‖ · ‖ indicates either the Euclidean norm

of a vector or the L 2 -norm of a function. 

2. Use of ANNs as approximators 

Today many researchers agree that ANNs learn to approximate functions. More in detail, ANNs are techniques for estimat- 

ing an unknown function using available observations or collocation points from the function domain [20,32] . The function 

to be estimated, which transforms inputs into outputs, is often referred to as the target function. 

Here we discuss the application of SLFNs with random hidden nodes to a differential problem. A SLFN with N hidden

nodes and AF φ : R → R 

m is a function F : R 

d → R 

m defined as follows: 

F( x ) = 

N ∑ 

i =1 

w i φi ( x ) = 

N ∑ 

i =1 

w i φ( αi · x + βi ) , (9) 

where αi = (αi 1 , αi 2 , . . . , αid ) is the weight vector linking the input nodes to the i -th hidden node, w i = (w i 1 , w i 2 , . . . , w im 

)

is the weight vector linking the i -th hidden node to the output nodes, and βi is a bias of the i -th hidden node. Notice that

the functions φi : R 

d → R 

m acting are translated and shrinked copies of the reference AF φ. Our aim is to study whether the

SLFN F( x ) fits the data. More formally, given M arbitrary couples ( x j , τ j ) , where 

x j = (x j1 , x j2 , . . . , x jd ) ∈ R 

d , τ j = (τ j1 , τ j2 , . . . , τ jm 

) ∈ R 

m , 

and x j � = x i for j � = i , these are M samples where the SLFN passes with zero error: 

F( x j ) = τ j , j = 1 , 2 , . . . , M. 

SLFNs, as a special case of ANNs, are universal approximators in the sense that a feedforward network with a linear

output layer and at least one hidden layer with any nonlinear activation function can approximate with good accuracy a 

given function from a finite-dimensional space to another. Such accuracy depends on the number of nodes employed in the 

hidden layer and many research addresses such issues, see, e.g., [9,21] and the recent review [29] . Here our main interest is

on scalar functions, corresponding to m = 1 . In this case, the vectors τ i become the scalars τi and function (9) reads 

F( x ) = 

N ∑ 

i =1 

w i φi ( x ) = 

N ∑ 

i =1 

w i φ( αi · x + βi ) , (10) 

where the weights w i are scalar too. 

For the sake of completeness, we report next a version of the universal approximation theorem for the SLFN (10) , see [32,

Theorem 3.1] . 

Theorem 1. Let F be a SLFN function as in (10) , where φ is not a polynomial. For any continuous function f : R 

d → R , any

compact subset K ⊂ R 

d and any ε > 0 , there exist weights and biases w i , αi , βi such that 

max 
x ∈ K 

| F( x ) − f ( x ) | < ε. (11) 

This result states that a single-layer network is enough to have universal approximation. In order to get a good approxi-

mation, we attempt to minimize the left-hand side of (11) or, more generally, a measure of the distance between F and f ,

usually referred to as loss function . 

Additional hidden layers can help model intricate nonlinear dynamics [31,36] . In deep networks with many layers, an 

important role is played by Physics Informed Neural Networks (PINNs), often adopted for solving real problems. However, 

deep learning approaches are characterized by high training costs and by efficiency issues, while we use shallow networks 

with random projection neurons, leading to ELM networks. 

2.1. Selection of the activation functions 

A crucial aspect of the learning approach is the selection of AFs, since they can significantly affect the accuracy and

efficiency of an ANN. Commonly used AFs are ReLU, leaky ReLu, Sigmoid, Tanh (see, e.g., [18,20] ). However, for all non-

polynomial AFs an interpolation result can be stated [32, Theorem 5.1] . We report it next. 
4 
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Theorem 2. Let F be a SLFN function as in (10) , where φ is not a polynomial. For any M distinct points x j and associated data

τ j , there exists a choice of M coefficients αi = (αi 1 , . . . , αid ) ∈ R 

d , w i ∈ R , βi ∈ R such that 

M ∑ 

i =1 

w i φ( αi · x j + βi ) = τ j , j = 1 , . . . , M. 

In other words, for an SLFN architecture with N = M hidden nodes, it is possible to approximate M samples with zero

mean error. 

In this work we choose the AFs in the class of sigmoid functions that verify the hypotheses of Theorems 1 –2 . A sigmoid

usually takes values between 0 and 1 and it is widely used for models where a probability has to be predicted as an output.

Specifically, our choice for the AF is the logistic sigmoid function: 

σi ( x ) = σ ( αi · x + βi ) = 

1 

1 + exp (−αi · x − βi ) 
. (12) 

The derivatives of (12) with respect to the independent variable x can be easily computed. Note that if one takes two

functions σi and σ j , where at least one of the parameters is different, then these functions are linearly independent, see 

[27] . Moreover, each σi is a planar-wave Ridge function [32] , so that the behavior of the function can be derived easily as

an extension of the univariate case d = 1 . With this simplification, we can state the following: 

• σi has an inflection point at x = −βi 

αi 

, which we call the center C i of the sigmoid function; 

• σi is monotone, lim 

x →−∞ 

= 0 and lim x → + ∞ 

= 1 if αi is positive, the other way if αi is negative. Moreover, the range where

the values are between 0.05 and 0.95 is 

[ 
C i − 2 . 945 

αi 
, C i + 

2 . 945 
αi 

] 
. 

Notice that one obtains Heaviside-like functions if the internal weights αi are large, or almost-linear functions if the αi ’s 

are small. In our case, the use of both kind of functions can help approximate steep gradients and global behaviors. These

functions are an example of AFs in the class of those that verify the hypotheses of Theorems 1 and 2 . 

2.2. Shallow networks and ELMs 

The aim of the overall network is to have nice properties of reproduction while maintaining small the number of un-

knowns. 

One possible stategy is to use shallow networks, e.g. single hidden-layer networks with an increasing number of neurons 

in the hidden layer. In the PINNs context, shallow ANNs have been considered a good choice with respect to deep learning

methodologies. Among these shallow networks, ELMs are the ones where internal parameters are fixed randomly and only 

the external weights w i are trainable parameters. In [26, Theorem 2.1] an approximation result needed in our setting is 

given. We report it next. 

Theorem 3. Let ( x j , τ j ) , j = 1 , . . . , M, be a set of points such that x j 1 � = x j 1 if j 1 
� = j 2 

, and let u N ( x ) = 

∑ N 
i =1 w i σi ( x ) =∑ N 

i =1 w i σ ( αi · x + βi ) be an ELM network with N < M neurons such that the internal weights αi and the biases βi are randomly

generated independently from the data, according to any continuous probability distribution. Then, for all ε > 0 there exists a

choice of the weights w i such that 

‖ (u N ( x j ) − τ j ) j ‖ < ε with probability 1 , 

where (u N ( x j ) − τ j ) j denotes the vector with components u N ( x j ) − τ j . Moreover, if N = M then w i , i = 1 , . . . , N, can be found

such that 

‖ (u N ( x j ) − τi ) j ‖ = 0 with probability 1 . 

In particular, the above theorem states that if the number of hidden neurons is equal to the number of data points, then

the interpolation error is zero with probability 1. Unlucky cases, i.e. with probability 0, are related to the unisolvence of the

points. In the case d = 1 the unisolvence hypothesis is included in the request that the points are distinct. 

The interpolation property of Theorem 2 can be extended to a convergence result, as proved in [25] (see also [24, Theo-

rem 2] ). 

Theorem 4. Let φ : R 

d → R be a continuous function. Then there exists a sequence of ELM network functions u N ( x ) =∑ N 
i =1 w i σ ( αi · x + βi ) such that: 

lim 

N→∞ 

‖ φ − u N ‖ = 0 . 

A fundamental challenge in all the works about neural networks is to find an optimal choice of parameters that satisfies

a desired tolerance. As commented before, with ELMs it is possible to focus on the optimization of the external weights
5 
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w i only, reducing the computational cost and the training time. Thus, the weights w i can be seen as the coefficients of the

linear combination defining u N ( x ) , while αi and βi are internal weights and biases that yield a variation of the sigmoid

function. 

Firstly, we present the way in wich the parameters αi and βi are taken, and then we discuss the computation of the

weights w i . The internal weights αi are chosen randomly and uniformly in a range that depends on the number of neurons

N. By fixing the domain of the differential problem to have unitary length and following the analysis in [5] , we choose 

αi = rand 

([
−N − 10 

10 

− 4 , 
N − 10 

10 

+ 4 

])
, (13) 

where rand ([ a, b]) denotes for each i a vector with components sampled from a uniform distribution in the interval [ a, b] .

The biases βi are set so that the functions σi are “non-flat” in the considered domain, as shown at the end of Section 2.1 . 

The trainable parameters of the network are the weights w i . In general ANNs, the weights are computed by minimizing

the loss function, e.g. by applying stochastic gradient-based approaches that back-propagate the error and adjust the weights 

through specific directions [4] . More recently, second-order stochastic optimization methods have been widely investigated 

to get better performances than first-order methods, especially when ill-conditioned problems must be solved, see, e.g., 

[11] and the references therein. Nevertheless, there are still difficulties in using these approaches, such as the setting of the

so-called hyperparameters and the significant increase in computing time when the number of nodes in the hidden layer 

grows. 

In our case, by collocating the linear problem (1) we obtain a linear dependence on the unknown weights w i and we

refer to such discrete problem via a collocation matrix C. Following Theorems 3 and 4 , we can choose a number of equa-

tions smaller than the number of unknowns, obtaining an underdetermined linear system that can be solved as a least 

squares problem, which plays the role of a loss function. By computing the minimum-norm least squares solution [3] we

not only obtain existence and uniqueness of the weights but also ensure minimum training error and the smallest norm 

of the weight vector, which are important properties for an ELM [26] . This solution can be obtained by using a Complete

Orthogonal Decomposition (COD) [3] of the collocation matrix C: 

CP = QRZ T , 

where Q and Z are orthogonal matrices, R is upper trapezoidal matrix and P is a permutation matrix. We note that COD

has good stability properties even in the case C has (numerical) rank r < N [23] . On the other hand, in general, COD does

not tend to zero the entries of the solution, thus producing functions u N where most of the coefficients w i are likely to be

nonzero. 

Alternative solutions to the undetermined linear system can be computed by using, e.g., the QR factorization with column 

pivoting [3] : 

CP = QR, 

where Q is an orthogonal matrix, R is an upper triangular matrix and P is a permutation matrix. In this case, at least M − N

coefficients w i are set equal to zero, generally yielding a sparser solution than in the previous case. 

Preliminary numerical experiments have shown that the difference between the PDE solutions obtained with the two 

approaches are practically negligible. Therefore, in our tests we compute the minimum-norm least squares solution to the 

underdetermined linear system. 

3. Time-marching scheme 

In the literature on numerical methods for diffusion equations much attention has been paid to the construction and 

analysis of stable and accurate approximation schemes [7,16,34] . In this work we compare the trapezoidal (8) and BDF

methods according to the second approach described in the introduction, thus we follow the notation introduced in Eq. (7) .

Given 

˜ u 

[0] (x ) , ˜ u 

[1] (x ) , . . . , ˜ u 

[ k −1] ( x ) , (14) 

a k -step BDF applied to problem (1) can be written as 

�tb k L ( ̃  u 

[ n + k ] (x )) + a k ̃  u 

[ n + k ] (x ) = −
k −1 ∑ 

j=0 

a j ̃  u 

[ n + j] (x ) + �tb k f (t n + k , x ) , (15)

where n = 0 , 1 , . . . and the coefficient a j , j = 0 , . . . , k , and b k are listed in Table 1 for k ≤ 6 . It is worth noting that the 1-step

BDF is the Backward Euler method. 

BDF methods are L -stable for k = 1 , 2 and L (α) -stable for k = 3 , . . . , 6 , with stability angle α reported in the last column

of Table 1 . It is also well known that they are not zero-stable for k > 6 . Definitions and further details can be found in [19] .

The L -stability and L (α) -stability make the methods suitable for ODEs whose solutions present high-frequency components. 

Furthermore, since BDF methods involve the right-hand side evaluation only at the right end of the current step, they allow

the preservation of the elliptic structure in the time-discretized operator. In particular, the elliptic operator on the left-hand 
6 
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Table 1 

Coefficients and L (α) -stability angles for the BDF methods. 

k a 6 a 5 a 4 a 3 a 2 a 1 a 0 b k α

1 1 -1 1 90 ◦

2 1 − 4 
3 

1 
3 

2 
3 

90 ◦

3 1 − 18 
11 

9 
11 

− 2 
11 

6 
11 

86.03 ◦

4 1 − 48 
25 

36 
25 

− 16 
25 

3 
25 

12 
25 

73.35 ◦

5 1 − 300 
137 

300 
137 

− 200 
137 

75 
137 

− 12 
137 

60 
137 

51.84 ◦

6 1 − 360 
147 

450 
147 

− 400 
147 

225 
147 

− 72 
147 

10 
147 

60 
147 

17.84 ◦

 

 

 

 

 

 

 

 

 

 

 

side is balanced by a source term involving known quantities that will be referred to as right-hand side and denoted by

RHS [ n ] . 

In order to give an estimate of the error in time, we follow [38, Chapter 10] and rewrite the BDF time discretiza-

tion (15) of (1) as 

∂̄ k ̃  u 

[ n ] = L ( ̃  u 

[ n ] ) + f n , 

with ˜ u [ n ] ≈ u (n �t, x ) , f n = f (n �t, x ) . Here ∂̄ k is the backward difference operator given by ∂̄ k ̃  u [ n ] = 

1 

�t 

k ∑ 

j=0 

a k − j 

b k 
˜ u [ n − j] . Let-

ting u n = u (n �t, x ) , we have 

∂̄ k u 

n = L (u 

n ) + f n + τ n , 

with τ n = ∂̄ k u 
n − ∂ t u n the consistency error. Then Lemma 10.1 and Theorem 10.1 in [38] provide the result reported next. 

Theorem 5. Let k ≤ 6 and assume that the solution u of (1) is sufficiently smooth. Then ∀ n ≥ k 

‖ u 

n − ˜ u 

[ n ] ‖ ≤ c 

k −1 ∑ 

j=0 

‖ u 

j − ˜ u 

[ j] ‖ + c �t k 
∫ n �t 

t 0 

∥∥∥∥∂ k +1 u 

∂t k +1 

∥∥∥∥ds, 

where c is a positive constant. 

From Theorem 5 it is clear that if the starting values (14) are accurate enough, then the k -step BDF method (15) has

order k . Thus, a suitable strategy is needed to provide the first k − 1 approximations. We refer to this strategy as starting

procedure . The starting values (14) can be approximated by means of a (k − 1) -step BDF method applied with a reduced

stepsize �t/m , with an integer, suitably chosen m . As described in the previous sections, following [5] we choose the ELM

collocation at given points for the discretization of the steady-state problems. The total error is then the time-marching 

error term plus the contribution of the ELM collocation error. 

In Algorithm 1 we describe the main steps required for the resolution. Since in our experiments we consider d = 1 , i.e. a

Algorithm 1: ELM collocation for the parabolic PDE with a k -step BDF. 

Data : the starting values (14), the number of neurons N, the collocation points x j , j = 1 , . . . , M. 

Result : the external ELM weights w 

[ n ] 
i 

, with i = 1 , . . . , N and n = k, . . . , Nt , which provide the collocated solution 

˜ u [ n ] (x ) in (7) 

Initialization ; 

Choose randomly αi and βi , i = 1 , . . . , N, according to (13). ; 

Discrete counterpart of the parabolic operator ; 

Compute the collocation matrix C ∈ R 

M×N by evaluating the left-hand side in (15) at the internal collocation points 

and appending the collocated boundary conditions.; 

Time loop ; 

for n = k : Nt do 

Compute RHS [ n ] ∈ R 

M by evaluating the right-hand side in (15) at the collocation points. ; 

Find w 

[ n ] ∈ R 

N that solves the linear problem C w 

[ n ] = RHS [ n ] .; 

end 

scalar variable x , we focus on this case. In principle the resolution at a fixed time step can be done with different methods,

e.g. one can change the number or the parameters of the involved AFs, or the number and the location of the collocation

points. By the way, as can be seen from the pseudo-code (statements 2–4), if no changes are made, the linear problem that

has to be solved at each time step involves the same matrix, so that this has to be constructed only once. 

4. Numerical experiments 

Our test set consists of the following classes of problems: 
7 
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a) stiff parabolic equations, 

b) problems where the boundary conditions are discontinuous, 

c) problems where the solution decays very rapidly. 

To obtain these problems, we used the one-dimensional heat equation with different diffusion coefficients and boundary 

conditions, which lead to challenging problems for the stability and accuracy properties of the methods [7] . The exact solu-

tion of these problems is known and we computed the approximate solution up to the final time t f using different values

of the fixed time step length �t . For the resolution at each time step, we used collocation with an ELM function consisting

of N neurons. Collocation was done on a space grid of M = N/ 2 equispaced points by evaluating the exact derivatives of the

activation functions, as in [5] . In order to strengthen that the method can benefit from the change of the location of the

space grid, we also report some results with different space grid points, see Fig. 5 . For computing the final error, we used

the l ∞ 

norm of the difference between the approximate and the exact solution evaluated on 50 0 0 equispaced points in the

spatial domain at the final time t f . In four cases, we have reported also the convergence of the trapezoidal rule when ap-

plied with the 3-points stencil Finite Difference (FD) method applied. When the comparison is done in the equspaced case, 

we use 200 equispaced points. In the last case we apply the finite difference using the same points used by our collocation

method, see Fig. 5 . In all cases we report that the method is unable to achieve high precision, moreover in the case where

the points are not equispaced we report divergence of the technique. 

All the numerical experiments were performed using MATLAB R2021b. The results were slightly affected by the choice 

of the parameters of the ELM functions, which were randomly generated as described in Section 2.2 . In our computations,

these random parameters were obtained by using the MATLAB randn function. We found close behaviors with different 

initializations of randn , thus we decided to present the results obtained with rng(1000) for reproducibility issues, where 

rgn is the function specifying the seed for the random number generator. 

In the plots, we report the errors with respect to the number Nt of stationary problems solved, which includes, for a fair

comparison with one-step methods, the computational effort due to the starting procedures for the BDF methods. In the 

tests, we used the starting procedure described in Section 3 , with m = 8 . The choice of m = 8 was done in order to have a

constant value that gives starting values that do not affect the behavior of our methods, thus was made a-posteriori after

considering m = 2 , 4 . We chose to report the number of stationary problems solved because it represents the number of

constructed underdetermined linear systems and hence it can be taken as representative of the overall computational cost. 

Our tests compare the behavior of Backward Euler (BE), Trapezoidal Rule (TR), and BDF of order 2–4 (referred to in the plots

as BDF2-BDF4). We did not consider the higher-order methods BDF5 and BDF6 because if a modest number of collocation 

points is needed - as it is in our case - then the cost of the starting procedure dominates the overall performance. 

According with the discussion in Section 2.2 , the minimum-norm least-squares solutions of the underdetermined linear 

systems were computed, by using the MATLAB lsqminnorm function with rank tolerance 10 −15 , which implements the 

COD algorithm. Of course, if the size of the collocation matrix C is very large, this choice may be computationally very

expensive, in terms of both time and memory. However, this is not the case for the experiments reported in this work,

which are aimed at a methodological investigation. 

Test problem (a) is the following: { 

∂u 

∂t 
= 

∂ 2 u 

∂x 2 
, x ∈ [0 , 1] , t ∈ [0 , 1] , 

u (x, 0) = sin (πx ) + sin (γ πx ) , u (0 , t) = u (1 , t) = 0 , 

(16) 

whose exact solution, with γ as a parameter, is: 

u (t, x ) = e −π2 t sin (πx ) + e −γ 2 π2 t sin (kπx ) . 

When γ increases, the second addend in the exact solution decays rapidly and oscillates. For this reason, the problem is 

referred to as stiff when γ > 5 , while it is a “standard” test problem in the other cases. 

The first numerical test that we present was carried out with γ = 3 and regards the convergence of the method used to

solve the stationary problems, i.e. the ELM collocation when increasing the number N of neurons. In Fig. 1 we present the

error computed at the final time t f . In the different panels, we consider three different time-marching methods to solve the

problem. Two facts can be noticed: 

• the convergence is very fast: we can conjecture a spectral convergence; 

• the error stops decreasing when it reaches the maximum accuracy of the method in time: in that case, the latter begins

to prevail. 

The three lines correspond to three different choices of �t and the fact that they coincide for small numbers of neurons

confirms that at the beginning of the convergence history the error of the space discretization prevails. The overall accuracy 

can be compared with that reported in the error plot in the left panel of Fig. 2 , where the same problem is solved. By

looking also at the right panel of Fig. 2 , corresponding to γ = 5 , we see that on these nonstiff problems our procedure

has the expected behavior: the order of convergence is achieved; the TR method slightly over-performs BDF2 because of 

its smaller error constant; the starting procedure for the BDF methods gives a shift of the initial points, which is negligible

when Nt grows; the error reaches its limit, given by the accuracy of the resolution by collocation. 
8 
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Fig. 1. Computed error for problem (16) with γ = 3 at the final time. We use the BE, BDF2 and BFD3 methods in time with tree different choices of �t

and solve the problem by increasing the number of neurons N. 

 

 

 

 

 

 

 

 

 

In Fig. 3 we report the errors obtained while solving Problem (16) with γ = 10 . The errors in the left panel correspond

to N = 40 , while those in the right panel to N = 50 . This is a stiff problem, for which the trapezoidal method gives poor

performances in the case of larger �t values, see also [7] , while the BDF methods show a regular behavior because of

their better stability properties. This is also a difficult problem for the collocation method, being the exact solution highly 

oscillating. For this reason the final accuracy is poor for N = 40 and improves for N = 50 . In Fig. 5 at the left panel we use

a spatial grid with N = 40 Chebychev points and test the convergence of the proposed method; in this case we can see that

the resolution in space is much more accurate and the error reaches lower values. 

Problem (b) (with discontinuous boundary conditions) is: { 

∂u 

∂t 
= 

∂ 2 u 

∂x 2 
, x ∈ [0 , 2] , t ∈ [0 , 1 . 2] , 

u (x, 0) = 1 , u (0 , t) = u (2 , t) = 0 . 

(17) 

The exact solution 

2 to problem (17) is: 

u (t, x ) = 

∞ ∑ 

n =1 

[
1 − (−1) n 

] 2 

nπ
sin 

(
nπx 

2 

)
exp 

(
−n 

2 π2 t 

4 

)
. 

Numerical results for this test case are reported in the left panel of Fig. 4 . As already noticed in [7] , the trapezoidal rule

suffers from order reduction, behaving as an order-1 method, while the BDF solvers behave as expected. Moreover, the BDF 

accuracy in this case is much higher with the same computational cost. 

Problem (c) (with a solution that decays very rapidly) is: { 

∂u 

∂t 
= 5 

∂ 2 u 

∂x 2 
, x ∈ [0 , 1] , t ∈ [0 , 1] , 

u (x, 0) = sin (πx ) , u (0 , t) = u (1 , t) = 0 , 

(18) 

and its solution is: 

u (t, x ) = e −5 π2 t sin (πx ) . 

Numerical results for this test case are reported in Fig. 4 , in the right panel. One can observe once again that the methods

can achieve very high accuracy and maintain the properties seen in the standard test cases. For this final problem, we

report the convergence also in the case where the space grid is changed at each time step. In Fig. 5 at the right panel we
2 The solution is given in the form of a series, but its terms decay very rapidly, so that for our numerical tests the approximate solution obtained with 

20 terms is exact up to machine precision. 
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Fig. 2. Computed error for problem (16) with γ = 3 (left) and γ = 5 (right) at the final time. The solutions are computed with N = 40 neurons, decreasing 

�t . In abscissae, we report the number Nt of linear systems solved, in ordinates the absolute value of exact error. On the left panel, the triangles in the 

bottom-left represent the expected convergence rates. On the right panel, in black, the convergence of the Finite Difference method with trapezoidal rule.. 

Fig. 3. Computed error for problem (16) with γ = 10 at the final time. The solutions are calculated with N = 40 (left) and N = 50 neurons (right), de- 

creasing �t . In abscissae we report the number Nt of linear systems solved, in ordinates the absolute value of the error. On the right panel, in black, the 

convergence of the Finite Difference method with trapezoidal rule.. 
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Fig. 4. Computed error for Problem (17) (left panel) and for Problem (18) (right panel) at the final time. The solutions are calculated with N = 40 neurons, 

decreasing �t . In abscissae we report the number Nt of linear systems solved, in ordinates the absolute value of the error. 

Fig. 5. Computed error at the final time: on the left panel for Problem (16) with γ = 10 using a space grid of Chebychev points; on the right panel for 

Problem (18) using a space grid obtained by a random perturbation of equispaced points where the perturbation is changed at each time step. The solutions 

are calculated with N = 40 neurons, decreasing �t . In abscissae we report the number Nt of linear systems solved, in ordinates the absolute value of the 

error. The Finite Difference solution on the right panel is computed using a 3-point stencil, employing the identical points utilized for collocation. 

11 
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consider space grid obtained by a random perturbation of equispaced points where the perturbation is changed at each time 

step. 

5. Conclusions and future work 

Scientific Machine Learning (SML) is a research field in which Artificial Intelligence methodologies have been employed 

to solve innovative manners problems modeled by PDEs. A large number of easy-to-use methods, based on ANNs, allow 

researchers to deal with complex PDEs efficiently. In this paper, we designed a numerical scheme belonging to the class 

of ELM methods for solving time-dependent parabolic PDE problems. The proposed approach addresses time evolution by 

applying time-marching techniques and adopts the collocation for solving the resulting stationary elliptic problems. Regard- 

ing the elliptic component of the PDE, we observed good accuracy with a limited computational cost in situations where 

classical methods fail to give good results. 

The main goal of this work was to explore how time approximation affects the resolution of time-dependent PDEs by 

ELM-based collocation, using classical methods to discretize the problem in time. To this aim, some linear parabolic PDEs 

that are challenging problems for the stability and accuracy properties of the methods were considered. The θ-method 

and BDF techniques were investigated. We observed that BDF methods have good accuracy and convergence properties 

while keeping the same computational cost as the implicit θ-method. Moreover, the time-discretization schemes used in 

the space-collocation method have promising properties in terms of stability and order of convergence, which are confirmed 

by numerical tests. We also concluded that, in our numerical framework, BDF methods of order 2–4 were to be preferred

to Backward Euler or Trapezoidal rules, because the latter are unable to deal with high accuracy requirements, as they are

slowly convergent and can suffer from order reduction or numerical instability. 
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