
74

Causality-driven Testing of Autonomous Driving Systems

LUCA GIAMATTEI, ANTONIO GUERRIERO, ROBERTO PIETRANTUONO, and

STEFANO RUSSO, DIETI, Università degli Studi di Napoli Federico II, Italy

Testing Autonomous Driving Systems (ADS) is essential for safe development of self-driving cars. For thor-

ough and realistic testing, ADS are usually embedded in a simulator and tested in interaction with the simu-

lated environment. However, their high complexity and the multiple safety requirements lead to costly and

ineffective testing. Recent techniques exploit many-objective strategies and ML to efficiently search the huge

input space. Despite the indubitable advances, the need for smartening the search keep being pressing. This

article presents CART (CAusal-Reasoning-driven Testing), a new technique that formulates testing as a causal

reasoning task. Learning causation, unlike correlation, allows assessing the effect of actively changing an

input on the output, net of possible confounding variables. CART first infers the causal relations between

test inputs and outputs, then looks for promising tests by querying the learnt model. Only tests suggested by

the model are run on the simulator. An extensive empirical evaluation, using Pylot as ADS and CARLA as

simulator, compares CART with state-of-the-art algorithms used recently on ADS. CART shows a significant

gain in exposing more safety violations and does so more efficiently. More broadly, the work opens to a wider

exploitation of causal learning beside (or on top of) ML for testing-related tasks.

CCS Concepts: • Software and its engineering→ Software testing and debugging;

Additional Key Words and Phrases: Self-driving cars, autonomous vehicles, AI testing, search-based software

testing, causal reasoning

ACM Reference format:

Luca Giamattei, Antonio Guerriero, Roberto Pietrantuono, and

Stefano Russo. 2024. Causality-driven Testing of Autonomous Driving Systems. ACM Trans. Softw. Eng.

Methodol. 33, 3, Article 74 (March 2024), 35 pages.

https://doi.org/10.1145/3635709

1 INTRODUCTION

1.1 The ADS Testing Challenges

Autonomous Driving Systems (ADS) for self-driving cars are learning-enabled systems based
on Deep Neural Networks (DNNs), capable of sensing the environment and making decisions to
drive the car safely with little or no human driver input [83]. Their spread is expected to increase
in the upcoming years: a recent report projects the self-driving cars market size to surpass USD

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the

Marie Skłodowska-Curie grant agreement No 871342 “uDEVOPS”..

Authors’ addresses: L. Giamattei, A. Guerriero, R. Pietrantuono, and S. Russo, DIETI, Università degli Studi di

Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy; e-mails: {luca.giamattei, antonio.guerriero, roberto.pietrantuono,

stefano.russo}@unina.it.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International
4.0 License.

© 2024 Copyright held by the owner/author(s).

1049-331X/2024/03-ART74

https://doi.org/10.1145/3635709

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://orcid.org/0000-0003-3767-4036
https://orcid.org/0000-0002-8104-3832
https://orcid.org/0000-0003-2449-1724
https://orcid.org/0000-0002-8747-3446
https://doi.org/10.1145/3635709
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3635709
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3635709&domain=pdf&date_stamp=2024-03-15

74:2 L. Giamattei et al.

65 million dollars by 2030, expanding growth at a rate of 13.38% over 2022 to 2030 [1]. For people
to justifiably trust ADS (and for companies to sustainably develop them), a fundamental challenge
is how to effectively and efficiently test their behaviour.

A primary focus of researchers is on testing decision-making DNNs as standalone components
[70], based on datasets obtained without involving the DNNs under test. This is referred to as
model-level testing [83] or offline testing [32]. Several such strategies have been proposed, includ-
ing: DeepXplore [66], DeepRoad [100], DeepTest [89], and DeepGauge [48]. Though important,
model-level testing inherently misses the ability to spot system-level misbehaviours; e.g., negligi-
ble DNN mispredictions can accrue over time and expose failures despite high DNN accuracy [83],
[32], [31].

For more realistic tests, system-level testing, also called online testing, is applied rather than (or
beside) model-level testing [4, 24, 30, 51, 91]. In this case, the DNNs are embedded into a simulated
driving environment and tested in a closed-loop mode in interaction with the environment. System-
level testing is able to account for the effect that the DNN predictions have on the environment and
on the behaviour of the whole system. However, despite recent efforts [3, 5, 24, 30, 32, 51, 71, 83, 91],
it remains challenging to generate safety-critical test scenarios in an efficient way [30]. The space
of all possible tests for the whole system, considering the input from all sensors such as cameras,
LiDAR, and GPS, is very large. In addition, the difficulty in exploring this space is exacerbated by
the need of testing multiple safety requirements at the same time, such as distance from objects,
from pedestrians, from the center of the lane, which entails a multi- or many-objective search.
Moreover, the evaluation of every generated test scenario is expensive: the use of high-fidelity
simulators indeed reduces the cost of a real-world large-scale testing process (and is of course
safer), but running a single test scenario takes several minutes and is computationally expensive.
The combination of these challenges requires a testing strategy that intelligently explores the space
of all possible tests and generates only the most promising ones to expose critical behaviours.

1.2 Contribution

To address the above challenges, we propose CART (CAusal-Reasoning-driven Testing), a test-
ing technique that i) learns the causal relations between test inputs and outputs, represented in
a causal model, and then ii) uses causal inference to query the model to estimate the outcome of
hypothetical tests without actually executing them, thus drastically reducing the testing cost.

CART exploits the ability of causal learning and causal inference to go beyond the conventional
association-based paradigm featured by Machine Learning (ML). For testing an ADS at scale,
knowledge needs to be inferred proactively: ML learns (input-output) patterns from observations
and predictions tell, based on the learnt distributions, what is the expected output when we observe
a certain input; with causality, we learn the cause-effect relations, and predictions tell what is
the expected output when we actively set a certain input variable (hence, when we change its
distribution) [64, 65]. This feature, we believe, better reflects the reasoning of a human tester:
when we conceive a test case, we are ultimately trying to predict what input makes the system fail?
This is much more than just searching for failure patterns. With that question, we do not really
mean what input is more correlated to failure? but rather what input causes the system to fail? In
other words, we look for causal explanation, not for correlations. CART tries to imitate this tester’s
reasoning ability of pre-visioning the effect of possible changes of an input on safety requirements,
and then largely amplifies this ability with the power of computation.

Following this view, CART acts in two phases. From an initial set of tests or from historical
driving data, it builds and iteratively refines a causal model, capturing the cause-effect relations
between inputs and outputs via Causal Structure Discovery (CSD) algorithms. Then, it uses the
do-calculus for Causal Inference (CI) [64] to query the model for estimating the effect on safety

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:3

requirements of a hypothetical change of a given input variable – namely, of a hypothetical new
test case. Only the most promising tests will be actually executed on the simulator.

We extensively experiment CART to assess its ability of generating effective and efficient
test scenarios to detect safety violations, comparing it with state-of-the-art strategies for many-
objective search used in a recent ICSE work on ADS testing [30]. We use a high-fidelity driving
simulator, CARLA [17], along with an advanced ADS, Pylot [26], both representative and widely-
used choices in ADS testing [19],[30],[56].

The main contributions of this article are:

— A new technique for effective and efficient testing of ADS, exploiting causal reasoning.
— An empirical evaluation of CART in comparison with state-of-the-art strategies. Results

show the potential of exploiting causal inference to boost testing performance, highlight-
ing a significant gain of CART in exposing more safety violations and doing so more
efficiently.

— At a higher level, a conceptual leap compared to existing strategies is the use of causal rea-
soning embedded into the testing process. Causal reasoning has great potential to support
test automation and to automatically suggest (or corroborate the engineer’s belief about) the
most promising failure-exposing input variables, by enabling the simulation of what happens
if scenarios. As a side effect, CART yields an interpretable representation of the causal re-
lations between the involved variables, which can also be easily adjusted by domain expert:
this is a useful asset even beyond testing, as the model can be queried to support several
quality assurance activities.

— The release of a publicly available replication package, including the implementation of
CART and a set of test scenarios, which can be reused by other researchers.1

The rest of the paper is structured as follows: Section 2 gives background notions on causal
inference and causal structure discovery. Section 3 reviews the related work. Section 4 presents
the CART strategy. Section 5 and 6 report about the empirical evaluation. Section 7 discusses the
threats to validity, while Section 8 concludes the paper.

2 BACKGROUND

2.1 Causal Inference

Causality can be defined as the influence by which an event contributes to the production of other
events [57]. Causal Inference (CI) aims to estimate the impact of a change of a certain variable
over an outcome of interest. It is fundamentally different from ML, as the latter aims at uncovering
patterns in observed data that connect inputs and output. For decades researchers have tried to
explain causality through statistical/ML methods identifying associations between variables (e.g.,
correlation, regression), which however cannot distinguish between cause and effect. These are
limited to what Pearl and Mackenzie called the first out of the three rungs of the ladder of causation
[65], that is association, solely based on observations.

ML allows answering questions of this form: given the same context in which we learned the
model (namely, the same data distribution), what outputX do we expect if the inputW happens to be

equal to w? This query spots possible correlations between variables. Causal reasoning targets
causation, addressing questions as: What output X do we expect if we actively set W to w (thus,

if we change the distribution)? And: What would have happened to X if we had set W to w? For
these questions, called, respectively, interventions and counterfactuals (rung 2 and 3 of the ladder

1The replication package is available on Figshare at: https://doi.org/10.6084/m9.figshare.21937121

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://doi.org/10.6084/m9.figshare.21937121

74:4 L. Giamattei et al.

Fig. 1. Example of Structural Causal Model and intervention.

of causation), ML falls short, because it predicts solely based on what has been seen. With causal
questions, we can proactively envision what happens (or would have happened) if we do (or had
done) an intervention (i.e., setW to w). It goes beyond observation.

To run these queries, a CI engine requires a causal model to represent relationships between
involved variables. Graphical Causal Models (GCMs) are a widely used solution. A GCM is a
causal Direct Acyclic Graph (DAG), where nodes are random variables and edges capture the
hypothesis that the two connected variables would be associated if all other variables were fixed
while the tail variable is varied [25]. The most general case of a GCM is a probabilistic causal
model, which uses (conditional) stochastic models to represent causal relations, with each node
Xi characterized by the conditional distribution given its parents Pa(Xi) (for non-root nodes) or
simply by a distribution (for root nodes). In a Functional Causal Model (FCM), the value of each
variable Xi is assumed to be a deterministic function of its parents Pa(Xi) and of the unmeasured
disturbanceUi (Xi = f (Pa(Xi),Ui)). These are a non-linear non-parametric generalization of linear
Structural Equation Models (SEMs). A GCM using an FCM for conditional distributions is called
a Structural Causal Model (SCM) [64]. Specifically:

Definition 2.1. Structural Causal Model (SCM). An SCM is a Directed Acyclic Graph G =
(X ,E), where nodes ∈ X are random variables and edges ∈ E are the causal relationships be-
tween them. Causal relationships are described as a collection of structural assignments Xi :=
fi (Pa(Xi),Ui) that define the (endogenous) random variables Xi as a function of their parents
Pa(Xi) and of (exogenous) independent random noise variables Ui .

Figure 1(a) shows an excerpt of an SCM from our dataset, where vehicle target speed causally
affects the distance from lane center, and road type affects both speed and lane center distance.

In causal inference, we are interested in the distribution of an outcome variable Xi after set-
ting another variable Xk to a certain value x (i.e., doing an intervention). Pearl introduced the
do-operator, a mathematical representation of physical intervention, written as P (Xi |do(Xk = x))
[64]. An intervention do(Xk = x) changes the SCM graph (hence the distribution), by removing
the causal relations with its predecessors (i.e., deleting the Pa(Xk) → Xk arrows, see Figure 1(b)),
meaning that Xk is no longer affected by any other variable.

Definition 2.2. Intervention distribution. The probability P (Xi |do(Xk = x)) over an SCM is
the distribution entailed by the SCM obtained by replacing the definition Xk := fk (Pa(Xk),Uk)
with Xk := x .

A do intervention changes the data generative process, thus: P (Xi |do(Xk = x)) � P (Xi |(Xk =

x)). In ML-based inference, from the joint distribution of the two variables Xi and Xk , we aim at
inferring the conditional distribution P (Xi |Xk) (i.e., what is the outcome Xi if Xk happens to be

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:5

equal to x). In CI, we are interested in the distribution of the outcome we would encounter if we
set Xk to a particular value x . The do-calculus (along with estimation methods [57]) supports the
inference of type P (Xi |do(Xk = x)) [64]. Through three main rules, it basically allows expressing a
do operation in terms of conditional distributions of a set of related variables, properly identified by
graph patterns (e.g., back-door, front-door, instrumental variable). This supports both interventional
and counterfactual queries. For instance, in Figure 1, let us assume we want to assess the effect
of vehicle target speed V on the distance D from the center of the lane. In this case, road type R is
said to be a confounder : in fact, if we observe a correlation betweenV and D this may be well due
to the influence of R on both, and we may falsely conclude that the V causes D. This is called a
back-door pattern. If we generated test cases based just on this observed correlation P (D |V), we
might fail to expose violations of the distance from the lane center requirement by just changing
the vehicle target speed and ignoring the road type. If we, instead, ask for the causal effect by doing
an intervention (obtaining the graph in Figure 1(b), namely P (D |do(V)), we obtain the real effect
of V on D, net of R. By the do-calculus rules, we come to marginalizing over R to get the desired
effect: P (D |do(V = v)) =

∑
r P (D |V = v,R = r) · P (R = r). Our aim is exactly to generate tests

exploiting such real cause-effect relations.
Note that back-door is the simplest case: more complex patterns can entail far longer chains

of transformations that are not easy to derive without do-calculus. Its rules not only dramatically
simplify the transformations, but have also been shown to be complete [35]: if a causal effect is
identifiable, there exists a sequence of applications of the three rules that transforms the causal
“do” formula into a formula containing only observational quantities (i.e., conditional probabilities).

In summary, given an SCM, we can run a do- query specifying one (or multiple) interventions,
such as P (Xi |do(Xk = x ,X j = y)) and get the answer by these steps:

(1) In the graph, a do-intervention on Xi (a.k.a. treatment) corresponds to cutting all incoming
edges to Xi (as the other variables will no longer affect Xi), yielding a new SCM. The prob-
lem is thus how to estimate the conditional distribution P ′(Xi |Xk ,X j) � P (Xi |Xk ,X j) in the
new graph, given the observations. The do-calculus leverages methods to identify the causal
effects correctly in the new graph, by conditioning on a set of additional variables linked to
Xi exploiting some patterns in the graph (e.g., the back-door, front-door, mediators, instru-
mental variables identification methods [36]). This step corresponds to the identification of
the estimand, just like it is done in the back-door example above. In summary, identifying the
estimand consists in finding the mathematical formula that generates the answer to a causal
query, given the data. Note that it may not always be possible to identify the estimand from
the model: for example imagine that road type, that has an effect on both vehicle target speed
(V) and distance from the center of the lane (D), is not measurable; then the query P (D |do(V)
cannot be answered. In that case, the model should be refined by adding new knowledge or
by making simplifying assumptions (e.g., by using a measured variable claimed to be related
to the unmeasured one).

(2) Once the estimand is identified, a variety of statistical methods can be used to estimate the
model’s parameters from observed data [57], such as: propensity-based stratification [72],
propensity score matching [7], inverse propensity weighting [92], regression discontinuity
[88], two-stage least square [87], and generalized linear models [57]. This gives the estimate
for the identified estimand.

(3) By the structural equations (see Definition 2.1) in the new parameterized SCM, we can quan-
tify the impact of the intervention looking at the expected outcome on units assigned to
the treatment (E[Xi |do(Xk = x)]), as well as at the difference in the expected outcomes be-
tween units assigned to the treatment and units not treated (known as Average Treatment

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:6 L. Giamattei et al.

Effect, ATE).2 Other metrics of interest can be the Individual Treatment Effect (ITE),
ATE on Treated (ATT), or Conditional Average Treatment Effect (CATE) [57], all deriv-
able from the post-intervention SCM.
A valuable alternative to the analytical derivation of the effect estimate is to use simulation.
Simulation-based inference samples from the post-intervention distributions. This gives a
new data sample under the intervention, which can be used to estimate the post-intervention
expected outcome by just looking at the statistics of the sample. This also allows an easy
derivation of confidence intervals.

Causal inference is enabled by many software tools that have been recently developed, mainly in
R [22, 34, 53, 60, 74] or Python [9, 16, 76]; a detailed description of the most notable ones has been
carried out by Nogueira et al. [57]. The most complete tool designated is DoWhy [76], developed by
Microsoft, which covers all the process for causal inference (modelling a causal problem, identifying
a target estimand, estimating causal effect based on identified estimand, and also possibly running
a series of refutation tests on the estimate used to increase the confidence in the estimate). DoWhy
offers a wide number of estimation methods and supports both the analytical and the simulation-
based inference through an extension called DoWhy-GCM [6]. This extension provides an easy and
automatic way to answer causal questions, such as simulating the impact of interventions, com-
puting counterfactuals, estimating average causal effects, and attributing distributional changes.
CART uses DoWhy-GCM for causal inference.

2.2 Causal Structure Discovery

Causal inference requires a model (e.g., a GCM) capturing the causal relations between the vari-
ables. There are generally two ways for building such a model: by explicit interventions (e.g., con-
trolled experiments), in which we manipulate some variables and see the effect on the others; or
from already-available data, by observing the variations of the variables of interest without ma-
nipulating them. The former strategy is more accurate, but it requires controlled experiments that
may be expensive or even technically impossible to run. It is therefore often necessary to discover
the causal relations from observations.

Causal Structure Discovery (CSD) algorithms infer the causal structure, represented as a GCM,
from observed data, under the assumption that causality can be detected from statistical depen-
dencies. Roughly speaking, the input of these algorithms is a dataset of observations, and the
output is a DAG along with the structural equations linking variables to their direct causes. CSD
algorithms rely, to a different extent, on various subsets of assumptions, the main ones being the
Causal Markov, Faithfulness, and Sufficiency assumptions, to derive correspondences between the
(conditional) independence in the probability distribution and the causal connectivity relationships
in the generated DAG [20]. The first two conditions are the most important ones and respectively
state that: i) every vertex X in the graph G is probabilistically independent of its non-descendents
given its parents; ii) if a variable X is independent of Y given a conditioning set Z in the probability
distribution,3 then X is d-separated4 from Y given Z in the DAG (in other words, the statistical de-
pendence between variables estimated from the data does not violate the independence defined by
any causal graph that generates the data [29]). Markov and faithfulness conditions are sufficient

2For instance, if Xk is binary, ATE = E[Xi |do (Xk = 1)]E[Xi |do (Xk = 0)] [57].
3Roughly, X and Y are independent conditional on a set of variable Z if knowledge about X gives no extra information

about Y once you have knowledge of Z.
4Let X ,Y , and Z be disjoint subsets of all the vertex in the DAG. Z d-separates X and Y just in case every path from a

variable in X to a variable in Y contains at least one vertex Xi such that either: i) Xi is a collider (i.e., the arrows converge

on Xi in the path), and no descendant of Xi (including Xi) is in Z ; or ii) Xi is not a collider, and Xi is in Z .

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:7

to define an equivalence structure over directed acyclic graphs, where graphs that are in the same
Markov equivalence class have the same (conditional) independence structure (an inherent limita-
tion of CSD algorithms is that they are able to identify structures only up to Markov equivalence
class). Sufficiency requires that for a pair of observed variables, all their common causes must also
be observed in the data (and modeled in the graph).

CSD algorithms can be categorized into constraint-based, score-based, and FCM-based [25].
Constraint-based algorithms use conditional independence tests on observed data to identify a

set of edge constraints [79]. These algorithms have the benefit of being generally applicable, despite
the fact that they are based on the strong assumption of causal faithfulness and may therefore
require large sample sizes to perform well [25]. Typical (conditional independence) constraint-
based algorithms are PC, FCI [79] and its improvement RFCI [13].

Score-based algorithms optimize a score assigned to candidate graphs, exploiting adjustment
measures such as the Bayesian Information Criterion, which approximates the posterior probabil-
ity of the model given the data (assuming a uniform prior probability distribution over the DAG
space) [52]. They relax the faithfulness assumption by replacing conditional independence tests
with the goodness-of-fit tests. They are computationally expensive, as they enumerate (and score)
every possible graph among the given variables. Well-known representatives are GES [11] and
its successor FGES [68], which use parallelization to optimize performance. GFCI is another well-
known algorithm that combines FCI and FGES [58].

Algorithms based on FCM determine the causal direction of edges, identifying the true causal
structure out of all the graphs within a Markov equivalence class. The most noticeable example,
working for continuous variables, is LinGaM, proposed by Shimizu et al. [77], where the model
is assumed to be linear and non-Gaussian. Under the causal Markov assumption, acyclicity and
a linear non-Gaussian parameterization (i.e., each variable is determined by a linear function of
the values of its parents and an additive non-Gaussian noise term), it has been proved that the
causal structure can be uniquely determined [80]. FCM-based algorithms have the advantage of
not relying on the faithfulness assumption and of learning substantially more about the causal
structure, sometimes even determining a unique model. However, to relax faithfulness, they
introduce other assumptions that can be controversial or difficult to test [52], and generally
require larger sample size to be accurate. An extensive discussion of CSD algorithms can be found
in [25, 29, 57].

The implementation of CSD algorithms is provided by various tools/libraries, the most common

ones being [57]: pcalg [39], bnlearn [73], and Tetrad [69]. The first two are well-known li-
braries while the last is a Java tool. Tetrad also provides the source code enabling the development
of other libraries on top of it, such as pycausal5, which wraps Tetrad functionalities in Python.
CART uses pycausal for causal structure discovery.

3 RELATED WORK

Model-level (or offline) testing of ADS has been used extensively for testing the individual DNNs
by either using adversarial examples (e.g., corrupted images) [48, 49, 66, 100, 102] and by using
Generative Adversarial Networks (GANs) to perturb the input [42, 62, 95, 99, 100]. This type of
testing is supported by coverage criteria such as neuron coverage [48, 66], combinatorial coverage
[50], and “discrepancy” between training/validation data and test data [40, 98]. Besides exposing
mispredictions, a different goal is to sample a minimal subset from the operational inputs set that,
once manually labelled, can closely assess the accuracy [10, 28, 45].

5https://zenodo.org/record/3592985

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://zenodo.org/record/3592985

74:8 L. Giamattei et al.

Model-level testing does not test the whole system in its environment. Recently, system-level (or
online) testing has been more widely investigated. On this line, researchers proposed solutions to
generate scenarios that cause the system to misbehave [4, 24, 30, 32, 51, 71, 83, 91].

Gambi et al. present AsFAULT [24], a genetic algorithm combined with procedural content gen-
eration – a technique employed in video games for the automatic creation of virtual environments
[90] - to generate virtual roads causing the ego vehicle to depart from the center of the lane.
DeepJanus [71] is a search-based tool that generates frontier inputs, i.e., similar input pairs that

cause the ADS to mispredict for one input and work fine for the other one.
Tuncali et al. present SIM-ATAV [91] that combines combinatorial testing with requirements fal-

sification; they use covering array as combinatorial test generation approach for discrete variables,
and a falsification approach using uniform random search or, again, a search-based algorithm (sim-
ulated annealing) to search over continuous variables.

Majumdar et al. propose Paracosm [51], a simulation-based testing language, associated with a
tool, that generates tests using random sampling for discrete parameters, and deterministic quasi-
Monte Carlo methods [55] for continuous parameters to achieve high diversity.

Klishat and Althoff [41] propose an approach for testing of motion planning algorithms in ADS;
it automatically generates critical scenarios based on a minimization of the solution space of the
vehicle under test via evolutionary algorithms. Calò et al. [8] also use search-based techniques
aiming at finding avoidable collision scenarios (i.e., scenarios in which the collision would not
have occurred with a reconfiguration of the ADS). They first search for a collision and then for an
alternative configuration of the ADS which avoids it.

Li et al. [44] present AV-FUZZER, a framework aiming at finding single-objective safety viola-
tions by perturbing driving maneuvers of traffic participants (i.e., acceleration/deceleration, follow-
ing lane, and making lane change). Metamorphic testing is also used in combination with equiva-
lent partition testing for system-level ADS testing [63].

Other studies focus on system-level testing, but not with the objective of generating test cases.
Stocco et al. [83] compare virtual and physical-world system-level testing; in [85], the same authors
propose an oracle for mispredictions detection; in [84], the authors use knowledge inferred from
field execution to predict misbehaviours; Haq et al. compare online and offline testing [32].

The above studies pursue testing efficiency by trying to tackle the large-state-space challenge.
None of them focuses on the additional challenges brought by the need of considering many safety
requirements at the same time, which entails a many-objective search. Abdessalem et al. [4] use
ML models (decision trees) combined with the NSGA-II search-based multi-objective algorithm
to guide the search – three objectives are considered. The same authors [5] are the first ones
to formulate the ADS testing problem as a many-objective search. Luo et al. propose EMOOD,
an approach that uses an evolutionary algorithm to generate test scenarios to expose as many
combinations of requirements violations as possible [47]. Recently, Haq et al. [30] adopt the same
formulation, and address the expensive test case evaluation challenge too. They propose SAMOTA,
a technique that uses surrogate models (based on regression and radial basis function networks)
to predict the outcome of a test case without actually executing it. Similarly to SAMOTA but
out of the ADS testing domain, the use of surrogate models to address computationally expensive
optimization problems has been widely studied [38], with recent studies combining global and local
search [103] and also using the most uncertain candidates in addition to the best predicted ones
[46, 93]. This is close to our work, as the objective is to exploit some learnt relationships between
test input and output, and use them to generate only interesting (i.e., safety-violating) tests. The
key advancement of CART is to inject causal reasoning into the test generation process. For what
is discussed, this is a more versatile tool, since causation is more informative than correlation,
and learning cause-effect relations enables a tester to spot more precisely input values more likely

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:9

to cause a safety violation. Before CART, causality has been applied in software engineering in
a few works [78], on metamorphic testing [12, 59], on fault localization [2, 27, 43, 86], and on
performance analysis [37, 81]. The next section describes how CART exploits this feature.

4 CART

4.1 Problem definition and notation

The goal of online testing of ADS is to generate a minimal set of driving scenarios to be run
on a simulator – called test scenario hereafter – that cause the system to violate multiple safety
requirements. This is a many-objective optimization problem. A driving scenario is built using a
set of variables describing various driving conditions, such as the road type, the presence of other
vehicles, trees, buildings, the weather conditions, the speed – these are the input variables of the
test scenario. The ADS drives the ego vehicle in that scenario and, at the end of the execution, we
check if (one or more) safety violations occurred or not, by inspecting a set of output variables, such
as the distance from the center of the lane, the distance from other vehicles or from pedestrians.
Figure 1 constitutes a simplified example with two input variables (i.e., “Vehicle target speed” and
“Road type”) and a single requirement (i.e., “Distance from center of the lane”). In this example, the
goal is to find the combinations of the two inputs that cause a violation of the requirement.

More formally, let us use the following notation:

—V = X ∪ Y = {x1, . . . ,xm ;y1, . . .yn } is the set of m + n variables to define a test scenario,
where X is the set of input variables and Y is the set of output variables.

— sk = (xk ; yk) = (xk1
, . . . xkm

;yk1
, . . .ykn

) is the k-th test scenario (or test) where xk (input)
andyk (output) are the values of the corresponding variables inX andY taken in thek-th test.

— D is a database containing all the executed tests.
—Thr = (τ1, . . . ,τn) is the set of thresholds associated to output variables in Y , which allows

determining if a safety violation occurred or not.
— R = {r1, . . . , rn } is the set of safety requirements associated with the n output variables and

the corresponding thresholds. 6 A safety requirement r j is violated when yj < τj at any
time during the simulation. Without loss of generality, we assume that the lower the values
of output variables, the closer the requirement violation (e.g., if a “distance from vehicles”
output gets close to a threshold of 0.5 meters, a safety requirement is close to being violated).
When dealing with variables that are more critical when their value increases (such as
“distance from the center of the lane”), its opposite is considered.

—C ⊆ R (U ⊆ R) is the subset of safety requirements that have been covered (respectively:
uncovered). Covering a requirement means that at least one test violates it.

Testing can be targeted at covering as many requirements as possible (i.e., maximize the propor-
tion of covered safety requirements, |C |/|R |), or at exposing as many safety violations as possible,
regardless of requirements already covered. The latter is because testers might want to have mul-
tiple diverse tests violating the same requirements that highlight different conditions in which the
violation occurs.

4.2 The CART algorithm

Given the set of requirements to violate R, our algorithm addresses the many-objective opti-
mization problem by a classical weighted-sum approach [14, 15], namely combining the many

6For simplicity, we assume that a safety requirement is associated with one measured output variable; clearly, the notation

can be extended to deal with safety requirements defined on combinations of output variables. In this case |R | < |Y |,
and a derived output variable expressing the desired combination is considered in the output variables set (e.g.,: y′j =

f (y1, . . . , yn), with the associated threshold τ ′j).

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:10 L. Giamattei et al.

objectives into a single one, hereafter called fitness and expressed by a fitness function Φ. We con-
sider two fitness functions, for the two above-mentioned testing goals. The former expresses the
proportion of covered safety requirements is defined as:

ΦA (sk) =

∑ |U |
j=1 (1 −mM (ykj

))

|U | (1)

wheremM (ykj
) is the min-Max normalized j-th output variable of the k-th test – lower values are

closer to a safety violation - and U is the set of still uncovered safety requirements. This gives
priority to tests more likely to affect the output variables related to still-uncovered requirements.
Since the set of uncovered requirements changes during testing, this function is called adaptive.

The second fitness function maximizes the number of safety violations. This is called fixed, and
is defined as:

ΦF (sk) =

∑ |R |
j=1 (1 −mM (ykj

))

|R | (2)

where R is the set of safety requirements. In this case, the function gives priority to tests more
likely to cause a safety violation of any safety requirement, even though some past test already
covered it. Whenever possible, we will use ϕk to refer to the value of any of the above fitness
functions, for test scenario sk .

At a high level, the CART algorithm acts in two phases.
In the first phase, CART extracts (and iteratively updates) a Structural Causal Model (SCM) from

past data, via Causal Structure Discovery (CSD). Such data needs to be in the same format used
to define a test case - one entry of the dataset consists of values of the input variables (which
correspond to a specific test scenario) and of the obtained output variables in that scenario. In a
testing process, this data would naturally come from previous testing sessions; the very first time
that CART is executed, the initial set of tests can be obtained by random testing or any other
technique. These data could also come from driving data; in such a case, the input and output
variables for each scenario need to be extracted from such data (depending on how historical data
are gathered and stored) and formatted as test scenarios. The resulting SCM describes the causal
relations between the input and output variables of a test scenario (cf. with Definition 2.1).

In the second phase, this model is queried by a Causal Inference (CI) engine, which runs inter-
ventional queries such as: what is the effect on the output variable of interest if we set the input to
a given value? More formally, the CI engine assesses the expected value of the output variable of
interest yj ∈ Y under a do-intervention on the input variable xi ∈ X : E[yj |do(xi = x)], where x
is the hypothesized input value (cf. with Section 2.1). For instance, with reference to the example
in Figure 1, it means generating queries such as: what is the effect on “Distance from center of the
lane if we set “Vehicle target speed” to 40km/h? These queries produce a set of “hypothetical” tests
whose output is an estimate of the expected effect on the output variables of interest under hypo-
thetical inputs. No real test is executed in this phase. Actual real tests to run are then generated
by selecting only the best tests from the hypothetical test set. The core idea is to explore the tests
search space by causal queries to the model rather than by actually executing the tests (which in
contexts like ADS takes several minutes per test).

Algorithm 1 describes the CART steps for tests generation. The algorithm takes, as input, the
set of safety requirements R to cover with the associated thresholds E, the database D containing
a set of already executed scenarios (e.g., derived from past tests or from driving data), the sample
size parameter η0 used by the Causal Inference (CI) engine as explained below, a flag to select the
fitness function, and a parameter ϵ , a probability value for inputs selection policy. It returns the
generated test suite S , the updated databaseD, and the final causal modelM , refined over successive

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:11

ALGORITHM 1: CART algorithm

Input: D: database of tests; f : boolean to select the adaptive (0) or fixed (1) fitness function; R:
safety requirements; Thr : error thresholds; η0: CI sample size; ϵ : probability for input selection.
Output: S : Test suite, M : causal model, D: Updated database

1: S, P ← ∅
2: repeat

3: M ← buildCausalModel (D)
4: P ← updatePopulation(D,T)
5: T ← ∅
6: for k = 1 to |P | do

7: H̃ ← in f er (M,η0, Pk , ϵ) � Query to the model. H̃ : set of hypothetical tests

8: H ← estimateFitness (H̃ , f ,R,Thr)
9: t̃ ← select (H) � t : best among |H | hypothetical tests

10: t ← runOnSimulator (t̃ ,R,Thr) � Compute actual fitness
11: T ← T ∪ t
12: end for

13: (S,D) ← (S,D) ∪T
14: until !terminatinдCondition
15: return S,M,D

iterations. The terminating condition could be the exhaustion of the budgeted testing time, or a
convergence criterion (e.g., violations no longer found after some iterations). The detailed CART
steps follow.

(1) Causal model construction.
A structural causal model (SCM) is inferred (line 3) from data contained in D. The SCM is
derived by first inferring the graph structure via a Causal Structure Discovery (CSD) algo-
rithm (cf. with Section 2.2). In our implementation, we have tested five CSD algorithms from
the Pycausal library based on Tetrad. Then, the stochastic models and functional causal
models (FCM) for, respectively, root and non-root nodes are assigned to each variable based
on data. Specifically, by using the CI library DoWhy, CART assigns the best-fitting stochastic
model among linear, polynomial, and gradient boost, and the best-fitting FCMs among linear
and non-linear additive noise models [75]. DoWhy supports a variety of other models, also
from the Sklearn and Scipy libraries; we adopted the default configuration.
The so-derived model is refined at every iteration with the updated database D including the
scenarios executed in the previous iteration (line 13).
It is worth it to stress that domain knowledge can be leveraged to build or refine the graph
– one of the advantages of causal models. This would however require human intervention
and domain expertise; for the sake of full automation, we ignore this possibility.

(2) Causal Inference and test generation . Lines 6-12 generate tests starting from the popu-
lation of current tests P and the (updated) causal model M . Tests are derived according to
an evolutionary strategy, namely by trying to improve the current population of tests. The
population contains at every iteration the top-|P | tests from D∪T , whereT is the set of tests
selected and executed in the previous iteration (initially empty). The population size is fixed,
and we opted for |P |=|R | as in previous studies [5], [30]. For every test sk in P , denoted as
Pk , the causal model M is queried in order to generate multiple hypothetical tests, estimate

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:12 L. Giamattei et al.

their expected fitness (line 7-8), and take the best one (line 9-10). The following steps are
carried out:
— Input variable selection.

A query is an intervention on an input variable xi ∈ X that changes its value to assess
the effect on output variables. Therefore, an input variable needs to be selected first. This
means, with reference to the simplified example shown in Figure 1, to select one of the
two input variables (i.e., “Vehicle target speed” and “Road type”). In CART, we select, with
probability ϵ , the input variable in the SCM with the greatest out-degree (counting only
edges toward the output variables yj ∈ Y), with ties broken randomly, since it is the vari-
able expected to impact more safety requirements together (in the example the two input
variables have the same out-degree, resulting in a random choice); with probability 1 − ϵ ,
the input variable is selected randomly (all the variables having the same probability) so
as to promote diversity.

Thus, a low value of ϵ gives higher diversity, since the input variable on which to in-
tervene would be chosen randomly, scarcely exploiting the knowledge encoded into the
model, in favour of exploration. Contrarily, a high value of ϵ leads to choosing, with higher
probability, the input variable expected to causally impact on more safety requirements
together. In our evaluation, ϵ = 0.5 to balance exploration and exploitation and avoid bias
toward one of them.

— Hypothetical Tests Generation.

For each Pk , a set of hypothetical test scenarios H̃ = {h̃1, h̃2, . . . , h̃q , . . . } is generated by
querying the model via interventions on the selected xi (with q indexing the intervention).
The intervention (i.e., setting a value for the selected variable) causes a change in the other
variables’ distributions directly or indirectly related to it. CART uses the simulation-based
inference (cf. with Section 2) to estimate the expected effect of the intervention on the out-
put variables, using the DoWhy-GCM library [6]. Simulation-based inference draws samples
from the post-intervention distributions, namely it uses the SCM after the intervention
with the associated distributions, and draws samples from it. Specifically, it i) sorts the
nodes in topological order, ii) samples values from root nodes according to their distribu-
tion, and then iii) uses the structural equations with randomly sampled noise to compute
the values for downstream nodes. The values for those variables not present in the SCM
(i.e., with no cause-effect relation with any other variable) are kept with the same value
of the Pk test, given as input to the method infer. With reference to Figure 1(b), the vari-
able “Vehicle Target Speed” is selected for the intervention; thus the inferential engine
fixes the value of this variable, samples from the distribution of “Road type” (since it is
a root node), and propagates the sampled values to the only downstream node, which is
“Distance from Center of the Lane”, computing new data with the structural equation. The
engine draws, for every intervention, samples of size η = η0 (η0 = 1, 000 is the default
value of DoWhy-GCM), from which we take the expected values of the output variables as
post-intervention estimates (denoted as ŷq for theq-th intervention). It is worth it to stress
that these hypothetical tests are queries done to the causal model, and are not scenarios ac-
tually executed on the simulator. The output of the query, ŷq , are estimates of the expected
value for each output variable.
As for the value to assign to the intervention variable, several policies are possible (e.g.,
uniform or non-uniform random sampling, adaptive strategies, learning-based or search-
based criteria), also depending on the type of variables, which could be continuous, dis-
crete or mixed. Since, in our case study, we deal only with discrete input variables, we run
a query (i.e., do an intervention) for each value of the selected variable. The final number

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:13

of hypothetical tests (H̃) equals the number of interventions. This number can be reduced
if needed (for instance, in the presence of continuous variables) by the mentioned policies.
In our evaluation, its impact turned out to be negligible compared to tests execution time
(see Section 6.5).

— Fitness estimation and selection.
The fitness for each hypothetical test h̃q ∈ H̃ is estimated by applying the fitness function
(which requires the set of requirements and thresholds, see Equations (1) and (2)) to the
generated samples, hence to the output variable estimates, ŷq , as computed by the CI query.
Thus, the estimateFitness() at line 8 uses ŷq to compute an estimate of the fitness, using
one of the two fitness functions (fixed or adaptive, Equations (1) and (2), selected via the
boolean f).

This gives the set H = {h1,h2, . . . ,hq , . . . }, with the hypothetical tests h̃q along with

their fitness estimate ϕ̂q (namely: hq = h̃q ∪ ϕ̂q), line 8. Only the hypothetical test with

the highest ϕ̂q is selected (line 9) and then executed on the simulator to compute its actual
fitness ϕq (line 10), producing the actual test scenario t . This is added to the set of tests
generated in that iteration, T .

The set of so-generated tests are added to both the test suite S and the database D. Note that
both S and D are updated in the same way (i.e., by addingT), therefore S can be obtained by
simply taking D at the end of the algorithm and removing tests in the initial D given as input.
However, we keep both in the pseudo-code for the sake of clarity. The output also includes
the causal model M , which is a valuable tool for future tests or even other engineering tasks.

5 EVALUATION

5.1 Compared Techniques

CART is compared to random search and to the following state-of-the-art techniques for many-
objective search-based testing: MOSA [61], FITEST [5] and SAMOTA, all used to test ADS in the
recent study presenting SAMOTA [30]. Like CART in the adaptive-fitness configuration, these
techniques generate a population of solutions aiming to cover a higher proportion of safety re-
quirements. CART, however, addresses the many-objective optimization problem by a classical
weighted-sum approach [14, 15], with the normalized objectives having equal weights – cf. with
Section 4.2. The combined single objective is used in the test generation process.

MOSA was first used to formulate branch coverage as a many-objective optimization problem.
FITEST later extended it, by progressively updating the fitness function marking the already cov-
ered requirements as testing progresses, thus reducing the population size and improving effi-
ciency. SAMOTA holds the features of FITEST, but exploits surrogate models to estimate the fit-
ness function without actually executing tests. SAMOTA is the technique closest to CART, as its
surrogate models are meant to avoid non-promising simulator runs. We use causal models to this
aim in order to support the generation of effective test scenarios.

The mutation and crossover parameters of SAMOTA, FITEST and MOSA are set at the default
values used in [30] and in [61] (they all have mutation rate 1

psize
; crossover rate is 0.75 for MOSA

and SAMOTA, 0.60 for FITEST). Both SAMOTA configurations are used (SAMOTA-I with the ini-
tial database, and SAMOTA-E with the empty database). The implementation of SAMOTA, FITEST
and MOSA are taken from the replication package of reference [30]7. The random algorithm (called
RANDOM hereafter) samples inputs uniformly within their lower-upper bounds. CART has been
implemented using pycausal for causal structure discovery, and DoWhy-GCM for causal inference.

7https://doi.org/10.6084/m9.figshare.16468530

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://doi.org/10.6084/m9.figshare.16468530

74:14 L. Giamattei et al.

5.2 Research Questions

— RQ1 (Usefulness). Does causal reasoning support the generation of test scenarios?
— RQ1.1. How does Causal Inference (CI) perform in generating representative test scenar-

ios?
— RQ1.2. How do different Causal Structure Discovery (CSD) algorithms perform?

— RQ2 (Coverage of safety requirements). How do techniques perform in covering safety re-
quirements?
— RQ2.1. How effective are the techniques in covering safety requirements?
— RQ2.2. How efficient are the techniques in covering safety requirements?

— RQ3 (Detection of safety violations). How do techniques perform in detecting safety viola-
tions?
— RQ3.1. How effective are the techniques in exposing safety violations?
— RQ3.2. How efficient are the techniques in exposing safety violations?

— RQ4 (Test suite quality) What are the fitness and diversity of the generated test suites?

In CART, the CI engine generates what we called “hypothetical” test scenarios, i.e., a combina-
tion of test inputs that are not actually run on the simulator to get the output, but are instead used
to query the causal model (i.e., to do an intervention) and get an estimate of the expected output.
Therefore, before assessing CART against the baselines, RQ1 first aims to assess to what extent
the expected output of such hypothetical test scenarios are close to the actual test output obtained
by running the same test on the simulator. This ability would, by itself, pave the ground to new
opportunities in testing, e.g., by exploiting the possibility of running what happens if queries to a
model (i.e., what is the expected output if we give a certain input) and predict tests outcome with-
out actually running them. Furthermore, as different CSD algorithms can provide different models,
hence potentially different results, RQ1 compares five algorithms: PC, FGES, FCI, GFCI, and RFCI.

RQ2 first investigates the proportion of safety requirements violated by at least one test scenario,
given a fixed testing budget (RQ2.1); the goal is to have a minimal test suite that covers as many
safety requirements as possible. Then, RQ2.2 evaluates the performance over testing time, so as to
see which algorithm achieves the goal earlier.

RQ3 evaluates the ability of the compared techniques of generating critical (i.e., safety-violating)
tests. The fitness function used in RQ2 is what we called the adaptive function ΦA; this tracks the
safety requirements that get covered during testing, so as to orient the test generation toward
scenarios more likely to cover the remaining requirements.

Besides requirements coverage, testers might be interested in the number of safety-violating test
cases (possibly with more different tests violating a requirement). In fact, having only one exam-
ple for a violated safety requirement could be not satisfying for engineers; multiple diverse tests
violating the same requirements highlight possible different conditions under which the violation
occurs, each of which could trigger different faults leading to that violation. Thus, a richer set of
safety-violating tests can support the root cause analysis and debugging task. This is pursued by
what we called the fixed fitness function ΦF , adopted in RQ3, which pushes toward safety-violating
scenarios without looking at the already-covered safety requirements. To this aim, we have imple-
mented ΦF in CART and have modified SAMOTA, FITEST and MOSA to make them ignore the
set of still-uncovered requirements in their fitness function. These modified versions never update
the set of covered requirements, always generating tests that try to cover all requirements.

RQ4 investigates the quality of the generated tests, considering their fitness and diversity. As
for fitness, we are interested in those test scenarios that, even though not causing a violation of
the safety thresholds, push the variables of interest (e.g., distance from pedestrians) very close to
a violation (i.e., “near-violating” test scenarios). Such tests highlight suspicious behaviours and

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:15

potentially dangerous situations. For instance, a scenario in which the car stops very close to a
pedestrian might be not desirable even though it is not a collision, and testers may wish to check
them. Moreover, since all the compared techniques follow an evolutionary approach (which grad-
ually improves solutions), it is also of interest to check which technique produces higher-fitness
tests, as tests with high fitness are more likely to evolve into safety-violating tests if more testing
time is available. Finally, multiple similar tests can trigger the same violation or near-violation
(especially under the fixed fitness function that can generate more tests for a requirement), while
a typical desideratum of test suites is to have diverse tests – hence we also check for diversity of
the test scenarios.

5.3 Experiment Design

The case study used for the evaluation is Pylot [26], a top-performing ADS with state-of-the-art
techniques based on pre-trained DNNs. It has a natural compatibility with CARLA [17], and it is
a top submission for CARLA Autonomous Driving Challenge. Pylot is also chosen because of its
high adaptability to customized techniques. A test case is characterized by sixteen input variables,
describing the road type, the presence of (possibly two-wheeled) vehicles in front, in adjacent or
in opposite lane, weather conditions, presence of pedestrians, of trees, of buildings, speed (full
list available in the replication package). Tests are generated with input within the boundaries
of the simulator’s domain, thus the scenarios are as required by the simulator. As output, the
following six requirements are considered, the same used in Haq et al.’s work [30] implementing
the baseline strategies: (1) follow the center of the lane; (2) avoid collision with other vehicles;
(3) avoid collision with pedestrians; (4) avoid collision with static objects (e.g., traffic signs); (5)
abide by traffic rules (e.g., traffic lights); (6) reach the destination in a given time. The metrics used
are, respectively: (1) Distance from the Center of the Lane (DCL); (2) Distance from other

Vehicles (DV); (3) Distance from Pedestrian (DP); (4) Distance from Static obstacles (DS);
(5) Traffic Rule violated (yes/no outcome) (TR); (6) Distance Traveled (DT). Information about
these output metrics is retrieved from the simulator. In particular, the distance from the center
of the lane is computed as the distance between the center of the vehicle and waypoints that are
typically placed in the center of the lane (when multiple lanes are available, the waypoints follow,
in case of lane changes, the trajectory that crosses the lane, preventing a safety violation at each
change); collisions are detected both by collision events and by collected distances (from vehicles,
pedestrians, and static objects).

We run three different experiments to answer RQ1, RQ2, and RQ3. The comparison done in
RQ4 uses the test suites produced in RQ2 and RQ3 (with the adaptive and fixed fitness functions,
respectively). For RQ1, we execute 1,000 random test scenarios to investigate causal models and
causal inference performance. For RQ2, each compared technique is run 20 times to get statistically
significant results (at significance value α = .05). Every execution has a fixed time budget, which
is 2 hours, in line with Haq et al. [30]. Moreover, for the techniques that use a database of initial
solutions (i.e., CART and SAMOTA-I), we consider two databases of different size: one with exactly
the same 39 test scenarios used in the SAMOTA work [30], for a fair comparison, and one with 100
randomly generated test scenarios (called hereafter CART100 and SAMOTA-I100). The 39 tests used
by SAMOTA are obtained by a 4-way combinatorial coverage testing based on all the attributes
used to define the test input space to generate diverse test cases.

We have therefore eight techniques (CART100, CART, SAMOTA-I100, SAMOTA-I, SAMOTA-E,
FITEST, MOSA, RANDOM). For RQ3, we run further 20 repetitions per technique, except RAN-
DOM, with the changed fitness function (the fixed one), again with a time budget of 2 hours and
with both databases of initial solutions. In fact, the RANDOM technique does not distinguish fixed
form adaptive function; for it we used the same tests used in RQ2.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:16 L. Giamattei et al.

Overall, we have 1,000 random generated tests for RQ1, plus 1,909 tests for RQ2 and 1,548 tests
for RQ3 resulting from the 40 (20 + 20) runs for every technique. The total number of tests is 4,457
– all made available in the repository - obtained with 676 computing hours. All experiments were
run on a virtual machine built on Google Cloud Compute Engine platform8. It was configured with
Ubuntu 18.04 running on Intel Haswell CPU (4 cores) with NVIDIA Tesla T4 (16 GB) and 16 GB
memory.9 Further settings and RQ-dependent details are presented in the following section.

6 RESULTS

6.1 RQ1: Usefulness of Causal Models

RQ1 uses a set of S = 1, 000 test scenarios generated by the RANDOM technique and executed on
the simulator. The procedure is as follows: we first use 5% of these tests to train the causal model
(training size ztr = 50 randomly-sampled tests); then, from the remaining 950 test scenarios, we
randomly sample further zts = 50 tests as test set. We consider 50 tests as a “relatively small” test
set (i.e., implicitly assuming that, in a realistic environment, the number of tests easily gets to 50),
so as to show that causal models can be useful even with few entries.

Let us denote the training and test sets as TrS and TS , respectively. The aim is to compare, for
each of the 50 tests in the testing set, the real observed outputs (specifically, the fitness ϕ (sk) of
the test) against the prediction done by the causal inference engine querying the causal model:
specifically, for each test sk = (xk ;yk) ∈ TS , the CI engine queries the causal model to predict
what is the output under the input xk , thus getting an estimate ŷk . The fitness is computed on

the real observed output, yk , and on the estimated one, ŷk (getting ϕk and ϕ̂k , which are then
compared to each other). In causal inference terms, this means predicting the effect of applying an
intervention. To account for randomness, this process is repeated 20 times, with different training
and test sets. The sample size for simulating the intervention is set to η = 1, 000, which is the
default value in the used library, DoWhy.

To compare the predicted vs the actual output, we use the following two metrics: the percentage
Root Mean Squared Error (%RMSE) and the Rank Biased Overlap (RBO) for rankings compar-
ison. The former is a well-known metric to compare different models’ prediction, corresponding
to the RMSE normalized by the RMS value of the predicted value:

%RMSE =

√√√ 1
n

∑n
k=1

(ϕk − ϕ̂k)2∑n
k=1

ϕ̂2
k

· 100 (3)

where ϕk and ϕ̂k are the actual and predicted fitness value of the k-th test, respectively. This
metric measures the accuracy of the fitness value prediction – the lower, the better. A tester may
be interested just in the ability of the model to distinguish critical tests, rather than in predicting
the exact output value. We therefore report the RBO, a well-known metric to compute rankings
similarity that, unlike Spearman’s or Kendall’s correlation, weighs the (dis)agreements on the top
positions more than the ones at the bottom. The t = 50 tests are ranked by their actual fitness
from more to less critical ones (listT), and by their predicted fitness (list P). The extrapolated RBO
bounded at t is [94]:

RBO (A, P ,q, t) = At · qt +
1 − q
q

t∑
d=1

Ad · qd (4)

8https://cloud.google.com/compute
9Google LLC, 2020. G Suite, Available at: https://gsuite.google.com

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://cloud.google.com/compute
https://gsuite.google.com

Causality-driven Testing of Autonomous Driving Systems 74:17

Table 1. RQ1 - CSD Algorithms Configuration

Algorithm Parameters and values

FGES scoreId = cg-bic-score, dataType = mixed, numCategoriesToDiscretize = 7,
maxDegree = 3, faithfulnessAssumed = True, numberResampling = 5,
resamplingEnsemble = 1, addOriginalDataset = True

PC testId = fisher-z-test, fasRule = 2, depth = 2, conflictRule = 1, concurrentFAS =
True, useMaxPOrientationHeuristic = True

GFCI testId = cg-lr-test, scoreId = cg-bic-score, dataType = mixed,
numCategoriesToDiscretize = 7, maxDegree = 3, maxPathLength = -1,
completeRuleSetUsed = False, faithfulnessAssumed = True

FCI testId = fisher-z-test, depth = -1, maxPathLength = −1, completeRuleSetUsed =
False

RFCI testId = cg-lr-test, dataType = mixed, numCategoriesToDiscretize = 7,depth = −1,
maxPathLength = −1, discretize = False, completeRuleSetUsed = False,
numberResampling = 5, resamplingEnsemble = 1, addOriginalDataset = True

Fig. 2. RQ1 - %RMSE and RBO of the 5 CSD algorithms.

where: At = |T1:t ∩ P1:t |/t is the proportion of the overlap of the T1:t and P1:t lists (with elements
from position 1 to t) of the ranking to be examined; q is a parameter in (0, 1) that determines how
steep the decline in weights is, given to the positions in the list – a smaller q gives more weight
to the overlaps in top positions. We use q = 0.98, giving the t = 50 ranks a weight of 86% [94].
In order to build the causal model with the ztr = 50 randomly sample tests, we use five different
CSD algorithms. The used algorithms are: PC, FGES, FCI, GFCI, RFCI. Their configuration (Table 1)
is the default configuration in Tetrad [69] (and pycausal), used in various studies on CSD [96],
[101].

The violin plots in Figure 2 show the distribution of %RMSE and RBO. The %RMSE plot indicates
that the prediction error done by querying the causal model is between 5% and 6%, regardless the
adopted CSD algorithm. The good result is confirmed by the RBO metric, which is approximately
between 0.6 and 0.7: this roughly means the two lists of tests (made by ranking the real observed
vs predicted fitness) have 60%-70% of their ranks in common [94]. Also in this case, the CSD al-
gorithm seems to not have an impact. To confirm this statistically, we run the Friedman test [23],
a non-parametric hypothesis test for Analysis of Variance, which assesses if there is at least one
technique that significantly differs from others. For both %RMSE and RBO the null hypothesis of
no significant difference between CSD algorithms cannot be rejected (p-value equals 0.9655 for

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:18 L. Giamattei et al.

Fig. 3. RQ1.1 - %RMSE and RBO: CART causal models and SAMOTA ML-based models.

%RMSE and 0.2177 for RBO). Thus, the CSD algorithms turned out to be statistically equivalent,
any of them can be adopted in CART. In the next RQs, we configure CART with GFCI, since it has
slightly smaller %RMSE and similar RBO to the others.

RQ1 answer

Causal inference is a useful tool for engineers to predict the effect of hypothetical inputs on target
outputs; the observed error in the case study ranges from 5% to 6%.
The model predictions are also useful to rank the highest-fitness test first (e.g., for prioritizing tests),
as the ranking similarity is between 0.6 and 0.7. This can enable the design of new testing techniques
based on causal inference.
The CSD algorithm had no significant impact on the performance of the prediction, as both the
prediction error and ranking on the give models built by the algorithms are statistically equivalent.

6.1.1 Comparing CART causal models against SAMOTA ML-based models. In the following, we
compare the prediction made by causal models vs the prediction made by ML-based surrogate
models used by SAMOTA. For this comparison, we consider the same configuration used for the
CSD algorithms, training SAMOTA from scratch. The CSD algorithm used is GFCI, the one we
used in CART. Figure 3 reports the violin plots. The prediction made by using the causal model
via interventions has considerably better (i.e., smaller) %RMSE (5% vs 15%), and with much smaller
variance (1.8 E-05 vs 1.5 E-03), meaning that it yields estimates of the expected test output (hence
of the fitness) much closer to the real values and more stable. As a consequence, SAMOTA is
expected to generate worse tests (in terms of fitness). The next RQs will investigate this hypothesis.
Interestingly, we note that SAMOTA has a slightly better (i.e., bigger) RBO (about 0.68 vs 0.64).
This means that SAMOTA surrogates could rank a set of tests slightly better, even though their
predicted fitness is far from the real one; this can still be useful for prioritizing existing tests.

6.2 RQ2: Coverage of safety requirements

For RQ2, we run all the testing techniques 20 times for 2 hours. For SAMOTA and CART, which
use an initial database D, we consider |D | = 39 and |D | = 100 test scenarios. CART uses GFCI
for causal structure discovery: in the inference step, we keep the sample size for simulating the
intervention as η = 1, 000. The comparison is in terms of coverage, namely the proportion of safety

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:19

Fig. 4. RQ2.1 - Coverage effectiveness.

Table 2. RQ2.1 - Pairwise Comparison

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E FITEST MOSA RANDOM

CART100 7.40E-03 5.51E-02 1.65E-02 1.40E-03 1.00E-03 <1.00E-04 5.00E-04

CART – 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

SAMOTA-I100 – – 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00 1.00E+00 1.00E+00 1.00E+00

SAMOTA-E – – – – 1.00E+00 1.00E+00 1.00E+00

FITEST – – – – – 1.00E+00 1.00E+00

MOSA – – – – – – 1.00E+00

requirements violated, computed as:

coveraдe (S) =
|C (S) |
|R | × 100 (5)

where S = {s1, s2, . . . sk } is the testing session executing k tests scenarios, C (S) denotes the set of
requirements violated by at least one test case in S , and R is the set of safety requirements under
consideration (6 in our case).

To answer RQ2.1 we evaluate the coverage after the 2-hours testing session. Figure 4 shows
the distribution of the coverage values over 20 repetitions. Except for CART100, all the techniques
have a comparable median (white dots) around 33%, namely, all are able to cover 2 out of 6 require-
ments. None of them covers all requirements. CART and SAMOTA-I cover 4 requirements in 2 and
1 cases respectively, achieving a coverage of 36.67%. With a larger database, CART violates consis-
tently more than 2 requirements: CART100 has a median coverage of 50% (33.3% for SAMOTA-I100)
and violates 4 requirements (i.e., 66.7%) in 6 repetitions (SAMOTA100 violates 4 requirements in 2
repetitions).

The Friedman test detects a significant difference for at least one pair (p-value = 2.66E-04). We
run the Dunn test [18] for post hoc analysis (that protects against the multiple comparison prob-
lem) to detect which pair of techniques differ significantly. It confirms that CART100 is signifi-
cantly better than all the others (p-values are: 0.0165, 0.0074, 0.0014, 0.0010, 0.0005, and <0.0001
for CART100 against, respectively: SAMOTA-I, CART, SAMOTA-E, FITEST, RANDOM, and MOSA)
except against SAMOTA-I100 but with a p-value slightly above 0.05 (0.0551). In all the other pairs,
differences are not significant – the p-values for all the pairs are in the Table 2.

Table 3 reports, for each technique, the number of repetitions (out of 20) that covered the safety
requirement. The two requirements distance from other vehicles (DV) and distance traveled (DT)
are clearly the easiest to cover as all the techniques are able to consistently find the respective
violations with at least one scenario per repetition, and, in some cases, even in every repetition
(CART100, CART39, SAMOTA-I39, SAMOTA-E). On the other hand, distance from the center of the

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:20 L. Giamattei et al.

Table 3. RQ2.1 - Number of Repetitions (out of 20) that

Violate Requirements

Technique DCL DV DP DS DT TR

CART100 7 20 0 10 20 1
CART39 2 20 0 2 20 0
SAMOTA-I100 5 19 0 2 20 0
SAMOTA-I39 3 20 0 1 20 0
SAMOTA-E 0 20 0 0 20 1
FITEST 5 13 0 2 18 0
MOSA 2 15 0 0 19 1

RANDOM 2 18 0 0 20 0

Legend: DCL: distance from the center of the lane, DV: distance

from other vehicles, DP: distance from pedestrians, DS: distance

from static obstacles, DT: distance traveled, TR: traffic rules.

Fig. 5. Excerpt of causal model.

lane (DCL) and distance from static obstacles (DS) are more difficult to cover, with techniques cover-
ing them in less (or equal for CART100 on the latter requirement) than half of the repetitions; abide
by traffic rules (TR) is covered only once by CART100, SAMOTA-E, and MOSA. Distance from pedes-
trian (DP) turned out to the hardest to cover in our setting; no technique succeeds in covering it.

The superiority of CART100 shows that a bigger dataset has led to higher-quality models and
consequently to better test suites. Although a small improvement is noticed also in SAMOTA-I100

compared to the other SAMOTA versions, the impact of a bigger archive size is not so pronounced
as in CART. This suggests that causal models can benefit more from greater archive size. In
Section 6.5 we further investigate this hypothesis.

An important advantage of causal models is their interpretability. They are human-readable
and allow a quick identification of inputs causally related to outputs, and consequently to safety
violations. In particular, inspecting the results and looking at the model, we can find some
input-output relations. For instance, we notice that collisions with other vehicles were mainly
caused by the target speed of the ego vehicle, the weather conditions, and the variables specifying
the presence of other vehicles (mainly the presence of a vehicle ahead of the ego vehicle in the
same lane). When the speed is too high in rainy conditions, the ego vehicle hardly manages to
avoid a collision with a vehicle on the same lane that slows down. Similarly, the collisions with
pedestrians/static objects were heavily impacted by the roads the ego vehicle was spawned to
(e.g., junction, straight road, highway).

More in general, engineers can get different types of insights from a causal model in a relatively
simple way compared to ML models. Figure 5 reports an excerpt of causal graph we obtained, along
with the weights from the structural equation coefficients representing how much, on average, the
effect is expected to change for a change in the cause.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:21

It is possible to get some insights from the model:

(i) from the graph, we see that Road ID (i.e., the part of the CARLA’s map where the scenario
takes place), Vehicle target speed, Road type (e.g., “cross road”, “left/right turn”, “straight”)
and Driving task (“follow road”, “take 1st/2nd/3rd exit”) are all causally related to DCL. It
is possible to note that there are important differences between the mentioned causes for
the DCL effect. In fact, Vehicle target speed is also impacted by Road type. This means that
an even strong correlation between Vehicle target speed and DCL can be well due to Road
type that can cause both Vehicle target speed and DCL, namely Road type is a confounder.
Any prediction based on that correlation without accounting (i.e., controlling for) Road type
would fail. With causal inference, one can predict the causal effect of Vehicle target speed,
net of confounders and correctly attribute the cause for an observed effect.

(ii) The graph highlights that the violations of DS and DCL can be caused by multiple variables
together, and the underlying equations express the strength of the causal effect of the causes.
Also, common causes are also of interest; for instance Road type is a common cause of both
DCL and DS.

(iii) Several other patterns can be inspected. For instance, we can also investigate the chains of
causality connecting multiple inputs, assess the direct and indirect effect (i.e., through other
input variables) of an input variable on the output. Other patterns have been identified [65],
such as the front-door criterion, highlighting situations in which it is not immediate to derive
a causal effect of an input of interest to the output.

The second sub-question of RQ2 (RQ2.2) was about the efficiency in covering safety require-
ments. To answer RQ2.2, we measure the coverage over testing time every 20 minutes. Figure 6
shows that CART-100 achieves by far the highest coverage, with a rapid increase in the first 20 min-
utes. Also CART is better than the baselines in the first 20 minutes. After 40 minutes, CART and
SAMOTA-I100 are equivalent and slightly better than the other baselines, and keep this superiority
along the whole test duration.

RQ2 answer

CART covers a proportion of safety requirements comparable to the other techniques, but more
efficiently, as it covers a higher proportion than SAMOTA-I, SAMOTA-E, MOSA and FITEST in the
first 40 minutes. When fed with a larger knowledge (CART100, using 100 tests to build the model),
it markedly outperforms the other techniques, in terms of both proportion of violated requirements
and of efficiency.

6.3 RQ3: Detection of Safety Violations

With RQ3, we aim at evaluating techniques in their ability to expose multiple violations of
(possibly the same) safety requirements. Indeed, while RQ2 already shows that CART covers
more safety requirements than competitors and earlier, having only one example for a violated
safety requirement could be not satisfying for a tester. Multiple diverse violating tests high-
light possible different conditions under which a violation occurs, each of which could trigger
different faults leading to that violation. This supports the root cause analysis and debugging
task.

For instance, let us assume to have a same safety violation of the Distance from the Vehicle
(DV) safety requirement exposed by multiple failing tests, as shown in Table 4. The Table shows
that the DV violation is present in quite different scenarios (with different values of the “Road
ID”, i.e., the part of the CARLA’s map where the scenario takes place, and “Weather” conditions),

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:22 L. Giamattei et al.

Fig. 6. RQ2.2 - Coverage efficiency.

Table 4. Example of Multiple Safety-Violating Tests for DV Requirement

Road Type Road ID
Vehicle in

Adjacent Lane
Two-wheeled

Vehicle in Front
Two-wheeled Vehicle

in Adjacent Lane
Two-wheeled Vehicle

in Opposite Lane
Weather

Vehicle
Target Speed

DV

Cross Road 0 0 1 1 1 Cloudy 40 Violated

Cross Road 1 0 1 0 0 Cloudy 40 Violated

Straight 3 0 1 0 0 Wet/cloudy 30 Violated

Right Turn 2 0 1 1 1 Cloudy 40 Violated

Cross Road 2 0 1 0 1 Cloudy 40 Violated

Cross Road 2 0 1 0 0 Cloudy 40 Violated

Cross Road 2 0 1 0 1 Cloudy 40 Violated

Straight 3 0 1 1 0 Clear 40 Violated

Right Turn 2 0 0 0 0 Wet 40 Violated

Cross Road 1 1 0 1 1 Wet/cloudy 40 Violated

Cross Road 2 0 0 1 0 Wet 40 Not violated

Cross Road 2 0 0 0 0 Wet 40 Not violated

which can be due to different faults, activated by different combinations of (possibly a subset) of
the variables. Except for one test (red cells), the failed tests have at least one input among “Two-
wheeled Vehicle in Front”, “Two-wheeled Vehicle in Adjacent Lane” and “Two-wheeled Vehicle
in Opposite Lane” equal to 1 (yellow cells). This suggests that the presence of a two-wheeled
vehicle is a possible fault trigger, hence providing insight into the root cause of the violation - e.g.,
the autopilot’s DNN for obstacle detection could be inaccurate in detecting two-wheeled vehicles.
Having multiple violations (i.e., multiple manifestations of the fault) helps to spot the problem. In
addition, the Table shows that the violation is present also when no two-wheeled vehicle is present
(the red row). The red-cells test has two input values, “Road Type” and “Road ID” that are the same
as another failing test (orange cells). Therefore, this can suggest an additional fault, or at least a
more complex activation pattern not depending solely on the “two-wheeled” input variables.

If engineers had just one of the above tests, it would be much harder to derive some conclusion
about possible causes of the safety violation. The implications are therefore for the root cause
analysis and debugging phase.

To assess the ability of the techniques of finding multiple violations, we run again all the tech-
niques 20 times for 2 hours, but with a fixed fitness function. The comparison is in terms of number
of violations of safety requirements exposed by a testing session S , denoted asv (S). Withvi (S) we
denote the number of violations of the i-th safety requirement.

Results for RQ3.1 (how many violations are found) are in Figure 7. The Friedman test detects
a significant difference for at least one pair (p-value = 2.2E-16). Table 5 reports the p-values for
pairwise comparisons, again with the Dunn test. CART100 is confirmed to significantly outperform

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:23

Fig. 7. RQ3.1 - Number of violations.

Table 5. RQ3.1 - Number of Violations, Pairwise Comparison

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E FITEST MOSA RANDOM

CART100 5.25E-01 4.00E-04 4.90E-03 1.50E-03 <1.00E-04 <1.00E-04 <1.00E-04

CART – 2.02E-01 8.18E-01 4.56E-01 <1.00E-04 <1.00E-04 <1.00E-04

SAMOTA-I100 – – 1.00E+00 1.00E+00 5.70E-03 5.40E-03 1.12E-01

SAMOTA-I – – – 1.00E+00 4.00E-04 4.00E-04 1.33E-02

SAMOTA-E – – – – 1.50E-03 1.40E-03 3.62E-02

FITEST – – – – – 1.00E+00 1.00E+00

MOSA – – – – – – 1.00E+00

Fig. 8. RQ3.1 - Number of tests and safety-violating tests.

all the algorithms. CART significantly outperforms FITEST, MOSA and RANDOM, while, despite
the greater average value, it cannot be claimed to be different from all SAMOTA variants.

Figure 8 shows the average number of tests violating at least one safety requirement, and the
average number of executed tests. Since a test can violate more than one requirement, this is
different from the number of violations. Besides exposing more violations, CART100 generates
more safety-violating tests (as well as a higher ratio of safety-violating tests over the executed
ones).

With Figure 9, we now analyze the ability of tests to violate more than one requirement, repre-
senting very critical scenarios. The Figure shows the number of tests violating 1, 2, and 3 safety
requirements together (no test violates more than 3 requirements). CART100 with the fixed fitness

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:24 L. Giamattei et al.

Fig. 9. RQ3.1 - Number of tests with one or more violations.

Table 6. RQ3.1 - Average Number of Violations

qi q
Technique DCL DV DP DS DT TR

CART100 0.00 6.10 0.00 0.05 7.50 0.00 13.65
CART 0.05 5.25 0.00 0.00 5.65 0.00 10.95
SAMOTA-I100 0.15 3.20 0.00 0.00 5.45 0.00 8.80
SAMOTA-I 0.05 3.50 0.00 0.00 5.90 0.00 9.45
SAMOTA-E 0.10 2.45 0.00 0.00 6.55 0.00 9.10
FITEST 0.15 1.70 0.00 0.00 3.05 0.00 4.90
MOSA 0.25 2.10 0.00 0.00 2.15 0.00 4.50

RANDOM 0.10 2.65 0.00 0.00 3.20 0.00 5.25

\Legend: DCL: distance from the center of the lane, DV: distance from other

vehicles, DP: distance from pedestrians, DS: distance from static obstacles, DT:

distance traveled, TR: traffic rules.

function is the only technique generating more tests that violate two requirements than those vi-
olating a single requirement. It also finds a test violating 3 requirements together (DV, DS, TR).
CART is the second technique generating tests violating two requirements, followed by SAMOTA-
I and SAMOTA-I100.

Table 6 reports the average violations of each requirement. The distance from pedestrians (DP)
and traffic rules (TR) requirements are violated by no technique in this fixed-fitness configura-
tion. Distance traveled (DT) and distance from other vehicles (DV) are the most frequently violated,
followed by distance from the center of lane (DCL), which is however never violated by CART100.
Except CART100, no other technique violates distance from static objects (DS). It is worth noting
that, while the adaptive function (used in RQ2) tends, when a requirement is already covered,
to target other requirements, the fixed function tends to violate more often some specific, more
failure-prone, requirements (e.g., many violations to DV and DT are generated). For instance, in
the adaptive case, CART100 was able to cover 5 different requirements in 6 out of 20 repetitions,
which never happened in this configuration, but of course detecting a lower average number of
total violations (9.4 vs 13.65).

Finally, Figure 10 plots the efficiency comparison (RQ3.2). It clearly shows that both CART100 and
CART detect more safety violations since the beginning, thus supporting the early identification
of critical scenarios.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:25

Fig. 10. RQ3.2 - Efficiency.

RQ3 answer

CART100 and CART detect the greatest number of violations after the entire testing session, ex-
pose more violations earlier, generate more safety-violating tests and with a better ratio of safety-
violating tests over total tests.

6.4 RQ4: Fitness and Diversity

RQ4 investigates the fitness values and diversity of the generated tests. This comparison is done on
the test suites produced in RQ2 and RQ3 (with the adaptive and fixed fitness functions, respectively)
by the best-performing techniques, which are: CART100, CART, SAMOTA-I100, SAMOTA-I and
SAMOTA-E.

6.4.1 Fitness Evaluation. To evaluate the fitness of tests, we consider the values of the output
variables of each test (namely: DT, DP, DV, DS, DCL). We exclude the TR output, since it is not a
continuous but a binary variable (all other 5 are distances).

Figures 11 and 12 report the (min-max) normalized values for each output variable, averaged
over all the test scenarios generated in the 20 repetitions, split in two groups: failing (i.e., safety-
violating) and non-failing tests. For all of them but DCL, the smaller the better; for DCL, we report
(1−DCL). The plots show that CART and CART100 achieve better values for almost all the 10 output
variables (5 for the adaptive fitness function, RQ2, and 5 for the fixed one, RQ3), except for DT, in
both the datasets. The results are confirmed for both groups, with, expectedly, a more pronounced
advantage of CART in failing tests.

Considering the whole test set, the Friedman hypothesis test rejects the null hypothesis of no
difference between the techniques (p-value < 0.05) in all the cases but two: DT and DV in the
adaptive case (p-values: 0.949, 0.9578, respectively). Table 7 reports the p-values for the pairwise
comparison with the Dunn test for the adaptive case. The comparison highlights that CART and
CART100 are significantly better (p-value < 0.05) than all SAMOTA variants for three outputs (DP,
DCL, DS). While the difference is confirmed to be not significant for DT and DV (we do not report
p-values for DV as they were all 1.00E + 00).

In the fixed case, the Friedman test rejects the null hypothesis of no difference between in all
the cases. Table 8 reports the p-values for the pairwise comparison. In this case, CART100 and
CART are significantly better than SAMOTA in the DP, DV and DS output (with the exception of
SAMOTA-I vs CART100 for DS, p-value = 0.1435). For DCL, the significant differences are CART vs

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:26 L. Giamattei et al.

Fig. 11. RQ4 - test suite fitness per requirement (failing tests).

Fig. 12. RQ4 - test suite fitness per requirement (not failing tests).

SAMOTA-I and CART vs SAMOTA-E (the others, although in favour of CART, are not significant).
For DT, the only significant difference is SAMOTA-I100 vs CART100, in favour of the former.

Overall, the results indicate that CART100 and CART generate tests that push almost all the
output variables closer to the thresholds, generating near-violating scenarios, especially with the
fixed fitness. These could better highlight critical behaviours (e.g., the car stops very close to a
pedestrian, which might be not desirable even though it is not a collision), and can make it easier
to manually derive violating scenarios by tuning the obtained near-critical ones. Moreover, since
CART follows an evolutionary approach, these high-fitness tests would more likely evolve into
violating tests with more testing time available for the algorithm.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:27

Table 7. RQ4 - P-Values for Pairwise Comparison

(a) Distance from the Center of the Lane (DCL)

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 1.00E+00 1.14E-02 <1.00E-04 1.00E-04

CART – 2.50E-03 <1.00E-04 <1.00E-04

SAMOTA-I100 – – 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00

(b) Distance from Pedestrians (DP)

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 4.00E-01 <1.00E-04 1.68E-02 3.20E-03

CART – <1.00E-04 <1.00E-04 <1.00E-04

SAMOTA-I100 – – 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00

(c) Distance from Static obstacles (DS)

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 1.00E+00 1.03E-02 5.00E-04 5.00E-04

CART – 1.00E-04 <1.00E-04 <1.00E-04

SAMOTA-I100 – – 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00

(d) Distance Traveled (DT)

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 1.00E+00 1.00E+00 6.20E-02 2.85E-01

CART – 1.00E+00 6.20E-02 2.85E-01

SAMOTA-I100 – – 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00

Adaptive fitness.

Table 8. RQ4 - P-Values for Pairwise Comparison

(a) Distance from the Center of the Lane (DCL)

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 9.20E-02 1.00E+00 1.00E+00 6.23E-01

CART – 7.40E-02 2.00E-03 <1.00E-04

SAMOTA-I100 – – 1.00E+00 7.34E-01

SAMOTA-I – – – 1.00E+00

(b) Distance from other Vehicles (DV)

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 1.00E+00 <1.00E-04 <1.00E-04 <1.00E-04

CART – <1.00E-04 1.00E-03 1.00E-04

SAMOTA-I100 – – 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00

(c) Distance from Pedestrians (DP)

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 1.00E+00 <1.00E-04 <1.00E-04 <1.00E-04

CART – <1.00E-04 <1.00E-04 <1.00E-04

SAMOTA-I100 – – 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00

(d) Distance from Static obstacles (DS)

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 3.77E-01 4.50E-02 1.43E-01 5.50E-03

CART – <1.00E-04 <1.00E-04 <1.00E-04

SAMOTA-I100 – – 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00

(e) Distance Traveled (DT)

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 5.85E-02 3.17E-02 1.00E+00 1.00E+00

CART – 1.00E+00 3.54E-01 1.41E-01

SAMOTA-I100 – – 2.16E-01 8.08E-02

SAMOTA-I – – – 1.00E+00

Fixed fitness.

6.4.2 Diversity evaluation. As for diversity of the test suites, we used the Test Set Diameter

(TSD), a well-known metric for black-box test suite diversity used in test prioritization [21, 33,
54], computed on the 20 repetitions for both test suites (generated in RQ2 and RQ3). The TSD is
computed via the Normalized Compression Distance (NCD1):

NCD1 (X) =
C (X) −minx ∈X {C (x)}
maxx ∈X {C (X\{x })} (6)

TSD (X) =max {NCD1 (X),maxY ⊂X {TSD (Y)}} (7)

where x ∈ X denotes a test, X the whole test suite, and C (X) is the length of compressing X with
the bzip2 compression program [21].
Figure 13 shows that CART with the adaptive fitness function produces test suites with more di-
verse inputs and outputs. For the inputs (Figure 13(a)), the difference is however significant only
for CART vs SAMOTA-I100 (p-value: 0.0157), while for the outputs (Figure 13(b)) the p-values are:
0.0013, <0.0001, and 0.0006 vs, respectively, SAMOTA-I, SAMOTA-I100, SAMOTA-E). The second

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:28 L. Giamattei et al.

Fig. 13. RQ4 - test suite diversity.

Table 9. RQ4 - P-Values for Pairwise Comparison

(a) TSD on input

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 5.54E-01 1.00E+00 1.00E+00 1.00E+00

CART – 1.57E-02 1.00E+00 1.00E+00

SAMOTA-I100 – – 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00

(b) TSD on output

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 9.01E-01 1.10E-03 3.38E-01 2.01E-01

CART – <1.00E-04 1.30E-03 6.00E-04

SAMOTA-I100 – – 8.11E-01 1.00E+00

SAMOTA-I – – – 1.00E+00

Adaptive fitness.

Table 10. RQ4 - P-Values for Pairwise Comparison

(a) TSD on input

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 4.34E-01 <1.00E-04 <1.00E-04 <1.00E-04

CART – <1.00E-04 2.60E-03 2.62E-02

SAMOTA-I100 – – 1.00E+00 9.21E-01

SAMOTA-I – – – 1.00E+00

(b) TSD on output

vs CART SAMOTA-I100 SAMOTA-I SAMOTA-E

CART100 9.70E-03 5.00E-04 <1.00E-04 4.00E-03

CART – 1.00E+00 1.00E+00 1.00E+00

SAMOTA-I100 – – 1.00E+00 1.00E+00

SAMOTA-I – – – 1.00E+00

Fixed fitness.

one is CART100. With the fixed fitness, the test suites, especially those by CART100, have (statisti-
cally) worse diversity than SAMOTA in both inputs and outputs (Figure 13(c), 13(d)), while CART
is statistically equivalent to SAMOTA for outputs and worse for inputs. Tables 9 and 10 report the
p-values for all the pairwise comparisons.

The observed smaller diversity in the fixed fitness function is a side effect: the focus of the fixed
fitness function on exposing critical tests is exploited by the CART’s causal models more than the
SAMOTA’s surrogate models to learn input-output relations, giving higher fitness but also more
similar tests. Improving diversity with the fixed function too is a future step we are interested in
investigating.

RQ4 answer

With the adaptive fitness function, CART and CART100 produce test suites that have higher fitness
values for 4 out of 5 requirements and have a better diversity than the compared algorithms. With
the fixed fitness function, they produce test suites with (even) higher fitness values for 4 out of 5
requirements, but with worse diversity.

6.5 Additional Remarks

Like SAMOTA-I, CART requires an initial database of executed scenarios to build the model, which
can be taken from historical driving data or from past tests data. When unavailable, the database
generation entails a start-up cost. This is, however, paid off not only by a more effective and effi-
cient testing, but also by yielding a causal model characterising the system under test – a useful

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

Causality-driven Testing of Autonomous Driving Systems 74:29

Table 11. Coverage of Safety

Requirements of CART with

Different Initial Database Size

Technique Mean Std.Dev

CART150 0.48 0.06

CART100 0.48 0.14

CART 0.37 0.10

asset to support other quality-related activities besides testing. Also, with a causal model, it is rel-
atively easy to embed domain knowledge by engineers, which would further boost performance.
Specifically, adding knowledge requires specifying known (or forbidden) cause-effect edges in the
graph. In the evaluation, we have left this option out for the sake of full automation, but also to
avoid human intervention that could have biased the result (in favour of CART). Indeed, in a real
setting known cause-effect relations would be added to the model so as to fine-tune CART for a
certain context.

Related to this, the results suggest that having a larger database could be beneficial. To assess
this hypothesis, we executed an additional experiment with CART, setting an initial dataset of 150
random tests, 20 repetitions. Results are reported in Table 11. They show that both CART100 and
CART150 improve over CART with 39 initial tests. On the other hand, we notice no significant
difference between CART150 and CART100, except a better standard deviation for the former –
hence more stable results. We have inspected the causal graph generated by the causal structure
discovery algorithms in the two cases, and they turned out to be the same. We conclude that 100
test cases were enough in this scenario to learn a close approximation of the “true” causal model,
and further tests add little.

Finally, the CI queries to derive a test impact the test generation time. The impact is however
negligible, as the average generation time for a test case over all the CART (and CART100) execu-
tions turned out to be 7.25 seconds per test, which is 1.3% of the average test execution time (that
is ≈ 9 minutes). As shown by the efficiency plots (Figure 6 and 10), this has not undermined the
gain of our solution. If needed, this time can be reduced by implementing policies for sampling
values for the intervention (i.e., for the CI queries). The literature proposes some strategies in this
regard. For instance, an option is to select the intervention maximizing the information gained
(i.e., minimize the uncertainty) about the true graph – hence intervene to better learn the “true”
graph [82]. A different path can be to set an intervention trying to maximize/minimize the desired
test objective(s) (e.g., increase coverage or fitness), or maximize diversity. These criteria can be im-
plemented in several ways, e.g., via probabilistic sampling (e.g., (non-)uniform random sampling),
search- or learning-based techniques, or adaptive strategies (using previous selections to drive the
next ones).

7 THREATS TO VALIDITY

The time budget for each technique is set at 120 minutes (according to [30]). We decided this both
to limit the experimentation (we spent almost 700 computing hours) and to fairly compare with
previous experiments. Giving more or less time to each technique could lead to different results.
Even if we consider many input variables (16 input variables) that constitute a large input space,
it can be worth considering more variables in a real-world system. This could affect the perfor-
mance of causal discovery, for which scalability is an open challenge. However, CSD algorithms
have shown tractable running time on datasets with up to 500 variables [67], which is indeed a
remarkable upper bound for setting up effective testing sessions.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

74:30 L. Giamattei et al.

The use of a simulator can be a further threat to validity. For instance, it may rarely generate
scenarios physically impossible. However, our manual inspection of the executed scenarios did not
reveal any such case. Also, the use of simulators is widespread in ADS, as testing in the real world
is costly, and this has pushed toward the development of high-fidelity simulators like CARLA. In-
deed, challenges are still open about simulators’ representativeness [83], but they are increasingly
trustable and are often an obliged path [31], [32].

The initial database of tests provided to CART and SAMOTA-I can affect performance; we used
two databases, one provided by SAMOTA’s authors and one of the randomly generated tests, to
mitigate the impact. Replicating with different databases would reinforce the results. Also, the
results are obtained under default setting of Tetrad and DoWhy; a fine-tuning of CSD algorithms
and CI estimation methods is left to future work.

Despite our efforts to ensure defect-free code – the CART prototype and the infrastructure code
interfacing to CARLA, partially borrowed from [30] - their presence cannot be excluded. Last
but not least, experiments are on one specific ADS and simulator. Although Pylot and CARLA
are representative widely-used choices [19, 56], replicating the experiments with other subjects is
needed to improve external validity. Also, CART is evaluated on the same six safety requirements
used by SAMOTA; however, CART is not tied to these specific requirements, it can be used with
any other safety requirement of interest, provided that their violation can be checked (i.e., there is
an oracle).

8 CONCLUSION

We presented CART, a new ADS testing strategy based on causal reasoning for intelligent tests
space exploration and efficient tests generation. Results show that capturing and then exploiting
the causal relations between test input and output can allow spotting more failure-exposing tests.
Several alternatives can be explored to improve the obtained results. For instance, one option is
to act on the input variable selection process to decide the intervention on the causal model. Cur-
rently, we select the input variable with the greatest out-degree toward the output variables; we
plan to experimentally compare other criteria, such as an adaptive selection (e.g., counting the
edges toward the “uncovered” output variables only), a selection accounting for the strength of
the relation (measured as the increment of variance on the effect variable Y obtained by removing
the arrow X->Y or as effect variation given the cause variation), or accounting for the confidence
or any uncertainty reduction criteria such as entropy.

More broadly, the results underscore the effectiveness of causal reasoning as an alternative for
ADS software testing, paving the ground for a broader exploration and exploitation of its capac-
ity to emulate human reasoning in test engineering tasks. Therefore, in addition to consolidating
CART for the autonomous driving domain, we plan to extend its application to other areas of au-
tonomous systems, such as unmanned aerial systems or autonomous underwater vehicles. Also,
we plan to explore causal reasoning for other quality-related tasks. In fact, the causal model given
as output is a valuable asset that can support the inspection of test results and the consequent de-
bugging/root cause analysis of observed failures. For instance, the use of counterfactual inference
has been proven to be useful for root cause analysis in Microservice architectures [97]. Moreover,
the interventions on the model can be useful in the design phase, e.g., by what happens if queries
aimed to evaluate design alternatives, to fine-tune parameters, or for capacity planning.

DATA AVAILABILITY

For the sake of Open Science, we provide all artefacts (code of CART, the baselines, the ex-
perimental code for replication, results, and the set of 4,457 test scenarios). Available at: https:
//doi.org/10.6084/m9.figshare.21937121

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://doi.org/10.6084/m9.figshare.21937121

Causality-driven Testing of Autonomous Driving Systems 74:31

REFERENCES

[1] 2022. Self-Driving Cars Market Size, Share, Growth, Report 2022-2030. https://www.precedenceresearch.com/self-

driving-cars-market. n. 1779, Precedence Research, Accessed: 2022-08-31.

[2] Z. Bai, G. Shu, and A. Podgurski. 2015. NUMFL: Localizing faults in numerical software using a value-based causal

model. In IEEE 8th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 1–10.

https://doi.org/10.1109/ICST.2015.7102597

[3] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. 2016. Testing advanced driver assistance systems using multi-

objective search and neural networks. In 31st IEEE/ACM International Conference on Automated Software Engineering

(ASE). IEEE, 63–74.

[4] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. 2018. Testing vision-based control systems using learnable

evolutionary algorithms. In 40th International Conference on Software Engineering (ICSE). ACM, 1016–1026.

[5] R. Ben Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter. 2018. Testing autonomous cars for feature

interaction failures using many-objective search. In 33rd ACM/IEEE International Conference on Automated Software

Engineering (ASE). ACM, 143–154.

[6] P. Blöbaum, P. Götz, K. Budhathoki, A. A. Mastakouri, and D. Janzing. 2022. DoWhy-GCM: An extension of DoWhy

for causal inference in graphical causal models. https://doi.org/10.48550/ARXIV.2206.06821

[7] M. Caliendo and S. Kopeinig. 2008. SOME practical guidance for the implementation of propensity score

matching. Journal of Economic Surveys 22, 1 (2008), 31–72. https://doi.org/10.1111/j.1467-6419.2007.00527.x

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-6419.2007.00527.x

[8] A. Calò, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa. 2020. Generating avoidable collision scenarios for testing au-

tonomous driving systems. In IEEE 13th International Conference on Software Testing, Validation and Verification

(ICST). IEEE, 375–386.

[9] H. Chen, T. Harinen, J. Lee, M. Yung, and Z. Zhao. 2020. CausalML: Python package for causal machine learning.

CoRR abs/2002.11631 (2020). arXiv:2002.11631

[10] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan. 2020. Practical accuracy estimation for efficient deep neural

network testing. ACM Trans. Softw. Eng. Methodol. 29, 4, Article 30 (Oct. 2020), 35 pages.https://doi.org/10.1145/

3394112

[11] D. M. Chickering. 2002. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2 (Mar.

2002), 445–498.https://doi.org/10.1162/153244302760200696

[12] A. G. Clark, M. Foster, N. Walkinshaw, and R. M. Hierons. 2022. Metamorphic Testing with Causal Graphs. © 2023

IEEE.

[13] D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson. 2012. Learning high-dimensional directed acyclic

graphs with latent and selection variables. The Annals of Statistics 40, 1 (2012), 294–321. https://doi.org/10.1214/11-

AOS940

[14] K. Deb. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., USA.

[15] K. Deb. 2014. Multi-Objective Optimization. Springer US, Boston, MA, 403–449.https://doi.org/10.1007/978-1-4614-

6940-7_15

[16] A. Dieng, Y. Liu, S. Roy, C. Rudin, and A. Volfovsky. 2019. Interpretable almost-exact matching for causal inference.

In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics (Proceedings of

Machine Learning Research, Vol. 89), K. Chaudhuri and M. Sugiyama (Eds.). PMLR, 2445–2453.

[17] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. 2017. CARLA: An open urban driving simulator. In 1st

Annual Conference on Robot Learning, Vol. 78. Proceedings of Machine Learning Research (PMLR), 1–16.

[18] O. J. Dunn. 1964. Multiple comparisons using rank sums. Technometrics 6, 3 (1964), 241–252. https://doi.org/10.1080/

00401706.1964.10490181

[19] D. Dworak, F. Ciepiela, J. Derbisz, I. Izzat, M. Komorkiewicz, and M. Wójcik. 2019. Performance of LiDAR object

detection deep learning architectures based on artificially generated point cloud data from CARLA simulator. In

24th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, 600–605. https:

//doi.org/10.1109/MMAR.2019.8864642

[20] F. Eberhardt. 2017. Introduction to the foundations of causal discovery. International Journal of Data Science and

Analytics 3, 2 (2017), 81–91.https://doi.org/10.1007/s41060-016-0038-6

[21] R. Feldt, S. Poulding, D. Clark, and S. Yoo. 2016. Test set diameter: Quantifying the diversity of sets of test cases.

In 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE, 223–233. https:

//doi.org/10.1109/ICST.2016.33

[22] C. Fong, M. Ratkovic, K. Imai, C. Hazlett, X. Yang, S. Peng, and I. Lee. 2022. CBPS: Covariate balancing propensity

score. R Package Version 0.23. R Foundation for Statistical Computing. (2022).

[23] M. Friedman. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J.

Amer. Statist. Assoc. 32, 200 (1937), 675–701. https://doi.org/10.1080/01621459.1937.10503522

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://www.precedenceresearch.com/self-driving-cars-market
https://doi.org/10.1109/ICST.2015.7102597
https://doi.org/10.48550/ARXIV.2206.06821
https://doi.org/10.1111/j.1467-6419.2007.00527.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-6419.2007.00527.x
https://doi.org/10.1145/3394112
https://doi.org/10.1162/153244302760200696
https://doi.org/10.1214/11-AOS940
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1080/00401706.1964.10490181
https://doi.org/10.1109/MMAR.2019.8864642
https://doi.org/10.1007/s41060-016-0038-6
https://doi.org/10.1109/ICST.2016.33
https://doi.org/10.1080/01621459.1937.10503522

74:32 L. Giamattei et al.

[24] A. Gambi, M. Mueller, and G. Fraser. 2019. Automatically testing self-driving cars with search-based procedural

content generation. In 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM,

318–328.https://doi.org/10.1145/3293882.3330566

[25] C. Glymour, K. Zhang, and P. Spirtes. 2019. Review of causal discovery methods based on graphical models. Frontiers

in Genetics 10 (06 2019). https://doi.org/10.3389/fgene.2019.00524

[26] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and I. Stoica. 2021. Pylot: A modular platform for

exploring latency-accuracy tradeoffs in autonomous vehicles. In 2021 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 8806–8813.

[27] R. Gore and P. F. Reynolds. 2012. Reducing confounding bias in predicate-level statistical debugging metrics. In 34th

International Conference on Software Engineering (ICSE). IEEE, 463–473. https://doi.org/10.1109/ICSE.2012.6227169

[28] A. Guerriero, R. Pietrantuono, and S. Russo. 2021. Operation is the hardest teacher: Estimating DNN accuracy looking

for mispredictions. In 43rd International Conference on Software Engineering (ICSE). IEEE, 348–358.

[29] R. Guo, L. Cheng, J. Li, P. R. Hahn, and H. Liu. 2020. A survey of learning causality with data: Problems and methods.

ACM Comput. Surv. 53, 4, Article 75 (2020), 37 pages.https://doi.org/10.1145/3397269

[30] F. U. Haq, D. Shin, and L. Briand. 2022. Efficient online testing for DNN-enabled systems using surrogate-assisted

and many-objective optimization. In 44th International Conference on Software Engineering (ICSE). ACM, 811–822.

[31] F. U. Haq, D. Shin, S. Nejati, and L. Briand. 2021. Can offline testing of deep neural networks replace their online

testing? A case study of automated driving systems. Empirical Softw. Eng. 26, 5 (Sep. 2021), 30 pages.https://doi.org/

10.1007/s10664-021-09982-4

[32] F. U. Haq, D. Shin, S. Nejati, and L. C. Briand. 2020. Comparing offline and online testing of deep neural networks:

An autonomous car case study. In IEEE 13th International Conference on Software Testing, Validation and Verification

(ICST). IEEE, 85–95. https://doi.org/10.1109/ICST46399.2020.00019

[33] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon. 2016. Comparing white-box and black-box test pri-

oritization. In 38th International Conference on Software Engineering (ICSE) (Austin, Texas). ACM, 523–534.https:

//doi.org/10.1145/2884781.2884791

[34] D. Ho, K. Imai, G. King, and E. A. Stuart. 2011. MatchIt: Nonparametric preprocessing for parametric causal inference.

Journal of Statistical Software 42, 8 (2011), 1–28. https://doi.org/10.18637/jss.v042.i08

[35] Yimin Huang and Marco Valtorta. 2012. Pearl’s Calculus of Intervention is Complete. https://doi.org/10.48550/ARXIV.

1206.6831

[36] G. W. Imbens. 2020. Potential outcome and directed acyclic graph approaches to causality: Relevance for empirical

practice in economics. Journal of Economic Literature 58, 4 (2020), 1129–79. https://doi.org/10.1257/jel.20191597

[37] M. S. Iqbal, R. Krishna, M. A. Javidian, B. Ray, and P. Jamshidi. 2022. Unicorn: Reasoning about configurable sys-

tem performance through the lens of causality. In 17th European Conference on Computer Systems (Rennes, France)

(EuroSys ’22). ACM, New York, NY, USA, 199–217.https://doi.org/10.1145/3492321.3519575

[38] Y. Jin. 2011. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evo-

lutionary Computation 1, 2 (2011), 61–70.https://doi.org/10.1016/j.swevo.2011.05.001

[39] M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and P. Bühlmann. 2012. Causal inference using graphical models

with the R package pcalg. Journal of Statistical Software 47, 11 (2012), 1–26. https://doi.org/10.18637/jss.v047.i11

[40] J. Kim, R. Feldt, and S. Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In 41st International

Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE). IEEE, 1039–1049. https://doi.org/10.1109/

ICSE.2019.00108

[41] M. Klischat and M. Althoff. 2019. Generating critical test scenarios for automated vehicles with evolutionary algo-

rithms. In IEEE Intelligent Vehicles Symposium (IV). IEEE, 2352–2358.

[42] Z. Kong and C. Liu. 2019. Generating adversarial fragments with adversarial networks for physical-world implemen-

tation. CoRR abs/1907.04449 (2019). arXiv:1907.04449http://arxiv.org/abs/1907.04449

[43] Y. Küçük, T. A. D. Henderson, and A. Podgurski. 2021. Improving fault localization by integrating value and predicate

based causal inference techniques. In 43rd International Conference on Software Engineering (ICSE) (Madrid, Spain)

(ICSE ’21). IEEE, 649–660.https://doi.org/10.1109/ICSE43902.2021.00066

[44] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk, and R. Iyer. 2020. AV-FUZZER: Finding safety

violations in autonomous driving systems. In IEEE 31st International Symposium on Software Reliability Engineering

(ISSRE). IEEE, 25–36.

[45] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü. 2019. Boosting operational DNN testing efficiency through conditioning.

In Proc. 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE). ACM, 499–509.

[46] Q. Liu, X. Wu, Q. Lin, J. Ji, and K. Wong. 2021. A novel surrogate-assisted evolutionary algorithm with an uncer-

tainty grouping based infill criterion. Swarm and Evolutionary Computation 60 (2021), 100787.https://doi.org/10.1016/

j.swevo.2020.100787

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://doi.org/10.1145/3293882.3330566
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.1109/ICSE.2012.6227169
https://doi.org/10.1145/3397269
https://doi.org/10.1007/s10664-021-09982-4
https://doi.org/10.1109/ICST46399.2020.00019
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.18637/jss.v042.i08
https://doi.org/10.48550/ARXIV.1206.6831
https://doi.org/10.1257/jel.20191597
https://doi.org/10.1145/3492321.3519575
https://doi.org/10.1016/j.swevo.2011.05.001
https://doi.org/10.18637/jss.v047.i11
https://doi.org/10.1109/ICSE.2019.00108
http://arxiv.org/abs/1907.04449
https://doi.org/10.1109/ICSE43902.2021.00066
https://doi.org/10.1016/j.swevo.2020.100787

Causality-driven Testing of Autonomous Driving Systems 74:33

[47] Y. Luo, X. Zhang, P. Arcaini, Z. Jin, H. Zhao, F. Ishikawa, R. Wu, and T. Xie. 2021. Targeting requirements viola-

tions of autonomous driving systems by dynamic evolutionary search. In 36th IEEE/ACM International Conference

on Automated Software Engineering (ASE). IEEE/ACM, 279–291. https://doi.org/10.1109/ASE51524.2021.9678883

[48] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu, J. Zhao, and Y. Wang. 2018. DeepGauge:

Multi-granularity testing criteria for deep learning systems. In 33rd ACM/IEEE International Conference on Automated

Software Engineering (ASE) (Montpellier, France). ACM, 120–131.https://doi.org/10.1145/3238147.3238202

[49] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu, J. Zhao, and Y. Wang. 2018. DeepMutation: Mu-

tation testing of deep learning systems. In 29th International Symposium on Software Reliability Engineering (ISSRE).

IEEE, 100–111.

[50] L. Ma, F. Zhang, M. Xue, B. Li, Y. Liu, J. Zhao, and Y. Wang. 2018. Combinatorial testing for deep learning systems.

CoRR abs/1806.07723 (2018). arXiv:1806.07723http://arxiv.org/abs/1806.07723

[51] R. Majumdar, A. S. Mathur, M. Pirron, L. Stegner, and D. Zufferey. 2019. Paracosm: A language and tool for testing

autonomous driving systems. CoRR abs/1902.01084 (2019). arXiv:1902.01084http://arxiv.org/abs/1902.01084

[52] D. Malinsky and D. Danks. 2018. Causal discovery algorithms: A practical guide. Philosophy Compass 13, 1 (2018),

e12470. 10.1111/phc3.12470.

[53] H. Mao and L. Li. 2022. PSW: Propensity score weighting methods for dichotomous treatments. R package version

1.1-3. R Foundation for Statistical Computing (2022).

[54] B. Miranda, R. Verdecchia, E. Cruciani, and A. Bertolino. 2018. FAST approaches to scalable similarity-based test

case prioritization. In 40th International Conference on Software Engineering (ICSE). ACM, 222–232. https://doi.org/

10.1145/3180155.3180210

[55] H. Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods. Society for Indus-

trial and Applied Mathematics. https://doi.org/10.1137/1.9781611970081 arXiv:https://epubs.siam.org/doi/pdf/

10.1137/1.9781611970081

[56] D. R. Niranjan, B. C. VinayKarthik, and Mohana. 2021. Deep learning based object detection model for autonomous

driving research using CARLA simulator. In 2nd International Conference on Smart Electronics and Communication

(ICOSEC). IEEE, 1251–1258. https://doi.org/10.1109/ICOSEC51865.2021.9591747

[57] A. R. Nogueira, A. Pugnana, S. Ruggieri, D. Pedreschi, and J. Gama. 2022. Methods and tools for causal discovery and

causal inference. WIREs Data Mining and Knowledge Discovery 12, 2 (2022), e1449. https://doi.org/10.1002/widm.1449

arXiv:https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1449

[58] J. M. Ogarrio, P. Spirtes, and J. Ramsey. 2016. A hybrid causal search algorithm for latent variable models. In Pro-

ceedings of the Eighth International Conference on Probabilistic Graphical Models (Proceedings of Machine Learning

Research, Vol. 52), Alessandro Antonucci, Giorgio Corani, and Cassio Polpo Campos (Eds.). PMLR, Lugano, Switzer-

land, 368–379.

[59] S. Oh, S. Lee, and S. Yoo. 2021. Effectively sampling higher order mutants using causal effect. In IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 19–24. https://doi.org/10.1109/

ICSTW52544.2021.00017

[60] V. Orlandi, S. Roy, C. Rudin, and A. Volfovsky. 2022. FLAME: Interpretable matching for causal inference. R package

version 2.1.1. R Foundation for Statistical Computing. (2022).

[61] A. Panichella, F. M. Kifetew, and P. Tonella. 2015. Reformulating branch coverage as a many-objective optimization

problem. In IEEE 8th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 1–10.

[62] D. Parthasarathy and A. Johansson. 2021. SilGAN: Generating driving maneuvers for scenario-based software-in-

the-loop testing. In IEEE International Conference on Artificial Intelligence Testing (AITest). IEEE, 65–72. https://doi.

org/10.1109/AITEST52744.2021.00022

[63] K. Patel and R. M. Hierons. 2018. A mapping study on testing non-testable systems. Software Quality Journal 26,

4 (Dec. 2018), 1373–1413.https://doi.org/10.1007/s11219-017-9392-4

[64] J. Pearl. 2009. Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press, USA.

[65] J. Pearl and D. Mackenzie. 2018. The Book of Why: The New Science of Cause and Effect (1st ed.). Basic Books, Inc.,

USA.

[66] K. Pei, Y. Cao, J. Yang, and S. Jana. 2019. DeepXplore: Automated whitebox testing of deep learning systems. Commun.

ACM 62, 11 (2019), 137–145.https://doi.org/10.1145/3361566

[67] V. K. Raghu, J. D. Ramsey, A. Morris, D. V. Manatakis, P. Sprites, P. K. Chrysanthis, C. Glymour, and P. V. Benos.

2018. Comparison of strategies for scalable causal discovery of latent variable models from mixed data. International

Journal of Data Science and Analytics 6, 1 (01 Aug. 2018), 33–45.https://doi.org/10.1007/s41060-018-0104-3

[68] J. Ramsey, M. Glymour, R. Sanchez-Romero, and C. Glymour. 2017. A million variables and more: The Fast

Greedy Equivalence Search algorithm for learning high-dimensional graphical causal models, with an application to

functional magnetic resonance images. International Journal of Data Science and Analytics 3 (03 2017). https://doi.

org/10.1007/s41060-016-0032-z

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://doi.org/10.1109/ASE51524.2021.9678883
https://doi.org/10.1145/3238147.3238202
http://arxiv.org/abs/1806.07723
http://arxiv.org/abs/1902.01084
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1137/1.9781611970081
https://epubs.siam.org/doi/pdf/10.1137/1.9781611970081
https://doi.org/10.1109/ICOSEC51865.2021.9591747
https://doi.org/10.1002/widm.1449
http://arxiv.org/abs/https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1449
https://doi.org/10.1109/ICSTW52544.2021.00017
https://doi.org/10.1109/AITEST52744.2021.00022
https://doi.org/10.1007/s11219-017-9392-4
https://doi.org/10.1145/3361566
https://doi.org/10.1007/s41060-018-0104-3
https://doi.org/10.1007/s41060-016-0032-z

74:34 L. Giamattei et al.

[69] J. Ramsey, K. Zhan, M. Glymour, R. Sanchez Romero, B. Huang, I. Ebert-Uphoff, S. M. Samarasinghe, E. A. Barnes,

and C. Glymour. 2018. TETRAD - A toolbox for causal discovery. In 8th International Workshop on Climate

Informatics.

[70] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and P. Tonella. 2020. Testing machine learning based

systems: A systematic mapping. Empirical Software Engineering 25, 6 (2020), 5193–5254.

[71] V. Riccio and P. Tonella. 2020. Model-based exploration of the frontier of behaviours for deep learning system testing.

In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). ACM, 876–888.https://doi.org/10.1145/

3368089.3409730

[72] P. R. Rosenbaum and D. B. Rubin. 1984. Reducing bias in observational studies using subclassification on the propen-

sity score. J. Amer. Statist. Assoc. 79, 387 (1984), 516–524.

[73] M. Scutari. 2010. Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software 35, 3 (2010),

1–22. https://doi.org/10.18637/jss.v035.i03

[74] J. S. Sekhon. 2011. Multivariate and propensity score matching software with automated balance optimization: The

matching package for R. Journal of Statistical Software 42, 7 (2011), 1–52. https://doi.org/10.18637/jss.v042.i07

[75] A. Sharma and E. Kiciman. 2019. DoWhy: A Python package for causal inference. https://github.com/microsoft/

dowhy.

[76] N. Sharma, V. Jain, and A. Mishra. 2018. An analysis of convolutional neural networks for image classification. Pro-

cedia Computer Science 132 (2018), 377–384.

https://doi.org/10.1016/j.procs.2018.05.198

[77] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. 2006. A linear non-Gaussian acyclic model for causal

discovery. Journal of Machine Learning Research 7, 72 (2006), 2003–2030.

[78] J. Siebert. 2023. Applications of statistical causal inference in software engineering. Information and Software Tech-

nology 159 (2023), 107198.

https://doi.org/10.1016/j.infsof.2023.107198

[79] P. Spirtes, C. Glymour, and R. Scheines. 2001. Causation, Prediction, and Search (2nd ed.). MIT Press, Cambridge, MA,

USA.

[80] P. Spirtes and K. Zhang. 2016. Causal discovery and inference: Concepts and recent methodological advances. Applied

Informatics 3, 1 (18 Feb. 2016), 3.

https://doi.org/10.1186/s40535-016-0018-x

[81] P. C. Sruthi, S. Rao, and B. Ribeiro. 2020. Pitfalls of data-driven networking: A case study of latent causal confounders

in video streaming. In Workshop on Network Meets AI & ML (Virtual Event, USA) (NetAI ’20). ACM, New York, NY,

USA, 42–47.https://doi.org/10.1145/3405671.3405815

[82] M. Steyvers, J. B. Tenenbaum, E. Wagenmakers, and B. Blum. 2003. Inferring causal networks from observations and

interventions. Cognitive Science 27, 3 (2003), 453–489. https://doi.org/10.1207/s15516709cog2703_6

[83] A. Stocco, B. Pulfer, and P. Tonella. 2022. Mind the Gap! A study on the transferability of virtual vs physical-

world testing of autonomous driving systems. IEEE Transactions on Software Engineering (Early Access) (2022), 1–13.

https://doi.org/10.1109/TSE.2022.3202311

[84] A. Stocco and P. Tonella. 2022. Confidence-driven weighted retraining for predicting safety-critical failures in au-

tonomous driving systems. Journal of Software: Evolution and Process 34, 10 (2022), e2386. DOI:https://doi.org/https:

//doi.org/10.1002/smr.2386

[85] A. Stocco, M. Weiss, M. Calzana, and P. Tonella. 2020. Misbehaviour prediction for autonomous driving systems. In

42nd International Conference on Software Engineering (ICSE) (Seoul, South Korea). ACM, 359–371.https://doi.org/10.

1145/3377811.3380353

[86] S. Sun and A. Podgurski. 2016. Properties of effective metrics for coverage-based statistical fault localization. In

IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE, 124–134. https://doi.org/

10.1109/ICST.2016.31

[87] H. Theil. 1961. Economic Forecasts and Policy. North-Holland Publishing Company, Amsterdam.

[88] D. L. Thistlethwaite and D. T. Campbell. 1960. Regression-discontinuity analysis: An alternative to the ex post facto

experiment. Journal of Educational Psychology 51 (1960), 309–317.

[89] Y. Tian, K. Pei, S. Jana, and B. Ray. 2018. DeepTest: Automated testing of deep-neural-network-driven autonomous

cars. In 40th International Conference on Software Engineering (ICSE) (Gothenburg, Sweden). ACM, 303–314.

https://doi.org/10.1145/3180155.3180220

[90] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva, M. Preuss, and K. O. Stanley. 2013. Proce-

dural content generation: Goals, challenges and actionable steps. In Artificial and Computational Intelligence in

Games. Dagstuhl Follow-Ups, Vol. 6. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 61–75.

https://doi.org/10.4230/DFU.Vol6.12191.61

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

https://doi.org/10.1145/3368089.3409730
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v042.i07
https://github.com/microsoft/dowhy
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.1016/j.infsof.2023.107198
https://doi.org/10.1186/s40535-016-0018-x
https://doi.org/10.1145/3405671.3405815
https://doi.org/10.1207/s15516709cog2703_6
https://doi.org/10.1109/TSE.2022.3202311
https://doi.org/https://doi.org/10.1002/smr.2386
https://doi.org/10.1145/3377811.3380353
https://doi.org/10.1109/ICST.2016.31
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.4230/DFU.Vol6.12191.61

Causality-driven Testing of Autonomous Driving Systems 74:35

[91] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski. 2018. Simulation-based adversarial test generation for autonomous

vehicles with machine learning components. CoRR abs/1804.06760 (2018).

arXiv:1804.06760http://arxiv.org/abs/1804.06760

[92] W. M. van der Wal and R. B. Geskus. 2011. ipw: An R package for inverse probability weighting. Journal of Statistical

Software 43, 13 (2011), 1–23. https://doi.org/10.18637/jss.v043.i13

[93] H. Wang, Y. Jin, and J. Doherty. 2017. Committee-based active learning for surrogate-assisted particle swarm opti-

mization of expensive problems. IEEE Transactions on Cybernetics 47, 9 (2017), 2664–2677. https://doi.org/10.1109/

TCYB.2017.2710978

[94] W. Webber, A. Moffat, and J. Zobel. 2010. A similarity measure for indefinite rankings. ACM Trans. Inf. Syst. 28, 4,

Article 20 (Nov. 2010), 38 pages.

https://doi.org/10.1145/1852102.1852106

[95] M. Wicker, X. Huang, and M. Kwiatkowska. 2018. Feature-guided black-box safety testing of deep neural networks. In

Tools and Algorithms for the Construction and Analysis of Systems, Dirk Beyer and Marieke Huisman (Eds.). Springer

International Publishing, Cham, 408–426.

[96] C. K. Wongchokprasitti, H. Hochheiser, J. Espino, E. Maguire, B. Andrews, M. Davis, and C. Inskip. 2019. bd2kccd/py-

causal v1.2.1.

https://doi.org/10.5281/zenodo.3592985

[97] L. Wu, J. Tordsson, E. Elmroth, and O. Kao. 2021. Causal inference techniques for microservice performance di-

agnosis: Evaluation and guiding recommendations. In IEEE International Conference on Autonomic Computing and

Self-Organizing Systems (ACSOS). IEEE, 21–30. https://doi.org/10.1109/ACSOS52086.2021.00029

[98] W. Wu, H. Xu, S. Zhong, M. R. Lyu, and I. King. 2019. Deep validation: Toward detecting real-world corner cases

for deep neural networks. In 49th Annual IEEE/IFIP Int. Conference on Dependable Systems and Networks (DSN). IEEE,

125–137.

[99] Z. Yang, Y. Chai, D. Anguelov, Y. Zhou, P. Sun, D. Erhan, S. Rafferty, and H. Kretzschmar. 2020. SurfelGAN: Synthesiz-

ing realistic sensor data for autonomous driving. In IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, 11115–11124. https://doi.org/10.1109/CVPR42600.2020.01113

[100] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. 2018. DeepRoad: GAN-based metamorphic testing and input

validation framework for autonomous driving systems. In 33rd ACM/IEEE International Conference on Automated

Software Engineering (ASE). ACM, 132–142. https://doi.org/10.1145/3238147.3238187

[101] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing. 2018. DAGs with no tears: Continuous optimization for

structure learning. In Advances in Neural Information Processing Systems, Vol. 31. Curran Associates, Inc.

[102] H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang, and C. Liu. 2020. DeepBillboard: Systematic physical-

world testing of autonomous driving systems. In 42nd International Conference on Software Engineering (ICSE). ACM,

347–358.

[103] Z. Zhou, Y. Soon Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. 2007. Combining global and local surrogate models to

accelerate evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews) 37, 1 (2007), 66–76. https://doi.org/10.1109/TSMCC.2005.855506

Received 25 January 2023; revised 28 May 2023; accepted 1 November 2023

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 3, Article 74. Publication date: March 2024.

http://arxiv.org/abs/1804.06760
https://doi.org/10.18637/jss.v043.i13
https://doi.org/10.1109/TCYB.2017.2710978
https://doi.org/10.1145/1852102.1852106
https://doi.org/10.5281/zenodo.3592985
https://doi.org/10.1109/ACSOS52086.2021.00029
https://doi.org/10.1109/CVPR42600.2020.01113
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1109/TSMCC.2005.855506

