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Abstract – We study a Hamiltonian system describing a three–spin-1/2 cluster-like interaction
competing with an Ising-like exchange. We show that the ground state in the cluster phase
possesses symmetry protected topological order. A continuous quantum phase transition occurs as
result of the competition between the cluster and Ising terms. At the critical point the Hamiltonian
is self-dual. The geometric entanglement is also studied and used to investigate the quantum
phase transition. Our findings in one dimension corroborate the analysis of the two-dimensional
generalization of the system, indicating, at a mean-field level, the presence of a direct transition
between an antiferromagnetic and a valence bond solid ground state.

Copyright c© EPLA, 2011

Introduction. – The Landau theory of phase
transitions is at the heart of our understanding of critical
phenomena [1,2]. By introducing the concept of order
parameter Landau’s theory relates phase transitions
to symmetry breaking. The order parameter (e.g.,
magnetization in ferromagnets) is different from zero
in the less symmetric (ferromagnetic) phase, while it
vanishes in the paramagnetic phase where symmetry is
restored. However, not all quantum phases of matter
can be classified according to their symmetries [3] and
there are quantum phase transitions that elude Landau’s
paradigm [4,5]. These phases, dubbed topological phases,
cannot be characterized by a local order parameter.
Topological phases play a prominent role in very diverse
physical contexts, ranging from the quantum Hall effect
and high-TC superconductivity in solid-state physics to
confinement problems in QCD and string theory [3]. The

(a)E-mail: ahamma@perimeterinstitute.ca

continuous (direct) transition between a Néel antiferro-
magnet and a valence bond solid belongs to such class
of exotic phase transitions [4]. The transition occurs
because a new conserved quantity (a gauge symmetry)
appears exclusively at the critical point, characterized by
the emergence of certain topological defects in the zero-
temperature antiferromagnet which become energetically
favorable and proliferate (i.e. they are deconfined). At
the critical point within the Landau-Ginzburg scheme,
such phase transitions must be of the first order and they
cannot be continuous.
Understanding exotic quantum phases and quantum

phase transitions lying outside Landau’s paradigm are
among the most intriguing and controversial topics in
the modern theory of critical phenomena [6–8]. Exact
results, desirable for a thorough comprehension of such
phenomena, are extremely rare in the field. In this letter
we discuss an exotic phase transition between symmetry
protected topological order and an antiferromagnetic state
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occurring in an exactly solvable one-dimensional model.
Based on the one-dimensional theory we produce evidence
that in two dimensions our model displays a continuous
quantum phase transition between an antiferromagnet and
a valence bond solid. Our model can be experimentally
realized in optical lattices and ion traps (see the conclud-
ing remarks) and is relevant in quantum information (in
certain limits the ground state is a cluster state, central
in one-way quantum computation [9]).

The model. – The Hamiltonian system that we shall
study emerges as a result of the cross fertilization between
quantum statistical mechanics and quantum computation.
It reads

H(λ) =−
N∑
i=1

σxi−1σ
z
i σ
x
i+1+λ

N∑
i=1

σyi σ
y
i+1, (1)

where σαi is the Pauli matrix acting on the i-th site of
a 1D lattice. Similar models were considered in [10,11],
though all the x, y, z spin components are involved in
(1). This describes the interplay between a cluster and
an antiferromagnetic Ising Hamiltonian. The model can
be defined also in higher dimensions and the nature of
its phase transition is of great interest. First we focus on
its properties in one dimension where the model can be
solved exactly. For λ= 0 and open boundary conditions,
the ground state (gs) manifold is given by

C0 = span
{
1

2N
(σx1 )

k(σxL)
l
∏
i

Ĉi|0〉 k, l= 0, 1
}
, (2)

where Ĉi =
(
1−σxi −σxN (i)−σxi σxN (i)

)
, N (i) stands for

the oriented nearest neighbours of the lattice site i and
σz|0〉= |0〉. Such definition is valid for a lattice of arbi-
trary dimension. The gs manifold is thus fourfold degen-
erate. With periodic boundary conditions the gs is unique
and is given by k= l= 0. Cluster states are a special type
of multi-qubit graph states [9] with a computational power
that is believed to be an important resource for measure-
ment based quantum computation [12]. In this context it
is relevant to study how the computational properties of
the cluster states are quenched under additional pertur-
bation. This kind of questions have been recently studied
in a series of works [10,11] where it was shown that the
cluster phase is unstable above a critical value of certain
one- and two-sites (Ising-like) perturbations. The compu-
tational power of cluster states can be viewed as a quan-
tification of their entanglement [13,14]. Localizable entan-
glement, in particular, was calculated and it was shown
that its range diverges [11], a property shared with spin
half-valence bond states [15,16]. Interestingly enough the
two states are both characterized by a hidden order of
topological nature. Very recently it is emerging that long-
range entanglement is a inherent property of topologically
ordered states [17]. Inspired by the problem posed in [4] we

will prove that the model (1) undergoes a continuous tran-
sition between an Ising antiferromagnet and a phase char-
acterized by the specific topological order encoded in clus-
ter states. We will show that entanglement captures the
critical properties of this model, beyond the formulation
of the concept of order parameter. The two-dimensional
generalization of the model will be discussed at the end of
this letter.

Symmetry protected topological order in cluster
states. – Topological order is defined as a degeneracy of
the ground state depending on the topology of the system.
Moreover, such degeneracy must be robust under arbitrary
local perturbations, in the sense that for a finite system
of linear size L the splitting of the degeneracy is exponen-
tially small in L. Recently, it has been understood that
the notion of topological order described above cannot be
applied to 1D [17]. For one-dimensional systems and there-
fore also for the 1D cluster state, it results that the degen-
eracy is not robust under generic perturbations. Indeed,
for the state (2) the four basis states are connected by
the local operators σx1 , σ

x
L and distinguished by the local

operators σz1σ
x
2 and σ

x
L−1σ

z
L. Nevertheless, a more tenu-

ous kind of topological order can be possible, if symme-
tries are present. If not all operators or perturbations are
allowed, but only those that respect some symmetry, the
symmetry can protect the topological order. In the present
case, the ground state manifold C0 is also defined by the
algebra of the global operators (X1, Z1) and (X2, Z2), that
are defined as

X1 =
L−8
6∏
n=0

(σy6n+1σ
z
6n+2σ

z
6n+3σ

y
6n+4σ

x
6n+5σ

x
6n+6)σ

y
L−2σ

z
L−1σ

z
L,

Z1 =
L−8
6∏
n=0

(σx6n+1σ
x
6n+2σ

y
6n+3σ

z
6n+4σ

z
6n+5σ

y
6n+6)σ

x
L−2σ

x
L−1σ

y
L,

X2 =
L−8
6∏
n=0

(σx6n+1σ
y
6n+2σ

z
6n+3σ

z
6n+4σ

y
6n+5σ

x
6n+6)σ

x
L−2σ

y
L−1σ

z
L,

Z2 =
L−8
6∏
n=0

(σy6n+1σ
x
6n+2σ

x
6n+3σ

y
6n+4σ

z
6n+5σ

z
6n+6)σ

y
L−2σ

x
L−1σ

x
L.

(3)

These operators obviously square to the identity: X21 =
X22 =Z

2
1 =Z

2
2 = I and, if L= 3(2k+1), with k integer,

the following anticommutation relations hold: {X1, Z1}=
{X2, Z2}= 0 and commute otherwise, thus realizing two
copies of the Pauli algebra which constitutes the logical
operators in the ground space C0. The Hamiltonian with
λ= 0 has thus a Z2×Z2 global symmetry defined by Ti =
Xi+Zi, i= 1, 2 that protects the topological degeneracy
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in the ground space. This means that every perturbation
V that commutes with the symmetries is not able to split
the degeneracy unless there is a QPT [17]. The Ising term
though, violates this symmetry, so as soon as we switch
on the λ coupling the degeneracy is lifted. In the limit
of large λ, there is only the usual Z2 symmetry and the
system is antiferromagnetic. The delicate aspects related
to the preservation of topological order will be further
investigated in a forthcoming article [18].
The properties of C0 reflect the emergence of low energy

states localized at the ends of an open chain [19,20];
such phenomenon can be detected by the so-called
string order parameter, originally employed to study
the Haldane phase displayed by one-dimensional integer-
spin systems [21]. Affleck-Kennedy-Lieb-Tasaki models
provide a paradigmatic example in this context (see [22]
for a recent reference), with symmetry protected
topological ordered ground states [17,22,23]. We
observe that (2) is symmetric for alternating spin
flips,

∑
k(−1)k〈C0|σyk |C0〉= 0, and any local order is

absent. The string order parameter Oz = (−)N−2×
〈σy1
∏N−1
j=1 σ

z
jσ
y
N 〉 �= 0, reflects the symmetry breaking of

the state by π rotations about the y and the z axes. It
can be shown that Oz = 1 for the cluster state, i.e. the
gs of (1) at λ= 0; for λ< 1 the string order parameter
behaves as in [11]. The gs of the antiferromagnetic Ising
Hamiltonian |I0〉 corresponds to the λ→∞ limit, instead.
The symmetry of the system is spontaneously broken, so
that the staggered magnetizationM =

∑
k(−1)k〈I0|σyk |I0〉

is an extensive quantity in the thermodynamic limit.
Summarizing: For λ= 0 the system enjoys a Z2×Z2
symmetry protecting the topological order; for λ< 1 a
“cluster phase” with non-local hidden order is charac-
terized by Oz; for λ> 1 the system is antiferromagnetic
with long-range order; the antiferromagnetic and the
cluster phases are separated by a continuos quantum
phase transition [24].

Duality mapping. – Duality transformations provide
a powerful tool to extract properties of the phase diagram
beyond the perturbative regions [25]. We now apply the
duality transformation

µzi = σ
x
i σ
x
i+1, µxi =

i∏
j=1

σzj . (4)

to our Hamiltonian. Observe that eq. (4) is a unitary
transformation.
We first consider the case λ= 0 in eq. (1). For open

boundary condition, σx0 = σ
x
N+1 = 1, the cluster Hamil-

tonian H(λ= 0) is transformed into an Ising Hamiltonian
with a boundary term:

H(λ= 0)→HI =
N−1∑
i=1

µyi µ
y
i+1− B̂, (5)

where B̂ = i(
∏N
i=1 µ

z
i )µ

y
1. Being unitary, the dual mapping

(4) factors out the correlation terms into a boundary

term. The gs of (5) is a superposition of states with
antiferromagnetic order, |G〉= (|I0〉+ |Ī0〉)/

√
2, with

|I0〉= |+y,−y,+y,−y · · · 〉, |Ī0〉 ≡ B̂|I0〉, µy|±y〉=±|±y〉,
and HI |G〉=−N |G〉, where −N is the non-degenerate
lowest eigenvalue of the Hamiltonian. |G〉 can be trans-
formed into a GHZ state |GHZ〉= (|+〉⊗N + |−〉⊗N )/√2
by local unitary transformations. Therefore, after the
dual transformation, the cluster state is transformed into
a GHZ state and the unit of entanglement is degraded
from N/2 to 1 [14]. On the other hand, for periodic
boundary conditions, eq. (4) yields

H(λ= 0)→HI,p =
N−2∑
i=1

µyi µ
y
i+1− B̂p, (6)

where B̂p = (
∏N
i=1 µ

z
i )(iµ

y
1µ
z
N −µyN−1µyN ). The gs is again

a GHZ state |Gp〉= (|I0〉N−1+ |Ī0〉N−1)⊗ |+x〉/
√
2 and

the same considerations apply.
We now tackle the case λ �= 0. The dual model of (1) is

H(λ)dual =

N−2∑
i=1

µyi µ
y
i+1−λ

N−1∑
i=1

µxi−1µ
z
iµ
x
i+1− B̂, (7)

where µx0 = 1 and B̂ = (
∏N
i=1 µ

z
i )(iµ

y
1µ
z
N −µyN−1µyN +

iµxN−1µ
y
Nµ
x
1). In the thermodynamic limit N →∞, the

duality relation reads H(λ)dual = λH(λ
−1), since the

boundary can be neglected [26]. The self-duality relation
at λ= 1 signals the critical point.
By resorting to the duality properties (7) the local

order parameter of the antiferromagnet is mapped into
the string order parameter of the cluster states (see also
[10,11]). In particular we note that the

∑
i〈σxi−1σzi σxi+1〉/N

cannot be taken as a valid order parameter because it
enjoys the same symmetries of the Hamiltonian.

Fermion representation and QPT. – The model
defined here can be diagonalized by resorting to a Jordan-
Wigner transformation c†l =

∏l−1
m=1 σ

z
mσ
+
l , c

†
l cl = σ

z
l +1/2

(spinless fermions), yielding

H(λ) =

N∑
l=1

(c†l−1− cl−1)(c†l+1+ cl+1)

+λ

N∑
l=1

(c†l + cl)(c
†
l+1− cl+1), (8)

with boundary conditions cN+l =∓cl. N is assumed
to be even. We note that the three-spin interac-
tion of the cluster Hamiltonian is reflected in the
next-nearest–neighbor interaction in the fermionized
Hamiltonian (8). The dispersion is obtained by Fourier
transformation cl =

∑
k e
2πikl/Nbk/

√
N followed by a

Bogoliubov transformation bk = ukγk + vkγ
†
−k, yielding

H(λ) =
∑
k

Λk(γ
†
kγk − 1/2),

Λk =
√
(λ2+1)− 2λ cos (6πk/N), (9)
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Fig. 1: (Colour on-line) Left panel: the first derivative of the
geometric entanglement captures the critical point at λ= 1; N
ranges from 32 (black dashed line) to 1000 (turquoise-triangle
line). Right upper panel: normalized geometric gs entanglement
ε/N as a function of λ. The decay of entanglement in the
Ising phase is shown in the lower right panel: squares and
crosses are the data for ε/N at the critical point and in the
antiferromagnetic phase, respectively (an artificial offset has
been applied for a convenient display).

with uk = z
+
k , vk =−isign(δk)z−k , z±k =

√
(1± εk/Λk)/2,

εk = [cos(4πk/N)−λcos(2πk/N)], δk = [sin(4πk/N)+
λsin(2πk/N)] and −(N/2+1)/2<k <−1, N = 4n+2
[−(N − 1)/2<k <−1/2, N = 4n] for (anti)periodic
boundary conditions. The gs is identified as the vacuum
of the Bogoliubov operators γk|Ω〉= 0, ∀k. In terms of
the bk’s it can be written as the BCS ground state,

|Ω〉=
∏
k

(
uk + vkb

†
kb
†
−k
)
|vac〉. (10)

From simple inspection of the dispersion law of Λk, one
infers that the system displays a second-order quantum
phase transition at λ= 1 with critical indices z = ν = 1.
Notice also that even though any two-spin correlations
vanish in the cluster states [12,27], the fermionic pair
correlations pattern is not trivial.
Entanglement is a key quantity in the study of

many-body systems [28]. We now focus on how maximal
entanglement in the cluster state [13] is demoted by
nearest-neighbor interaction, as λ increases in model
(1). We consider a geometric measure of entangle-
ment [29] that provides a global characterization of the
entanglement in quantum many-body systems

ε (|ψ〉) =− log2
[
max
θ
|〈S(θ)|ψ〉|2

]
, (11)

where |S(θ)〉 is the closest separable state. N -partite pure
separable states are characterized by 2N real parameters,

|S({θ̄j})〉=
N∏
j=1

(
cos θj + e

iφj sin θjσ
x
j

) | ↑〉⊗N , (12)

that can be restricted to four because of the dimerized
structure of the eigenstate of the Hamiltonian.

The geometric entanglement (11) is plotted in fig. 1.
In the right upper panel the normalized geometrical
entanglement is plotted as a function of λ for different
values of N . For λ= 0, the geometric entanglement is
always N/2. In the cluster phase (λ< 1) entanglement is
very weakly dependent on the size of the system, while in
the antiferromagnetic phase (λ> 1) it decreases with N .
Moreover, as shown in the right lower panel, although the
normalized entanglement is very small for λ> 1, it does
not vanish. Observe that the convexity of the geometric
entanglement changes from positive to negative near the
critical point. As N is increased, the point of convexity
change moves toward λ= 1. This is scrutinized in the
left panel, where one sees that the phase transition is
detected by the derivative of the geometric entanglement,
that diverges at λ= 1.

d-dimensional systems. – The model defined by the
Hamiltonian (1) can be generalized to d-dimensions, the
cluster term involving the product of 2d+1 spin operators
(we consider for simplicity a hyper-cubic lattice). We do
not rely on exact results in this case; nevertheless we
will show that the system has a critical value of the
parameter λ below which the antiferromagnetic order
vanishes. This argument, together with the remarkable
observation due to Cirac and Verstraete [30] that cluster
states can be realized as valence bond states, leads us
to conclude that our model displays a direct transition
between an antiferromagnet and a valence bond state, for
d> 1. We comment that the treatment we are going to
employ is mean-field–like in nature and although it is not
expected to capture the correct critical behavior, it suffices
to establish the very existence of the transition point.
The mean-field analysis [31] proceeds after a rotation

of the Hamiltonian to map the antiferromagnetic to ferro-
magnetic Ising couplings. The approximated Hamiltonian
reads

HMF =−
∑
i

σzi
∏
j∈N (i)

σxj − 2dλψ
∑
i

σyi
.
=HC +V, (13)

where ψ≡ 〈σyi 〉 is the (real and spatially uniform) order
parameter and 2d the coordination number of the lattice.
By assuming that the order parameter vanishes at the
critical point, the self-consistency equation leads to the
condition

1 = 4dλc
∑
m

∫ ∞
0

dτe−(εm−ε0)τ |〈C|σyi |Cm〉|2, (14)

where |Cm〉 and εm are them-th eigenstate and the energy
level of the cluster Hamiltonian. A direct evaluation leads
to λc = 1 in any dimension, marking the quench of the
magnetic order. The independence of the critical value
from the dimensionality reflects the peculiar multi-spin
interaction of the cluster couplings.

Conclusions. – We studied the phase diagram and
the geometric entanglement of the (spin-1/2) cluster
Hamiltonian in the presence of an additional Ising
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interaction. We showed that cluster states have symmetry
protected topological order, which can be quenched to a
long-range order by varying the two-spin interaction in a
continuous way. The one-dimensional model we studied
in this paper is equivalent to a free-fermion Hamiltonian,
and therefore it can be solved exactly. The Hamiltonian
enjoys a duality symmetry, mapping the three point
correlations into nearest-neighbor interactions; as a
consequence the entanglement in the cluster state results
to be dual to the entanglement encoded into the Ising
gs state. The system is self-dual at the critical point.
The exact solution in one dimension together with the
argument we produced above for higher dimensions (see
also [32]) provides, in our opinion, a convincing scenario
for the transition from Néel order to a cluster state
ordering of topological nature. We have shown how the
geometric entanglement characterizes the two phases and
the QPT, as a single parameter. The critical properties
of the transition could be investigated by exploiting the
scheme developed in [33] .
These results are also relevant for quantum information

technology. It would be valuable, for example, to exploit
the Ising cluster state duality relation as a resource for
computational power in quantum algorithms. Finally, we
observe that the cluster Hamiltonian can be realized in
a triangular optical lattice of two atomic species [34].
The three-spin interaction arises from a kind of density-
dependent tunneling of the atomic species. Our results can
therefore be tested in optical lattices and in trapped ions,
where this model can be experimentally realized.
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Schollwöck U. et al. (Editors), Quantum Magnetism
(Springer, Berlin) 2004.

[22] Pollmann F., Berg E., Turner A. M. and Oshikawa
M., arXiv:0909.4059.

[23] Kou S.-P. and Wen X.-G., Phys. Rev. B, 80 (2009)
224406; Miyake A., arXiv:1003.4662.

[24] A thorough analysis of the statistical mechanics of the
model eq. (1) is developed in Smacchia P. et al.,
arXiv:1105.0853.

[25] Savit R., Rev. Mod. Phys., 52 (1980) 453; Fradkin E.
and Susskind L., Phys. Rev. D, 17 (1978) 2637.

[26] Lieb E., Schultz T. andMattis D., Ann. Phys. (N.Y.),
16 (1961) 407.

[27] Bartlett S. D. and Rudolph T., Phys. Rev. A, 74
(2006) 040302(R).

[28] Amico L. et al., Rev. Mod. Phys., 80 (2008) 517.
[29] Wei T. and Goldbart P. M., Phys. Rev. A, 68 (2003)

042307; Wei T. and Das D. et al., Phys. Rev. A, 71
(2005) 060305(R).

[30] Verstraete F. and Cirac J. I., Phys. Rev. A, 70 (2004)
060302(R).

[31] Negele J. W. and Orland H., Quantum Many-Particle
Systems (Addison-Wesley) 1988.

[32] Brown B. J. et al., New J. Phys., 13 (2011) 065010.
[33] Kay A., Phys. Rev. Lett., 98 (2007) 010501.
[34] Pachos J. K. and Plenio M. B., Phys. Rev. Lett., 93

(2004) 056402.

50001-p5


