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Abstract: The aim of this study was to determine a gait pattern, i.e., a subset of spatial and temporal
parameters, through a supervised machine learning (ML) approach, which could be used to reliably
distinguish Parkinson’s Disease (PD) patients with and without mild cognitive impairment (MCI).
Thus, 80 PD patients underwent gait analysis and spatial–temporal parameters were acquired in
three different conditions (normal gait, motor dual task and cognitive dual task). Statistical analysis
was performed to investigate the data and, then, five ML algorithms and the wrapper method were
implemented: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Support Vector Machine
(SVM) and K-Nearest Neighbour (KNN). First, the algorithms for classifying PD patients with MCI
were trained and validated on an internal dataset (sixty patients) and, then, the performance was
tested by using an external dataset (twenty patients). Specificity, sensitivity, precision, accuracy and
area under the receiver operating characteristic curve were calculated. SVM and RF showed the best
performance and detected MCI with an accuracy of over 80.0%. The key features emerging from this
study are stance phase, mean velocity, step length and cycle length; moreover, the major number
of features selected by the wrapper belonged to the cognitive dual task, thus, supporting the close
relationship between gait dysfunction and MCI in PD.

Keywords: gait analysis; machine learning; Parkinson’s disease; mild cognitive impairment

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative condition, with a preva-
lence of 1–2 out of 1000 people [1]. In PD patients, movements are typically bradykinetic
and irregular, gait is characterized by reduced balance and coordination and difficulty in
dissociating arms and trunk movements, while, in the advanced stages of the disease, shuf-
fling, festination and freezing episodes are frequently observed [2]. Moreover, non-motor
mental symptoms, such as mood and cognitive disorders up to dementia, are commonly
observed [3]. In recent years, research has focused on the pre-dementia stages of cognitive
impairment in PD, including mild cognitive impairment (PD-MCI). PD-MCI is a syndrome
defined by the occurrence of subjective complaints of cognitive decline in combination
with the evidence of cognitive dysfunction on neuropsychological examination, without
significant interference with functional independence. PD-MCI might involve single or
multiple domains (attention, memory, executive functions, language and visuospatial abili-
ties) [4]. While attention, executive and visuospatial dysfunction, possibly accompanied
by memory impairment, are common presentations in PD-MCI, increasing language and
memory dysfunctions frequently represent the neuropsychological marker of conversion
to dementia I [5]. A growing body of evidence suggests an association between cognitive
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decline and several gait and balance dysfunctions in PD [6,7]. Many studies employing
quantitative gait evaluation reported PD-MCI-related gait changes, particularly in terms
of reduced stride length and cycle length and increased measures of dynamic instability,
such as a longer time in the double support phase and stance phase [8,9]. The identifi-
cation of gait parameters, which are strongly associated with MCI, could be relevant for
early diagnosis. Furthermore, dual-task gait assessment may be more helpful to detect
cognition-related gait changes in clinical daily routine [10]. The diagnosis of PD is based on
clinical features, generally supported by the use of international evaluation scales, such as
the Unified Parkinson’s Disease Rating Scale (UPDRS) and Hoehn and Yahr Scale (H and
Y). However, in an effort to improve PD management and move towards a quantitative
assessment and recognition of PD motor and non-motor symptoms, which is not possible
through the use of the above-mentioned scales, gait analysis may represent a valid aid,
since it is a well-established tool for the systematic examination of the way in which a
person walks [11]. Gait is typically described by its spatial and temporal parameters, such
as step length, step width, stance phase, swing phase and their respective variability [12]
(Figure 1). Nowadays, gait sensing technologies, organized in terms of wearable, non-
wearable and hybrid approaches, provide a highly consistent framework that explores the
issues related to gait analysis [13–16]. The assessment of gait may be conducted either for
clinical purposes or for research. In many institutes of care and scientific research, gait
analysis is used for diagnosis, assessment or monitoring the results of treatment.
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Figure 1. Workflow of the study: the walk of PD patients was acquired in three tasks, the signals
were elaborated to extract spatial and temporal features, the features were statistically analyzed and
then used as input for implementing ML algorithms.

Machine learning (ML) strategies in the study of human movement have gained
popularity as they offer an objective approach to identify or differentiate individuals with
movement disorders [17,18].



Sensors 2023, 23, 1985 3 of 14

Using spatial and temporal parameters, PD patients have been classified with 92.6%
accuracy using Random Forest and 80.4% using vectorial machine [19]. Using a data mining
approach based on gait patterns, it was possible to classify patients affected by PD and
atypical Parkinsonism with an accuracy of 86.4% in a dataset of 41 subjects [20]. In addition,
ML provides a method to detect the best combination of spatial and temporal parameters
of gait able to correctly classify PD patients with or without cognitive impairment [21–24].

Specifically, our goal in the current study was to determine a subset of spatial and
temporal parameters, through an ML approach, in order to define a gait patterm that could
reliably distinguish PD patients with MCI from those without it. To this end, we evaluated
and trained the ML algorithms to classify PD-MCI on an internal dataset and validated
their performance using an external dataset. Figure 1 sets out the workflow of the study.

2. Materials and Methods
2.1. Participants

The study population consisted of 80 participants consecutively enrolled between
January 2018 and March 2022. Participants were selected from patients referred to the
Center for Neurodegenerative Diseases of the University of Salerno, Italy. All patients met
the Movement Disorder Society (MDS) clinical diagnostic criteria for PD [25] and were
recruited according to the following inclusion and exclusion criteria:

Inclusion criteria:

• Hoehn and Yahr score ≤ 3;
• Disease duration ≤ 10 years;
• Age ≥ 45 years;
• Dopaminergic treatment at a stable dosage during the previous 4 weeks;
• Ability to walk independently.

Exclusion criteria:

• Dementia according to the Diagnostic and Statistical Manual of Mental Disorders 5th
edition (DSM-V);

• Other neurological diseases;
• Orthopedic diseases;
• Severe cardiovascular/respiratory diseases;
• Anticholinergic or neuroleptic treatment;
• Brain surgery.

A detailed evaluation of demographic, clinical and anthropometric data from each
patient was performed. Motor and non-motor symptoms of PD were assessed by means of
the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS).
In particular, MDS-UPDRS part I evaluates the non-motor aspects of experiences of daily
life, part II assesses the motor aspects of experiences of daily living, whereas part III
represents the motor examination and part IV rates the motor complications. An extensive
neuropsychological test battery assessing memory, executive/attention, language and
visuospatial domains was used to evaluate cognition. While MCI was diagnosed based on
the MDS diagnostic criteria for MCI in PD [4], the aim of this study, as mentioned in the
previous section, was to recall the association between gait and cognition and to investigate
PD-MCI through spatial and temporal features of gait by means of both statistical analysis
and an ML approach.

2.2. Gait Analysis

The gait analysis was used to obtain spatial and temporal parameters, which was
performed in all patients using a BTS Bioengineering system. The SMART DX is an optical
system equipped with six infrared cameras, two video cameras, two force plates, a set
of passive markers, an elaborator and data acquisition software (Smart Clinic). First, it
requires a phase of calibration of the volume of acquisition and of the force platforms
through a specific procedure with an orthogonal term (Figure 2).
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Calibration occurs in three phases:

1. Axes acquisition defines the position of the origin and the orientation of the 3 axes of
the global reference system (Figure 2a).

2. Wand acquisition defines the volume of acquisition.
3. Force platform calibration identifies the position of force platform (Figure 2b).

Then, the Davis protocol was applied for all the acquisitions [26], and it consisted of
four phases: (a) Anthropometric measurements of the patients (height, weight, leg length,
etc.). (b) Positioning of 22 reflective markers on specific points of the body. (c) The standing
phase, consisting of assessments of the patient while standing up on a force plate. (d) The
walking phase, consisting of the assessments of the patient on a 10 m straight pathway four
times. The values of the spatial and temporal parameters were averaged among the four
walking phases. The walking phase was evaluated during three different tasks: (1) GAIT:
normal gait, namely the single task; (2) MOT: walking while carrying a tray with two
glasses filled with water, namely the motor dual task; (3) COG: walking while serially
subtracting 7 s starting from 100, namely the cognitive dual task [27]; thus, 12 registrations
were acquired for each patient. At the end of each task (GAIT, MOT and COG), the signal
of gait cycle was elaborated; the events of gait for the right and left heel strike and toe off
were defined, Figure 3. This procedure generated a report for each task from which spatial
and temporal parameters were extracted for this study. In order to avoid the influence of
the prevalent affected side in PD patients, right and left parameters were averaged.
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2.3. Tool and Algorithms

Univariate statistical analysis was employed to assess the clinical features and spatial
and temporal parameters of PD patients with and without MCI. IBM SPSS (v.27) was used
to perform all the statistical analyses. Data normality and variance homogeneity were
verified using the Kolmogorov–Smirnov test and Levene’s test, respectively. A t-test for
independent samples was employed when both the previous assumptions were verified;
a Mann–Whitney U test was otherwise employed. The level of significance was set at a
p-value < 0.05 for all statistical analyses.

Afterward, a supervised learning analysis was performed through Knime analytics
platform (v.4.4.2), which is a well-known platform in the literature for performing ML
analyses by creating a workflow with a combination of nodes; it has already been employed
in several biomedical studies [28–31]. Two analyses were carried out using spatial and
temporal parameters of gait cycle: (1) supervised algorithms were implemented for spatial
and temporal parameters of each task; (2) a feature selection method was implemented on
the spatial and temporal parameters using, as input, all three tasks to reduce the dimen-
sionality of the dataset; both analyses were performed on one internal validation dataset,
composed of 60 patients, and were tested on an external validation dataset, composed of
20 patients who were not considered in the implementation of the previous models, with
the aim of evaluating the performance of such models (Figure 4).

Sensors 2023, 23, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 3. Signal of gait cycle (space on y-axis, time on x-axis); (a) example of the definition of the 
events of heel strike; (b) example of the definition of the events of left toe off. Red and green signals 
stand for knee and ankle displacements, respectively. 

2.3. Tool and Algorithms 
Univariate statistical analysis was employed to assess the clinical features and spatial 

and temporal parameters of PD patients with and without MCI. IBM SPSS (v.27) was used 
to perform all the statistical analyses. Data normality and variance homogeneity were ver-
ified using the Kolmogorov–Smirnov test and Levene’s test, respectively. A t-test for in-
dependent samples was employed when both the previous assumptions were verified; a 
Mann–Whitney U test was otherwise employed. The level of significance was set at a p-
value < 0.05 for all statistical analyses. 

Afterward, a supervised learning analysis was performed through Knime analytics 
platform (v.4.4.2), which is a well-known platform in the literature for performing ML 
analyses by creating a workflow with a combination of nodes; it has already been em-
ployed in several biomedical studies [28–31]. Two analyses were carried out using spatial 
and temporal parameters of gait cycle: (1) supervised algorithms were implemented for 
spatial and temporal parameters of each task; (2) a feature selection method was imple-
mented on the spatial and temporal parameters using, as input, all three tasks to reduce 
the dimensionality of the dataset; both analyses were performed on one internal valida-
tion dataset, composed of 60 patients, and were tested on an external validation dataset, 
composed of 20 patients who were not considered in the implementation of the previous 
models, with the aim of evaluating the performance of such models (Figure 4). 

 
Figure 4. Two types of validation methods: internal and external dataset. Figure 4. Two types of validation methods: internal and external dataset.

Five ML algorithms were chosen to detect the presence of MCI in the analyzed pa-
tients [32]:

Decision Tree (DT) is widely used for categorized problems and its flow structure
makes it simple to understand. DT is a classification algorithm that groups the instances in
a recursive manner. The roots of the tree represent the nodes where the instances are split.
The leaves are the intermediate and final classes where the instances are assigned. Based
on the results of the tests along the path, instances are classified by traveling them from
the root of the tree down to a leaf [32]. DT has more advantages over the other supervised
methods, which require less effort for data preparation during the pre-processing phase;
indeed, the normalization of data is not always required. DT is typically preferred in many
fields, such as healthcare.

Random Forest (RF) is a combination of a large number of decision trees and it is
a well-known classifier due to its stability and its ability to maintain accuracy when a
considerable proportion of data is missing. RF is based on the bagging algorithm and
uses the ensemble learning technique. It creates many trees on the subset of the data and
combines the output of all such trees. In this way, it reduces the overfitting problem of the
DT algorithm and reduces the variance, therefore, improving the accuracy. RF is usually
robust to outliers and can handle them automatically; however, it requires much more time
and computational power to train the dataset [33].
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Naïve Bayes (NB) is a model based on Bayes’ theorem of probability to predict the class
of unknown datasets with a fundamental assumption: each feature makes an independent
and equal contribution to the outcome.

NB is a fast and easy ML algorithm used to predict a class of datasets and can be used
for binary as well as multi-class classification. It relies on the assumption, rarely satisfied
in real life, that all predictors are independent; this fact limits the applicability of such an
algorithm in some real-world cases [34].

Support Vector Machine (SVM) is an ML method that has become exceedingly popular
for simplicity and flexibility for addressing a range of classification problems. The objective
of the SVM is to find a hyperplane in N-dimensional space that distinctly classifies the data
points. To separate the two classes of data points, there are many possible hyperplanes,
and the dimension of the hyperplane depends on the number of features. If the number
of input features is 2, the hyperplane is just a line; if the number of input features is 3, the
hyperplane becomes a two-dimensional plane [35].

K-Nearest Neighbor (KNN) algorithm assumes that similar data are near to each other.
KNN is calculated on the basic value of k, which defines how many nearest neighbors
should be considered to define the class of a training sample data point. There is no
particular way to determine the best value for k; therefore, some values were experimented
with to find the best of them. A very low value for k, such as k = 1 or k = 2, can be noisy
and lead to the presence of outliers in the model. On the other hand, large values for k are
good in principle, but the algorithm may find some computational difficulties. For these
reasons, in general, it may be hard to determine the optimal value of k [36].

Moreover, a leave-one-out cross-validation was applied to estimate the skill of an ML
model and to reduce overfitting: this procedure split the dataset into a training set and a
testing set, using only one observation as part of the testing set. The data in the training set
were used to build the model, which predicts the response value of the one observation left
out of the training set. This process was repeated n times, where n is the total number of
observations, leaving out a different observation from the training set each time [37].

Various evaluation metrics were used to assess the performance of the proposed
supervised algorithms [38]:

• Specificity: capacity to correctly detect subjects not belonging to the group under
examination:

Specificity =
TN

TN + FP
(1)

• Sensitivity: capacity to correctly detect subjects belonging to the group under exami-
nation:

Sensitivity =
TP

TP + FN
(2)

• Precision: a measure of the positive patterns correctly predicted from the total pre-
dicted patterns in a positive class:

Precision =
TP

TP + FP
(3)

• Accuracy: the ratio of correct predictions over the total number of records:

Accuracy =
TP + TN

TN + FP + FN + TP
(4)

where TN is the number of true negatives, TP represents the number of true positives
predicted by the classifier, FP is the number of false positives, and, consequently, FN is
the number of false negatives.
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• Area Under the Curve Receiver Operating Characteristic (AUCROC): a qualitative
indicator for the binary classification, ranging from 0 to 1, with 0.5 indicating a
classification not better than random guessing.

Subsequently, a wrapper method was performed to identify the best subset of charac-
teristics, which improved the classification accuracy for each ML algorithm. The wrapper
feature selection method initiates training by using a subset of characteristics and then
appends or deletes a characteristic using a selection criterion [39]. The selection criterion
directly measures the change in model performance that results from appending or deleting
a characteristic. The algorithm replicates training, improving a model until its stopping cri-
teria are satisfied. Finally, the ML algorithms’ performances were evaluated on an external
validation dataset.

3. Results

Univariate statistical analysis was conducted on clinical–demographic features and on
spatial and temporal parameters of each single task. The statistical analysis was employed
both on the internal dataset and on the external dataset. The internal dataset was composed
of 31 patients classified as PD-MCI and 29 as PD cognitively unimpaired (PD-NO MCI).
As expected, significant differences emerged, both in clinical–demographic features and in
spatial temporal parameters. In particular, as shown in Table 1 and expected [40], PD-MCI
patients were older, with a more advanced stage and more severe motor symptoms, as
indicated by higher Hoehn and Yahr Scale and MDS-UPDRS part III, respectively.

Table 1. Clinical–demographic features of PD patients with (PD-MCI) and without (PD-NO MCI)
mild cognitive impairment belonging to internal dataset (mean ± standard deviation).

PD-MCI (Sample Size = 31) PD-NO MCI (Sample Size = 29)

Variables Mean SD Mean SD p-Value

Age 66.20 8.50 61.32 8.10 0.015 *
BMI 28.30 3.98 26.98 3.09 0.429

Disease Duration 5.41 2.44 4.74 2.64 0.545
LEDD 576.60 378.91 554.81 442.98 0.901

Hoehn &Yahr 1.95 0.30 1.76 0.41 0.045 *
MDS-UPDRS: Part I 9.23 6.89 7.20 4.36 0.070
MDS-UPDRS: Part II 8.10 5.50 7.98 6.31 0.524
MDS-UPDRS: Part III 25.56 8.61 20.98 7.67 0.041 *
MDS-UPDRS: Part IV 1.50 2.93 2.10 3.15 0.434

* Significance level at 0.05. Significant p-values are highlighted in bold.

Concerning the external dataset, composed of 9 patients with and 11 patients without
MCI, univariate analysis was conducted on clinical–demographic features. In particular,
as shown in Table 2, the variables were properly matched, and no significant statistical
differences were found. Moreover, in order to show the coherence between the internal
and external datasets, a comparison of the classes (PD-MCI and PD-NO MCI) between
the datasets was performed. To this end, univariate analysis on clinical and demographic
variables was carried out on the PD patients with and without MCI, belonging to both
datasets, showing that no statistically significant difference occurred (see the Supplementary
Materials; Tables S1 and S2).

Moreover, the two groups differed in all three conditions for different spatial temporal
parameters, as summarized in Table 3. In the GAIT single task, PD-MCI showed worse gait
parameters than PD-NO MCI. In detail, PD-MCI exhibited reduced step length (p < 0.009),
cycle length (p < 0.007), velocity (p < 0.037) and longer stance phase (p < 0.020), mainly
due to the increased double support phase (p < 0.034). In the MOT dual task, PD-MCI
continued to show reduced step length (p < 0.008), cycle length (p < 0.017) and velocity
(p < 0.045). In addition, PD-MCI showed both reduced swing phase (p < 0.010) and single
support phase (p < 0.007). In the COG dual task, PD-MCI again showed the same gait
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pattern displayed during the previous two tasks but, noteworthily, with an increased level
of statistical significance.

Table 2. Clinical–demographic features of PD patients with (PD-MCI) and without (PD-NO MCI)
mild cognitive impairment belonging to external dataset (mean ± standard deviation).

PD-MCI (Sample Size = 9) PD-NO MCI (Sample Size = 11)

Variables Mean SD Mean SD p-Value

Age 71.33 7.57 63.55 11.19 0.092
BMI 28.91 4.49 24.48 3.31 0.134

Disease Duration 3.83 1.76 4.18 3.10 0.768
LEDD 718.13 567.98 569.55 569.24 0.581

Hoehn &Yahr 2.06 0.17 1.90 0.17 0.210
MDS-UPDRS: Part I 9.56 5.70 9.73 5.04 0.944
MDS-UPDRS: Part II 10.11 2.93 10.91 8.79 0.798
MDS-UPDRS: Part III 23.78 4.74 22.91 9.77 0.810
MDS-UPDRS: Part IV 0.67 1.32 2.09 3.17 0.226

Table 3. Univariate statical analysis of spatial and temporal parameters of each task.

GAIT TASK PD-MCI (Sample Size = 40) PD-NO MCI (Sample Size = 40)

Parameters Mean SD Mean SD p-Value

Cycle Duration [s] 1.12 0.13 1.10 0.11 0.532
Stance Duration [s] 0.68 0.09 0.66 0.07 0.279
Swing duration [s] 0.43 0.04 0.44 0.04 0.738

Swing Duration Variability [s] 0.03 0.02 0.04 0.06 0.382
Stance Phase [%] 61.14 1.87 60.04 2.29 0.020 *
Swing Phase [%] 38.88 1.87 39.52 1.85 0.128

Single Support Phase [%] 38.89 1.87 39.36 2.61 0.353
Double Support Phase [%] 11.47 3.15 10.25 1.71 0.034 *

Mean velocity [m/s] 0.97 0.18 1.05 0.16 0.037 *
Mean velocity [%height/s] 58.28 10.95 62.48 9.56 0.072

Cadence [steps/min] 108.91 11.62 108.83 12.15 0.976
Cycle Length [m] 1.06 0.15 1.15 0.15 0.007 **

Cycle Length [%height] 64.01 9.97 68.66 7.79 0.023 *
Step Length [m] 0.48 0.12 0.55 0.10 0.009 **

Step Length Variability [m] 0.25 0.49 0.15 0.37 0.289
Step Width [m] 0.09 0.05 0.09 0.04 0.536

MOT TASK PD-MCI (N = 40) PD-NO MCI (N = 40)
Cycle Duration [s] 1.09 0.13 1.08 0.12 0.754
Stance Duration [s] 0.67 0.10 0.65 0.08 0.340
Swing duration [s] 0.45 0.17 0.43 0.05 0.567

Swing Duration Variability [s] 0.03 0.02 0.03 0.02 0.568
Stance Phase [%] 61.45 2.34 60.37 1.74 0.018 *
Swing Phase [%] 38.54 2.34 39.74 1.63 0.010 *

Single Support Phase [%] 38.53 2.31 39.80 1.75 0.007 **
Double Support Phase [%] 12.11 2.75 11.38 3.21 0.276

Mean velocity [m/s] 0.95 0.20 1.04 0.17 0.045 *
Mean velocity [%height/s] 57.30 11.58 61.77 9.63 0.064

Cadence [steps/min] 110.98 11.49 111.95 11.76 0.710
Cycle Length [m] 1.02 0.17 1.11 0.17 0.017 *

Cycle Length [%height] 61.75 10.59 66.39 9.10 0.039 *
Step Length [m] 0.48 0.11 0.54 0.09 0.008 **

Step Length Variability [m] 0.19 0.50 0.08 0.15 0.193
Step Width [m] 0.09 0.05 0.09 0.04 0.876
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Table 3. Cont.

GAIT TASK PD-MCI (Sample Size = 40) PD-NO MCI (Sample Size = 40)

Parameters Mean SD Mean SD p-Value

COG TASK PD-MCI (N = 40) PD-NO MCI (N = 40)
Cycle Duration [s] 1.20 0.20 1.15 0.14 0.122
Stance Duration [s] 0.76 0.15 0.70 0.09 0.040 *
Swing duration [s] 0.45 0.06 0.44 0.05 0.647

Swing Duration Variability [s] 0.05 0.05 0.03 0.02 0.071
Stance Phase [%] 63.07 2.51 61.36 2.17 0.002 **
Swing Phase [%] 37.91 5.07 38.58 2.18 0.447

Single Support Phase [%] 37.25 2.58 38.27 2.92 0.101
Double Support Phase [%] 14.09 3.90 11.73 1.96 0.001 **

Mean velocity [m/s] 0.79 0.19 0.95 0.17 0.000 ***
Mean velocity [%height/s] 48.29 11.71 56.70 10.53 0.001 **

Cadence [steps/min] 102.16 14.50 106.33 12.77 0.175
Cycle Length [m] 0.93 0.18 1.07 0.15 0.000 ***

Cycle Length [%height] 56.74 12.37 63.74 8.43 0.004 **
Step Length [m] 0.42 0.11 0.52 0.10 0.000 ***

Step Length Variability [m] 0.28 0.45 0.08 0.22 0.015 *
Step Width [m] 0.10 0.06 0.11 0.12 0.636

Significant p-values are highlighted in bold. * Significance level at 0.05. ** Significance level at 0.01. *** Significance
level at 0.001.

Concerning the ML analysis, all the evaluation metrics of the best two classifiers for
each task are summarized in Table 4.

RF classifier showed the best performance in each task on the external validation
dataset; RF reached the highest values in terms of accuracy (65.0% in task GAIT, 70.0% in
task MOT and 71.4% in task COG), sensitivity (90.0% in task GAIT, 80.0% in task MOT and
70.0% in task COG) and precision (60.0% in task GAIT, 66.7% in task MOT and 70.0 in task
COG). However, it is possible that the AUCROC of RF was the lowest if compared with the
other classifiers. Indeed, SVM yielded the highest cumulative accuracy in both validation
datasets (0.784 and 0.773, respectively), followed by the KNN with 0.720 on the external
validation dataset.

Table 4. Evaluation metrics on internal and external validation dataset for each task.

Task GAIT Task MOT Task COG

Evaluation
Metrics Dataset RF KNN RF DT RF SVM

AUCROC
Internal 0.557 0.616 0.623 0.658 0.500 0.784
External 0.555 0.720 0.655 0.680 0.518 0.773

Accuracy Internal 55.0 61.7 63.3 63.3 70.0 73.3
External 65.0 57.1 70.0 61.9 71.4 66.7

Sensitivity Internal 54.8 67.7 61.3 51.6 74.2 71.0
External 90.0 70.0 80.0 50.0 70.0 60.0

Specificity Internal 58.6 58.6 65.5 75.9 65.5 75.9
External 40.0 45.5 60.0 72.7 72.7 72.7

Precision Internal 57.1 62.5 65.5 69.6 69.7 75.9
External 60.0 53.8 66.7 62.5 70.0 66.7

In order to identify the main spatial and temporal parameters for the classification
of PD-MCI, the wrapper feature selection method allowed us to reduce the number of
features. As a result, the prior 51 spatial and temporal parameters were reduced to 17.
The feature selection subset for each classification algorithm and the evaluation metrics
are shown in Table 5. Among the 17 features selected, the major number belonged to the
COG dual task. In particular, the cycle length, the step length and its variability were
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selected by several different algorithms: DT, RF, NB and KNN. The other features selected
by the wrapper method were divided between the other two tasks: swing duration and
its variability, cadence and step length and width for the single task and swing duration
variability and cadence for the motor dual task. Among the tested algorithms, NB picked
the highest number of features (six), with the highest accuracy on the external dataset
(85.7%), followed by RF, which selected four features and reached an accuracy of 81.0%.
Conversely, despite picking the lowest number of features (two), the SVM and the KNN
achieved an accuracy of 81.0%.

Table 5. Feature selection by the wrapper method. “g” is for GAIT, “m” is for MOT and “c” is for
COG; 95% confidence intervals are enclosed in brackets.

Classifier Features Selection
Internal Dataset

Accuracy

External Dataset

Accuracy Sensitivity Specificity

DT

g_Swing Duration
g_Swing Duration

Variability
c_Step Length Variability

67.7
(43.7–3.7)

79.1
(57.4–90.1)

70.0
(39.7–89.2)

90.0
(59.6–98.2)

RF

g_Step Length
g_ Step Width
c_ Step Length
c_ Step Width

72.3
(49.1–85.7)

81.0
(60.0–92.3)

60.0
(31.3–83.2)

100.0
(72.3–100)

NB

g_Cadence
m_Swing Duration

Variability
c_Stance Phase
c_ Cycle Length
c_Step Length

c_Step Length Variability

2.3
(49.1–85.7)

85.7
(65.4–95.0)

70.1
(39.7–89.2)

100.0
(72.3–100)

SVM m_Mean Velocity
c_ Mean Velocity

77.8
(54.8–91.0)

81.0
(60.0–92.3)

70.0
(39.7–89.2)

90.0
(59.6–98.2)

KNN
m_Swing Duration

Variability
c_ Cycle Length

61.2
(38.6–79.7)

81.0
(60.0–92.3)

80.0
(49.0–94.3)

80.0
(49.0–94.3)

4. Discussion

The main aim of the present study was to verify, and then to validate in an independent
cohort, if ML algorithms, implemented with gait analysis variables, can distinguish PD
patients with MCI from those without it. To this end, firstly, spatial and temporal parameters
were acquired in a motion analysis laboratory in three different gait conditions for each
patient. Subsequently, univariate statistical analysis and ML analysis were implemented on
all gait parameters. Furthermore, the wrapper approach for feature selection and optimized
different ML classifiers were employed in order to catch the PD-MCI from the PD-NO
MCI. Furthermore, all the ML analyses were tested on an internal dataset of 60 patients
and validated on an external dataset of 20 patients. In the present study, coherently with a
recent meta-analysis [40], PD-MCI patients were older and affected by more severe motor
symptoms, reflected by a higher H and Y stage and an increased motor score for the
MDS-UPDRS III (MDS-UPDRS III). As reported in the Methods section, we consecutively
enrolled PD patients, fulfilling inclusion and exclusion criteria, without “a priori” selection,
thus, including a PD population representing, as much as possible, the natural course
of the disease. This procedure obviously brings out the clinical variables commonly
associated with PD-MCI, without affecting, in our opinion, the clinical significance of the
present results. Furthermore, consistently with previous findings [6,41,42], we confirm that
PD-MCI, as compared with PD-NO MCI, showed worse gait performance and reduced
dynamic balance, especially under the dual task condition, with a subsequent increased risk
of falling. In particular, compared with PD-NO MCI, PD-MCI patients displayed reduced
step length, cycle length and velocity and increased double support phase and stance phase.
Although, PD-MCI versus PD-NO MCI patients showed significant differences in all three
tasks, displaying more dysfunctions during the COG task. These findings further support
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the tight connection between walking performance and cognitive dysfunction in PD, where
the magnitude of the dual task interference on gait in PD appears to be directly related to
the severity of the underlying cognitive dysfunction [7]. Additionally, in line with previous
research [22,43,44], our ML algorithms detected PD-MCI with an accuracy of over 80.0%.
Despite obtaining comparable accuracy, our algorithm recognized PD-MCI with lower
sensitivity.

In a previous study, spatial and temporal parameters were used to classify MCI in
PD patients by implementing three ML algorithms, but the dataset was composed of 45
subjects, no investigative statistical analysis was performed, the Synthetic Oversampling
technique was employed to augment the dataset through artificial data and there was no
validation in the ML analysis [21].

Similarly, but using a different protocol, Chen et al. distinguished PD-MCI patients
from subjects with MCI without PD, by gait and jump parameters using three conditions
with BTS G-WALK. The obtained gait parameters were trained with the SVM classification
model, reaching an accuracy of 91.67% [22]. Indeed, the very good accuracy of these
models might denote gait differences between subjects with and without PD rather than
gait patterns specifically related to the type of MCI. In addition, very recently, Ghoraani and
collaborators determined the gait features that are important in developing an ML-based
detection of healthy, MCI (of unspecified nature) and Alzheimer’s disease groups [43].
Similarly, Boettcher et al. developed an ML approach to analyze gait data during a dual
task condition in order to distinguish subjects with any type of cognitive impairment from
healthy individuals [44].

In contrast with such research that included subjects with cognitive impairment of
disparate origin, the present study focused on a more homogeneous cohort, namely PD
patients, categorized in two subgroups based on the presence of MCI, thus, allowing us to
attribute the difference between the two groups to the presence of MCI. In addition, it is
worth noting that, differently from the above-mentioned findings, we achieved comparable
evaluation metrics but obtained a subset of specific gait features, even on an external
validation dataset, thus, evidently increasing the reliability of our results. Indeed, another
strength of this study is the presence of a good number of subjects, i.e., 80, whose gait was
acquired through an optoelectronic system.

Indeed, to our knowledge, this study is the first one aiming to identify a subset of
quantitative gait features, through an ML method, with the scope of detecting PD patients
with MCI, using validation on an external dataset. It is worth noting that the results
obtained on the external dataset were better than the results on the internal dataset; this
supports the generalization ability of the learned model on the internal dataset and the
absence of over-fitting in the training phase.

The present study, of course, has some limitations. The analysis focused only on gait
patterns, i.e., spatial and temporal parameters extracted by gait, but an extension of the
work could consist of also extracting kinetic and kinematic features to perform the same
type of classification in order to investigate the differences that might come out. Similarly,
patients could perform other postural exercises (i.e., sway) to test the feasibility of other
features. Finally, as the performance of ML algorithms was widely influenced by feature
selection, the efficacy of different feature extraction algorithms, such as maximum relevance
and minimum redundancy strategy, could be evaluated on gait parameters.

5. Conclusions

The present study further supports the close relationship between gait dysfunction
and MCI in PD. In addition, importantly, it shows that selected gait features might serve
to implement ML algorithms able to detect PD-MCI, even on an independent dataset.
Recently, Landolfi et al. reported, in their systematic review, that the discrimination
between PD subtypes has not been studied enough and there has been scarce comparability
of the outcomes due to the heterogeneous patients’ selections and small sample size,
usually made up for using the cross-validation technique, a process that could create data
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overfitting [18]. In this study, we overcame all of these main limitations from previous
research by enlarging the sample size, selecting homogeneous patients and introducing
the test on a completely external set of patients. In conclusion, this research still supports
that peculiar quantitative gait features, such as stance phase, mean velocity, step length
and cycle length, may represent a surrogate biomarker for cognitive impairment in PD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23041985/s1, Table S1: Clinical-demographic features of PD
patients with mild cognitive impairment (PD-MCI) belong to internal dataset and external dataset
(mean ± standard deviation); Table S2: Clinical-demographic features of PD patients without mild
cognitive impairment (PD-noMCI) belong to internal dataset and external dataset (mean ± standard
deviation); Table S3: Confidence interval for accuracy, sensitivity, specificity and precision of each
algorithm.
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