
 

 
 

 

 
Animals 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/animals 

Review 1 

Etiopathogenesis of canine cruciate ligament disease: a scoping 2 

review 3 

Gert W. Niebauer1* and Brunella Restucci1 4 

1 Department of Veterinary Medicine and Animal Production, University Federico II, Naples, Italy 5 

* Correspondence: author  gerhard.niebauer@unina.it  +39 3384745778 6 

Simple Summary: Spontaneous rupture of the cranial cruciate ligament in stifle joints of dogs is 7 

one of the most common veterinary orthopaedic problems. Largely unknown mechanisms pro-8 

gressively weaken intra-articular structures which eventually fail; joint instability, osteoarthritic 9 

changes, pain, and dysfunction are the sequels. In general, surgical treatment is recommended 10 

aiming at stabilizing the hypermobile joint by a variety of surgical methods. Despite much progress 11 

in rendering surgical treatment more efficient, osteoarthritic changes, although effectively miti-12 

gated by surgery, continue, and persist. Improved knowledge on causes of joint and ligament 13 

degradation would aid prevention and treatment. This review focuses on papers contributing to 14 

knowledge of causes; that is, on local and systemic features, on articular inflammatory and degen-15 

erative changes. Based on recent work, a systemic, metabolic multifactorial disease background 16 

emerged, and a new, generally accepted term has been coined: “canine cruciate ligament disease”. 17 

Primary osteoarthritis and collagen degradation seem to be the underlying key features of cruciate 18 

ligament disease. Besides re-defining the pathogenesis in the dog, these findings render the canine 19 

joint disease a potentially useful clinical animal model for human osteoarthritic diseases. Thus,  20 

trying to unravel the enigma of spontaneous cruciate ligament disease, may benefit the treatment 21 

of both canine and human degenerative joint disease, in general. 22 

Abstract: Spontaneous rupture of the cranial cruciate ligament in dogs remains a pathoetiologic 23 

puzzle. Despite much progress in research over the past years, the systemic and local mechanisms 24 

leading to ligament degeneration and structural failure, remain largely obscure. This scoping re-25 

view focuses on pathogenesis and aims at summarizing and interpreting today’s knowledge on 26 

causes of canine cruciate ligament rupture; that is, on the multifactorial mechanisms leading to 27 

degenerative stifle joint disease with collagen matrix degeneration and structural failures. Thus, 28 

the initial view of traumatic ligament rupture, fostered by “wear and tear”, has clearly been re-29 

placed by a new concept of systemic processes linked to progressive degenerative joint disease and 30 

ligament failure; thus, the term “Cranial Cruciate Ligament Disease” has been coined and is gen-31 

erally accepted. Also, cruciate ligament rupture in people shares some similarities with the lesion 32 

in dogs; therefore,  the review includes also comparative studies. The methods used were based 33 

on the PRISMA-ScR model (Preferred Reporting Items for Systematic Reviews and Meta-Analyses 34 

Extension for Scoping Reviews). 35 
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 37 

1. Introduction 38 

Spontaneous cranial cruciate ligament rupture (CCLR) in dogs is one of the most 39 

frequently seen conditions in veterinary orthopaedics and carries the highest economic 40 

impact in orthopaedic patient care (in the US)[1]. This painful and debilitating joint lesion 41 

is commonly treated by surgically treating hypermobility, which ensues after ligament 42 

failure. Despite the high overall incidence (~2,55%) with a tendency to increase [2], 43 
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pathoetiology remains obscure and treatments are largely symptomatic and address 44 

biomechanics. There is now consensus that CCLR has a multifactorial background in-45 

volving local and systemic mechanisms with osteoarthritis (OA) being a key feature. 46 

Unravelling the pathomechanisms of this inflammatory and degenerative joint illness is 47 

challenging; this also, because of its biphasic evolution: during a clinically nearly silent 48 

initial phase, progressive collagen matrix degradation of the cruciate ligament develops 49 

and persists[3][4]; this leads eventually to structural failure, most often in the mid-section 50 

and without excessive load[5][6]. Ensuing joint instability exacerbates inflammatory and 51 

degenerative changes in a second phase (secondary OA)[7]. Progression of secondary OA 52 

can be slowed by joint stabilizing surgery; however, the primary, underlying osteoar-53 

thritic disease process continues and prevents in most cases full return to integri-54 

ty[8][9–12]. Thus, the initial pathogenic concept of “wear and tear” followed by ligament 55 

rupture [13], has clearly changed to a new understanding of the joint as an organ affected 56 

by complex and largely idiopathic disease mechanisms leading (among other changes) to 57 

cruciate ligament failure[14]; time-delayed, in more than 50% of cases the contralateral 58 

stifle joint is similarly affected[15,16][17]. Based on these newer insights, the term “Cra-59 

nial Cruciate Ligament Disease” (CCLD) has been coined[7], and similarities between 60 

anterior cruciate ligament rupture (ACLR) in people became increasingly apparent: that 61 

is,  in humans as in dogs, spontaneous (non-traumatic) cruciate ligament tears are now 62 

defined as “non-contact” injuries with unclear etiology[18]. Thus, in both species, and 63 

despite different conformational biomechanics, idiopathic degenerative mechanisms 64 

weaken ligaments and cause failure, clearly unrelated to a single traumatic event[19]. 65 

This scoping review aims at identifying and interpreting studies that contribute to 66 

pathogenesis and to disease mechanisms in canine CCLD; also included were papers 67 

addressing comparative pathoetiology of cruciate ligament rupture. Although several 68 

review articles focussing on possible causes of CCLR were published previous-69 

ly[20][21–24][14,25], an update in form of a scoping review centred on etiopathogenesis 70 

may be warranted. New directions for future studies may become identifiable, with the 71 

aim to improve treatment of spontaneous CCLR through a better understanding of dis-72 

ease mechanisms. 73 

2. Materials and Methods 74 

The scoping review was based on the PRISMA-ScR (Preferred Reporting Items for 75 

Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) model. Publica-76 

tions to be evaluated were extracted by the following search criteria in PubMed, Web of 77 

Science and in the author’s personal database: “canine cruciate ligament rupture OR 78 

cruciate ligament disease AND pathogenesis OR (a)etiology”. In PubMed and Web of 79 

Science, on 17/07/22, this search yielded 271 hits, of which 141 were eliminated by the 80 

following exclusion criteria: studies on experimental models (Pond-Nuki), on surgical 81 

treatment and complications thereof, and on diagnostic imaging, when unrelated to 82 

pathogenesis. To the remaining 130 papers, several older texts were added, which were 83 

retrieved by the above search criteria in the author’s reference collection. Some of these 84 

add-ons are in other than English language and not listed in electronic databases because 85 

of the early year of publication. For enhanced comprehension, a short introductory sec-86 

tion reviews anatomical, physiological, and biomechanical features of the stifle joint, fo-87 

cusing on descriptions with links to pathophysiology. Then, and based on their focus on 88 

pathoetiology, papers were grouped as follows (with occasional overlap): 89 

Cruciate ligament anatomy, physiology, biomechanical features (3.1) 90 

Risk factors: breed, sex, neuter status, weight, age, activity (3.2) 91 

Genetics (3.3) 92 

Biomechanics/joint functional anatomy/orthopedic conformation (3.4) 93 

Osteoarthritic changes (3.5) 94 

Inflammation, cytokines, immune mediation, apoptosis (3.5.1) 95 

Synovial membrane, matrix collagen, ligaments, menisci (3.5.2) 96 
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Systemic factors (hormones, metabolites, diseases, infections, immune system) 97 

(3.5.3) 98 

Late-stage osteoarthritis (3.5.4) 99 

3. Results 100 

3.1. Cruciate ligament anatomy, physiology, biomechanical features 101 

The functional anatomy of the ligaments and menisci of the stifle joint aiming at ex-102 

plaining failure and evaluating joint stabilization techniques was extensively studied by 103 

Arnoczky et al., and more recently by de Rooster et al.[26–30][31]. The cranial cruciate 104 

ligament (CCL) was found to have a multifascicular structure consisting of multiple col-105 

lagen bundles, which spatial orientation is directly related to its function as a constraint 106 

of joint motion. This arrangement results in a different portion of the ligament being taut 107 

and therefore functional, throughout the range of motion. The metabolism of the CCL is 108 

provided through its intrinsic blood supply and by diffusion through an enveloping 109 

synovial sheet[32]. The synovial envelope, when intact, shields the CCL from direct 110 

synovial fluid contact, so that the CCL, at least functionally, can be considered an “ex-111 

tra-articular” structure. Periligamentous vessels from this synovial envelope penetrate 112 

the ligament transversely and anastomose with a longitudinal network of 113 

endoligamentous vessels which originate from the proximal and distal osteochondral 114 

insertions. However, those femoro-tibial attachments do not contribute significantly to 115 

the vascularity of the CCL[33]. Especially the central aspect is poorly vascularized and 116 

features endarterial loops[34]; this is also the zone of initial ligament degeneration and 117 

rupture[35,36][37,38].  118 

For recent reviews on biomechanics of the stifle joint as related to CCLD 119 

etiopathogenesis see Cook and Spinella et al.[14][23]. Among the many forces acting 120 

during locomotion on the cruciate ligament, cranial tibial trust seems to exhibit the 121 

strongest load which is counteracted by the CCL[22]. This cranially directed shear force is 122 

suggested to increase during weight bearing dynamically with increasing caudo-distal 123 

inclination of the tibial plateau[39]. Neutralizing tibial trust has become the gold stand-124 

ard of surgical therapy; this is achieved by either lowering the inclination angle of the 125 

tibia plateau through specific rotational osteotomies (TPLO)[40] [41], CORA-based level-126 

ling osteotomy (CBLO)[42], cranial closing wedge osteotomy (CCWO)[43], or by 127 

osteomyzing and advancing the tibial tuberosity to achieve a dynamically neutralizing 128 

angle of ~ 90 between patellar ligament and tibial plateau (TTA)[44][45]. 129 

3.2. Risk factors: breed, sex, neuter status, weight, age, activity 130 

Steep tibial plateau angle (>30, depending on dog size and breed)[22][46] and nar-131 

row relative width of the tibial tuberosity [47] are conformational risk factors which are 132 

aggravated by higher-than-normal body weight[48]. Early neutering (less than 12 months 133 

of age) is a risk factor for developing an increased tibial plateau angle and is, in general, 134 

increasing by 5% in males and by 8% in females the risk for CCLR [46,49]. Bilateral CCLR 135 

may occur time-delayed between 1 and 2 years in ~ 40-50% of cases.[50]; large breed dogs 136 

and severity of osteoarthritic changes are factors of increased risk also for bilateral 137 

CCLD[16,51][17]; athletic body conformation in agility dogs, on the contrary, decreases 138 

the risk of CCLR[52]. Breed-related risk is generally linked to heavy body conformation 139 

and large breed dogs; for a listing of breeds see[2]; some breeds, however, have a notably 140 

low prevalence or quasi absence of CCLD: e.g., Dachshund, Greyhound, Afghan, Shi-tzu, 141 

Pekingese. Although speculative as for a causal link, it may be of interest that in dachs-142 

hunds the CCL seems to have a denser vascular network throughout the ligament as 143 

compared to other breeds[53]. Intact female dogs, overall, are twice as likely to develop 144 

CCLD as compared to males[54]; neutering in both sexes increases the risk of CCLR[55], 145 

although obesity, linked to neutering might be a cofounding factor. Obesity per se 146 

quadruples the risk of CCLR[54]. Heavy body weight, whether as normal feature of large 147 
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breed dogs or linked to obesity, increases the risk of ligament failure[48,56,57]. Age, as in 148 

most degenerative joint diseases, is a risk factor: regardless of breed, this risk peaks 149 

around 8 years of age, however, breeds with a high prevalence for CCLD (e.g., Boxer, 150 

Labrador Retriever, Rottweiler), tend to develop the disease earlier in life[48,58]. Physical 151 

exercise and athletic constitution, on the other hand, are negative risk factors[52]. For 152 

epidemiological studies on larger cohorts see also [56,59] 153 

3.3. Genetics 154 

There is a strong breed related predisposition for CCLD[48,60][61][62][63][64]; re-155 

cently, several genes (single nucleotide polymorphisms), common to dogs with high risk 156 

for CCLR were identified through genotyping[65][66]. The set of key genes identified in 157 

susceptible dog breeds is coding for collagen strength and stability and are involved in 158 

extracellular matrix formation[67][68]. Thus, on the morphologic level, a genetic back-159 

ground has been identified concerning ligament formation and strength[69][70][71]. On 160 

the other hand, in another study, no difference in gene expression has been found[72]. 161 

However, candidate genes were identified to be involved in tibial plateau slope for-162 

mation and in developing a compressed infrapatellar fat pad, a surrogate for stifle oste-163 

oarthritis and CCLR[73].  164 

3.4. Biomechanics / joint functional anatomy / orthopedic conformation 165 

The healthy CCL is among the strongest ligaments[74], with an average tensile 166 

strength of 92 N/mm2 or 18,2 Megapascals[75]. External breaking force causes rather an 167 

avulsion fracture, especially in younger dogs, than a failure of the ligament itself. On the 168 

other hand, and in the majority of spontaneously ruptured CCL’s, tearing occurs in the 169 

central part of the ligament and is preceded by degenerative processes and collagen 170 

degradation[13][7]. This central section of the CCL is poorly vascularized[32,34,76][53], 171 

giving raise to the concept that the vascular microenvironment of this core region is un 172 

underlying condition for ligament failure[37]. Degenerative changes, immune complex 173 

deposition, lack of scar formation and insufficiency of healing all may be linked to the 174 

peculiar microvascular anatomy of the CCL[36,77][78,79]. The following studies are fo-175 

cusing on biomechanics of the stifle with CCLR and are based on the concept of the joint 176 

being an organ[80], which includes intercondylar notch[81], cartilage[82–84], joint cap-177 

sule[85][86], synovial fluid, menisci, collateral ligaments 178 

[27,28,31,87][14,23,30,88][27,82,83,89–96], the patella[97,98], and articulating bones[99].         179 

3.5. Osteoarthritic changes  180 

Osteoarthritis (OA) is a key feature of CCLD[100][21].Early osteoarthritic changes 181 

are already identifiable in stifle joints with little or without  instability  such as in cases 182 

of partial rupture[3,101–105]. The use of advanced imaging techniques and arthroscopy 183 

clearly demonstrate the presence of inflammatory and degenerative changes prior to 184 

ligament failure and joint instability[94,106–108]. This largely idiopathic phase of pri-185 

mary OA is subject of most studies in search for etiopathology; in contrast to primary 186 

OA, secondary OA can be studied in animal models (Pond-Nuki model) such as by ex-187 

perimental transection of the cranial cruciate ligament[109,110]. In spontaneous CCLR, 188 

joint degrading processes precede instability, are only enhanced after rupture, and are 189 

ongoing[111]. Thus, and despite surgical joint stabilization, OA progresses, although 190 

mitigated in relation to the efficacy of the stabilization method[112][113–115][8,116] 191 

[116][117][118][119]. Lesions of menisci and other intra-articular structures often accom-192 

pany ligament failure or are the sequel of instability; they may contribute to and enhance 193 

OA[9,120][82,83,89–94,96,106,120–124]. Non-surgical treatment strategies aim therefore at 194 

identifying early-stage OA; to that end, the search for biomarkers of OA and for metabo-195 

lites of structural changes is ongoing in both human and veterinary medi-196 

cine[111][125][126][127].  197 
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3.5.1. Inflammation, cytokines, immune mediation, apoptosis 198 

Collagen degradation is a key feature of OA, mediated at large by matrix 199 

metalloproteinases (MMP’s), mainly MMP-1,2 and 13[128][129] as well as 200 

MMP-3[130][131]. Matrix collagenase activity in ruptured canine cruciate ligaments 201 

samples has been described early on [132][133] and has been linked with collagen type I 202 

fiber creep and ligament failure [134]. On the other hand, collagenase generated collagen 203 

type II metabolites, deriving from joint cartilage, have not been found elevated in 204 

CCLR[135]. In synovial fluid samples of dogs with CCLR and OA, upregulation of 205 

degradative enzymes, metabolites and inflammatory cytokines has been demonstrated in 206 

several studies: iL-1β, iL-6, iL8, TnF-α expression correlates with inflammatory cycles of 207 

OA[136][137] and decrease after successful surgical treatment[138]; however, the search 208 

for cartilage derived OA-biomarkers such as fibronectin[139] and keratan- and chon-209 

droitin-sulfate epitopes has not yield clinical usefulness so far[130]. While cartilage de-210 

rived nitric oxide metabolites were found increased in canine OA, no significant correla-211 

tion with CCLR was  found [140]. However, nitric oxide seems to mediate cell death and 212 

apoptosis of ligamentocytes in CCLD, expressing stronger effects in cranial cruciate 213 

ligaments as compared to the caudal CL[141], the collateral ligaments of the stifle and the 214 

round ligament of the femoral head[142]. That programmed cell death may play a role in 215 

CCL degeneration  finds confirmation in a later study by the same group[143]; yet it 216 

remains open, whether apoptosis is an epiphenomenon or an etiologic factor. The fact 217 

that apoptosis has equally be found in partially ruptured CCL demonstrates that apop-218 

tosis is already present in early stages of CCLD[104] However, other trigger mechanisms 219 

besides nitric oxide  seem involved in programmed ligamentocytes death, as selective 220 

blocking of nitric oxide does not influence apoptosis[144]; yet mediators of apoptosis 221 

cause more fibrocyte death in cells derived from cranial cruciate ligaments as compared 222 

to those of the caudal ligament[145]. Among inhibitors of nitric oxide, doxycycline has 223 

been investigated as potential medical treatment for OA and CCLR[146]; it’s efficacy to 224 

reduce nitric oxide via reduced stromelysin production has been shown in OA cartilage 225 

samples but not in ruptured cruciate ligaments[147]. Similarly, doxycycline, a presump-226 

tive down-regulator of intra-articular MMP activity, has been shown relatively ineffec-227 

tive to reduce inflammatory changesin CCLD postoperatively [129]. A recent systematic 228 

review evaluating the efficacy of doxycycline to treat CCLR-related OA confirms these 229 

mixed results, but also states that clinically some positive results in terms of decreased 230 

inflammation and pain were seen. [148]  231 

3.5.2. Synovial membrane, matrix collagen, ligaments, menisci 232 

Inflammatory changes, typically seen in CCLD, affect the entire joint, especially the 233 

synovial membrane. Synovitis is already present  prior to ligament failure, demonstrat-234 

ing an early and ongoing inflammatory collagen degrading process[149]. In later stages 235 

and in unstable joints, the inspissated and often villous synovial membrane contains 236 

largely mononuclear cells. Abundant B- and T-cell lymphocytes, plasma cells, tar-237 

trate-resistant acid phosphatase (TRAP) activated macrophages, and dendritic cell infil-238 

trates are present [150][151][152,153]; the degree of these inflammatory changes is linked 239 

to the degree of degenerative changes within the CCL[63]. Although bacterial DNA has 240 

been occasionally detected by PCR in cases of CCLR[154], an infectious etiologic com-241 

ponent of CCLD is unlikely. Nevertheless, type and quantity of synovial cellular infil-242 

trates are signs of an immune response; immune-mediation as one possible pathogenic 243 

factor was first demonstrated by finding C1q-binding immune complexes within rup-244 

tured CCL’s and joint capsules[78][155]; a link between intra-ligamentous immune com-245 

plex deposition and collagen type I fiber degradation could then be demonstrated[134]. It 246 

has been suggested that trapping and deposition of immune complexes may be enhanced 247 

by the particular and scarce blood supply of the central part of the CCL, containing 248 

endarterial vessels[32][31][156]. The ensuing hypothesis that the IgG of the immune 249 
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complexes might have epitopes against ligament-derived collagen type I was later-on 250 

confirmed[157][158,159]. These antibodies were found in synovial fluids of affected sti-251 

fles and to a lesser degree in the contralateral stifles, and in circulation, indicating sys-252 

temic immune reactions[160]. Simultaneous bilateral CCLR is relatively rare but 253 

time-delayed it is relative common; one study describes contralateral CCLR to occur in 254 

one third of the dogs within a year after the first rupture[58],others report a somewhat 255 

higher incidence of ~50% with mean intervals of ~2,5 years[161]. Osteoarthritic changes 256 

(osteophytes), when identified bilaterally in dogs with unilateral CCLR, are considered 257 

risk factors for insipient contralateral ligament failure[162,163]. 258 

A fair number of studies focusses on degenerative changes within the ligaments. The 259 

following morphologic/anatomical factors have been identified as risk factors for me-260 

chanic and/or metabolic damage to the CCL[87]; tibial plateau angle and tibial trust[164], 261 

the above stated poor intrinsic blood supply[53][33,165](Figure 1) and narrow femoral 262 

intercondylar notches, among others, have been cited[81][166][167]. 263 

 264 

 265 

Figure 1. Schematic drawing of the blood supply to the canine cranial cruciate ligament; IFP 266 

infrapatellar fat pad, SE synovial envelope (epiligament): arrows indicate afferent supply, broken 267 

arrows show endosteal vessels, only marginally (from proximal) or not entering ligament matrix 268 

(from Niebauer GW, Pathomechanisms in canine cruciate ligament rupture <in German>. PhD 269 

Thesis 1982, Vet. Med Univ. Vienna, Austria). 270 

Micromorphologic studies of completely or partially ruptured ligaments show the 271 

following: ligamentocyte (fibroblast) transformation into spheroid cells, fibroblast ne-272 

crosis and fibrocartilaginous metaplasia are the principal cellular changes[36][77];  most 273 

authors  attribute these cellular transformations to hypoxic metabolism in the poorly 274 

vascularized core of the CCL; apoptosis seems not to play a role as promotor of fibroblast 275 

decay[104,168] [145]. Macrophages are the predominant extrinsic cells and are  scaven-276 

gers of C1q-binding immune complexes[155][169]; as antigen presenting cells, they play a 277 

key role in immune responses and in cytokine-induced up-regulation of proteolytic en-278 

zymes (collagenases)[170]. Thus, lymphocytes[171] and TRAP+ macrophage-like cells 279 

migrating from the epiligament have been implicated as promotors of progressive CCL 280 

degradation [172][173]. Also, increased expression of immune-response genes for 281 

cathepsin K, MMP-9, TRAP was found in synovial fluid of dogs with CCLD[159,172]. 282 

3.5.3. Systemic factors  283 

Based on results of these studies, a multilevel hypothesis of immune-mediated 284 

pathomechanisms has emerged; Doom et al. have published a well-illustrated compre-285 

hensive overview of all possible implications of humoral and cell-mediated immune re-286 

sponses and their interactions in CCLD[174]. In short: the intact CCL is shielded from the 287 

joint space by a thin synovial membrane envelope (epiligament); when this membrane 288 

ruptures early on in the joint disease, degenerated collagen type I fibrils become exposed 289 

to synovial fluid and may evoke an (auto-) immune response; circulating anti-collagen 290 

antibodies may contribute to contralateral CCLD and local cellular responses are trig-291 

gering cytokine cascades and proteolytic collagen matrix degeneration; the destructive 292 

processes seem to progress in form of a vicious cycle whereby enhanced exposure to 293 

collagen metabolites enhances immune-mediated inflammatory reactions which in turn 294 

upregulate proteolysis, augmenting exposure to collagen-derived epitopes. [175]These 295 

pathomechanisms might be enhanced or accompanied by immune-complexes trapped in 296 

the end-arterial loops-containing microvasculature of the central part of the CCL[155]; 297 

macrophage and dendritic cell-derived antigen presentation might therefore not only 298 

originate from scavenging cells migrating from the epiligament, but also from in-299 

tra-ligamentous macrophages.  300 
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Interestingly, in rheumatoid arthritis of dogs, bilateral cruciate disease often devel-301 

ops with similar pathologic features[175]. 302 

There is agreement on collagen lysis as being a key factor  in cruciate ligament de-303 

generation, yet the initiating mechanisms triggering ligament fiber decay remain un-304 

clear[176].  It has long been suspected that gender and hormones of reproduction may 305 

be linked to CCLR; [177]; in fact, intact female dogs (independent of other risk factors) are 306 

twice as likely to develop CCLD as compared to intact male dogs[54]; in a large cohort of 307 

over 3000 dogs, overall prevalence of CCLR was 3,48%; gonadectomy increases preva-308 

lence in both sexes and was found as 2,09% in intact males and 5,15 % in neutered fe-309 

males [178]. These epidemiologic features, linked to the previously stated molecular bi-310 

ologic data, are in support of hormone-related pathomechanisms: for instance, female sex 311 

hormones have been found to upregulate MMP-mediated collagen degradation[179]. As 312 

described in human medicine, women in general, and female athletes in specific[180], 313 

inherit an increased risk for ACL[181][182]. In women, knee joint laxity and ACL has 314 

been found linked to the reproductive cycle, hand-in-hand with surges of estrogen and 315 

relaxin[183,184]. Relaxin modifies and weakens the molecular structure of collagen, 316 

causing fiber sliding, creep, and joint laxity[185]. Relaxin involvement in cruciate liga-317 

ment rupture has been demonstrated in women[186] and in dogs of both sexes[187]. 318 

These latter insights are in support of the general concept of a stifle joint disease with 319 

involvement of systemic/humoral factors. 320 

3.5.4. Late-stage osteoarthritis 321 

In researching pathogenic mechanisms, most of the reviewed studies focus on the 322 

early stages of the joint disease (primary OA). Nevertheless, late and end-stages of CCLD 323 

should also be reviewed: secondary OA invariably progresses, especially in untreated 324 

cases, accompanied by typical chronic inflammatory changes (osteophytes, cartilage 325 

damage)[107,188]; severity of degradation largely depends on the cited risk factors: 326 

heavy body weight, breed, age, sex, and neuter status. However, independent of these 327 

factors, in all dogs with CCLR, the fate of the ruptured ligament is the same: healing and 328 

neo-vascularization do not take place and within 2 to 4 months after ligament rupture, 329 

collagen fibrils will have been lysed and absorbed, or reduced to stump-like remnants, 330 

lined with a thin inflammatory membrane[189][190], such as exemplified in Figure 2.  331 
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 332 

Figure 2. Intraoperative image of a cranial cruciate ligament ruptured 4 weeks previously; note 333 

distal ligament stump with rounded fibrillar edges due to ongoing collagenolysis; surface is partly 334 

covered by an inflammatory tissue membrane (reddish patches). The  structure visible in front of 335 

the ligament is the remnant of the epiligamentous synovial shield which covered the intact cruciate 336 

ligament (image by the author). 337 

Osteophytes formation (Fig. 3) is another feature of severe chronic OA together with 338 

joint capsule fibrosis[118,119]. These changes enhance pain and disuse on one hand, but 339 

on the other, proliferative remodeling contributes to joint stabilization. In fact, in such 340 

advanced stages of OA with surgically untreated CCLR, on clinical examination, the 341 

typical drawer sign ( cranio-caudal sliding of articulating bones) tends to disappear and 342 

becomes very subtle . In end-stage ankylosing OA, although debilitating, the decreased 343 

range of motion may result in decreased ambulatory pain. Thus, when seen from a 344 

pathophysiologic standpoint, it may even be argued that end-stage OA is the result of a 345 

(failed) attempt to “heal” an internally deranged joint through lysis of debris, by osteo-346 

phyte formation, and joint capsule fibrosis, resulting  in a functionally impaired but in-347 

creasingly stable joint.  348 
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349 
    350 

Figure 3. Late-stage OA in a dog 4 months after untreated CCLR; note bilateral intra-capsular os-351 

teophytes and cartilage erosion on femoral trochlear ridges; the tendinous structure is the insertion 352 

of the extensor digitorum pedis longus muscle (image by the author). 353 

4. Discussion 354 

Although a clear understanding of the etiopathogenesis of CCLD is still lacking, 355 

several noteworthy contributions, helpful in unravelling the multifactorial causes, have 356 

been made over the last decade. There is now strong evidence that ligament failure is 357 

preceded by a clinically relative silent and progressive phase of collagen matrix degen-358 

eration which structurally weakens intra-articular structures, and above all, the CCL. In-359 

flammatory changes, characterized by largely mononuclear chronic synovitis, progres-360 

sively affect the entire joint[63]. Pathogenetic studies on a larger scale have been ham-361 

pered in the past by the spontaneous nature of the disease, which cannot entirely be rep-362 

licated by experimental transection of the CCL (Pond-Nuki Model)[191]. Therefore, 363 

samples for tissue-based research in client-owned dogs during the early disease stages 364 

through surgical biopsy could only occasionally be obtained. Today, however, the wide 365 

use of mini-invasive arthroscopy and late generation diagnostic images do provide new 366 

information on subtle changes; thus, villous synovitis, partial ligament tears, collagen fi-367 

brillation, cartilage, and occasionally meniscal damage became detectable in the earlier 368 

phases of the disease, when joints are biomechanically still intact[192]. Through direct 369 

endoscopic visualization, it has also become evident that the caudal cruciate ligaments 370 

undergo similar degenerative changes, although rarely rupture[107]. These and the 371 

finding that the contralateral stifle joints are commonly affected by the same disease 372 

process, either simultaneously or time-delayed, are additional support for the general 373 

accepted concept of seeing the synovial joint as an organ and consequently CCLR as be-374 

ing an organ disease with systemic features.   375 
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On the clinical level, progressive ligament weakening (partial ligament tear), to-376 

gether with increasing inflammatory changes, causes joint laxity and pain. Eventually, 377 

CCL failure ensues, resulting in sudden joint instability, in intra-articular debris and ex-378 

acerbated inflammatory reactions (secondary OA). Collagenolytic mechanisms pursue 379 

and CCL remnants, when not surgically removed, are slowly metabolized by proteolysis 380 

and phagocytosis; metabolites enhance inflammatory/degenerative changes which in 381 

untreated cases may result in sustained, severe OA[119]. Factors such as heavy body 382 

weight and breed disposition negatively affect outcome. However, dogs with less than 15 383 

kg body weight, treated non-surgically, have an about 75% chance of return to full joint 384 

function, albeit with progressing OA[193][24]. These data have not been updated since on 385 

a larger cohort; a re-evaluation seems useful in the light of today’s general trend to sur-386 

gically treat CCLD, even in small, leigh-weight dogs[41]. In untreated cases, it is however 387 

noteworthy, that chronic inflammatory changes may, in the end, reduce instability 388 

through joint capsule fibrosis and osteophytosis. This stabilizing effect, however, is in 389 

general not outweighing the negative effects of the degrading inflammatory mechanisms, 390 

especially in heavy-weight subjects[109].  391 

The key questions of 1) which mechanisms initially trigger ligament collagen de-392 

generation ? and 2) why progression to structural failure occurs ?, remain still incom-393 

pletely answered. Based on the here reviewed findings and in synthesis, the following 394 

chain of biomechanical and biomolecular events may underly CCLD: 395 

The intact CCL prevents caudo-cranial translation of the tibia; therefore, a steep 396 

caudo-distal slope of the tibial plateau, enhanced by a narrow femoral notch, is seen as 397 

the main biomechanical stressor for the cranial CL[166]. In addition, musculoskeletal 398 

factors such as the integrity of the quadriceps mechanism as agonist of the CCL, play a 399 

role in translational forces. Quadriceps amyotonia may thus have a negative effect in 400 

CCL-deficient joints. Heavy body weight and/or obesity add to the strain and to laxity, if 401 

present. Although the CCL, by definition, is an intra-articular structure, the intact 402 

epiligamentous envelope effectively shields the CCL from the synovial joint space. 403 

Whether or not mechanically induced, laceration of this well vascularized synovial sheet 404 

(epiligament), is one of the first observable intra-articular lesions. Disintegration of or 405 

damage to the envelope, results in reduced blood supply, “unmasks” the ligament, its 406 

debris, and metabolites, rendering the CCL a true, poorly vascularized “intra-articular 407 

structure”[37,156]. Damaged, fibrillating collagen type I matrix gets thereby exposed to 408 

immune-competent cells of the synovial joint capsule via direct contact with synovial 409 

fluid. Mononuclear, largely plasmacellular synovitis and the appearance of local and 410 

circulating collagen type I antibodies strongly suggest an autoimmune reaction[174]. 411 

Whether immune mediation is an etiological component or the inflammatory sequel of 412 

intra-articular exposure of collagen debris, remains unanswered at present. Nevertheless, 413 

enhancement of joint inflammation trough a vicious circle of antigen (collagen type I) 414 

presentation, macrophage/dendritic cell activation and MMP upregulation, resulting in 415 

further collagen degeneration, has been well documented[194].  416 

Another contributing factor may be the relatively scarce internal blood supply of the 417 

CCL as compared to the caudal CLR. This especially in the mid-section, the very area 418 

where histologically the first degenerative changes, are verifyable. This may lead to hy-419 

poxic matrix degradation, which per se is unlikely to be causative: it would be highly 420 

improbable that during evolution such imperfectness had withstood Darwinian selec-421 

tion. Yet, the demonstrated absence of healing of ruptured CCL’s may well be connected 422 

to the relative avascularity[34]. On the other hand, the ligamentous micro-vasculature, 423 

containing end-arterial loops, favors immune-complex (IC) deposition. Trapped IC’s, 424 

linked to anti-collagen antibody aggregation, have been found in ruptured CCL[78]. 425 

Immune complexes, triggering cytokine-mediated inflammatory pathways, in turn, may 426 

upregulate MMP’s, causing further collagen decay; thus, a cycle of sustained im-427 

mune-mediated collagenous matrix degeneration may result, enhanced, and perpetuated 428 

by intra-articular debris and ligament remnants. Several months after CCLR, when col-429 
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lagenous debris has been lysed and absorbed, painful inflammatory reactions diminish 430 

or subside in many patients, especially in small dogs which may regain satisfactory limb 431 

function several months after untreated CCLR, despite progressing OA [193]. This may 432 

also lead to the assumption that after CCLR joint instability is the major factor of sus-433 

tained OA in heavier dogs. Similar conclusions can be drawn from post-operative 434 

long-term observations: slow progression of OA cannot be entirely avoided by any dy-435 

namic or static joint stabilizing technique, as none can render a cruciate deficient joint 436 

completely stable[195].  437 

In searching for mechanisms other than immune-mediated inflammatory pathways 438 

up-regulating MMP’s, the peptide hormone relaxin has recently been implicated. Relaxin 439 

may play a role in early phases of CCLD. By binding to its cognitive cellular receptors, 440 

relaxin is a potent activator of matrix collagenases in target tissues. Such receptor binding 441 

has been found in fibroblasts (ligamentocytes) of ruptured CCL. Collagen fiber sliding 442 

and crimping, joint laxity and partial CCLR thus, may be linked to relaxin-induced lysis 443 

of collagen type I cross-links. If confirmed in additional studies, relaxin could be in-444 

volved in the early phases of cruciate ligament weakening and decay. However, such 445 

assumption must be taken with caution as relaxin is well known for its connective tissue 446 

re-modelling properties[196]; therefore, also relaxin, not unlike anti-collagen antibody 447 

formation, might only be an epiphenomenon of the initial collagen matrix degeneration, 448 

which nonetheless remains still idiopathic.  449 

Besides of scientific insight, the primary goal of pathoetiologic studies is prevention 450 

and therapy. Surgery still is the gold standard of therapy with generally excellent results; 451 

it has been shown that long-term outcomes are significantly better when dynamic joint 452 

stabilization is effectuated in early stages of CCLD, that is, in cases of still incomplete 453 

ligament rupture, as compared to complete ligament tear[197]. This clinical observation 454 

might well be linked to a relatively small load of intra-articular collagen debris at the time 455 

of surgery, and a consequently lower degree of immune-mediated joint inflammation 456 

which progression might be reduced by joint stabilization. The general principle of early 457 

disease recognition and early treatment is thus an important consideration also in CCLD. 458 

Recognizing these early disease stages can be challenging. Despite long-term efforts in 459 

human as well as veterinary medicine, the search for early OA markers in general and in 460 

CCLD has not yielded clinically applicable results[198]; nevertheless, orthopaedic ex-461 

amination, arthroscopy and newer medical imaging techniques are helpful identifying 462 

primary OA stages without yet fully developed joint instability. Responses, if any, to 463 

medical treatment target the two main known factors of CCLD: inflammation and 464 

MMP’s derived collagen decay. Thus, NSAID’s and MMP-inhibitors are used with var-465 

ying results, showing clinically better results in early disease stages[146].  466 

To render non-surgical treatment more acceptable and to develop preventive 467 

measures, it seems paramount to gain insight into the initial pathomechanisms of CCLD; 468 

that is, the cellular and molecular mechanisms which likely stand at the very beginning 469 

of the chain of events and develop before the majority of the here reviewed 470 

pathomechanisms become apparent: immune-mediated inflammation and MMP 471 

dysregulation. Future research strategies shall shine light into these still obscure trig-472 

gering mechanisms, pivotal for a better understanding of the causes of CCLD.  473 

5. Conclusions 474 

According to the reviewed literature, the present state of knowledge on the 475 

pathoetiology of CCLD may be summarized as follows: spontaneous structural failure of 476 

the CCL is preceded by a clinically silent phase of primary OA, during which progressive 477 

weakening of the cruciate ligament occurs. Matrix metalloproteinases progressively de-478 

compose and lyse the CCL, enhanced by tissue hypoxemia and immune-mediated in-479 

flammatory changes. Protracted exposure to collagenous debris, acting as antigen, stim-480 

ulates formation of synovia-bound and circulating anti-collagen autoantibodies as well as 481 

local immune complex deposition, which, in return, mediate collagen proteolysis. 482 
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Weakened sufficiently by matrix decay and partial tears, the cranial CL eventually fails, 483 

while the caudal CL, affected to a lesser degree, remains functionally intact. Final struc-484 

tural failure of the cranial CL by non-contact injury is linked to its biomechanics, to joint 485 

conformation, to blood supply and joint metabolism, as well as to body weight and 486 

muscular envelope. Other risk factors such as genetics (breed), sex, neuter status and 487 

obesity are involved as well. Yet, scarce information is available on etiologic mechanisms 488 

acting on the local cellular and molecular level and likely initiating collagen decay. One 489 

candidate for an early MMP-upregulating mechanism may be relaxin-related collagen 490 

fiber degeneration, substantiated by the finding of relaxin/receptor binding on 491 

ligamentocytes. Whether this and/or the vicious cycle-like collagen degeneration by 492 

immune-mediated processes are only epiphenomena or are disease-initiating 493 

pathomechanisms, remains still unanswered.      494 
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