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Simple Summary: In insects, sex determination is generated using intricate and variegate biological
processes that may be effectively described as variations on a common theme. In the model system
Drosophila melanogaster, genetic and biochemical studies have shown that the female-specific Trans-
former (TRA) and the non-sex-specific Transformer2 (TRA2) are RNA-binding proteins that physically
interact to promote female differentiation by female-specific alternative splicing of downstream genes.
This tra gene responds and transduces different primary sex-determining signals, and its master
function is widely conserved in Diptera, Coleoptera, and Hymenoptera. Here, combining yeast
two-hybrid and computational methodologies, we demonstrate that the TRA and TRA2 orthologs of
the agricultural pest Ceratitis capitata physically interact through a molecular mechanism that could
be evolutionarily conserved in other species. These technical approaches can be helpful to verify
or to identify other proteins interacting with TRA and TRA2, for example, those promoting male
sex determination in this and other species, as well as to design new compounds that could induce
masculinization of XX individuals in applications of the Sterile Insect Technique.

Abstract: In the model system for genetics, Drosophila melanogaster, sexual differentiation and male
courtship behavior are controlled by sex-specific splicing of doublesex (dsx) and fruitless (fru). In vitro
and in vivo studies showed that female-specific Transformer (TRA) and the non-sex-specific Trans-
former 2 (TRA2) splicing factors interact, forming a complex promoting dsx and fru female-specific
splicing. TRA/TRA2 complex binds to 13 nt long sequence repeats in their pre-mRNAs. In the
Mediterranean fruitfly Ceratitis capitata (Medfly), a major agricultural pest, which shares with
Drosophila a ~120 million years old ancestor, Cctra and Cctra2 genes seem to promote female-specific
splicing of Ccdsx and Ccfru, which contain conserved TRA/TRA2 binding repeats. Unlike Drosophila
tra, Cctra autoregulates its female-specific splicing through these putative regulatory repeats. Here,
a yeast two-hybrid assay shows that CcTRA interacts with CcTRA2, despite its high amino acid
divergence compared to Drosophila TRA. Interestingly, CcTRA2 interacts with itself, as also observed
for Drosophila TRA2. We also generated a three-dimensional model of the complex formed by
CcTRA and CcTRA2 using predictive approaches based on Artificial Intelligence. This structure
also identified an evolutionary and highly conserved putative TRA2 recognition motif in the TRA
sequence. The Y2H approach, combined with powerful predictive tools of three-dimensional protein
structures, could use helpful also in this and other insect species to understand the potential links
between different upstream proteins acting as primary sex-determining signals and the conserved
TRA and TRA2 transducers.

Keywords: sex determination; development; alternative splicing; autoregulation; protein–protein
interactions; yeast two-hybrid; alpha fold; structure; gene regulation; pest control
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1. Introduction

As in all other pluricellular living forms, developmental choices in insects are often
controlled by differential transcription of master genes and their gene targets. On the
contrary, in several investigated insect species belonging to Diptera, Hymenoptera, and
Coleoptera, the sex-determination regulatory pathway is based mainly on the alternative
splicing of a master gene, transformer (tra), which is switched on or off in female and
male sex, respectively [1–6]. In the female sex, tra female-specific transcripts encode for
functional TRA, a Serine/Arginine-rich disordered protein (RS-type). In contrast, the male
counterpart includes an exonic sequence containing a stop codon and prematurely truncates
the tra open reading frame. This genetic pathway has both flexibility and robustness. The
flexibility relies on the diverging upstream sex-determining primary signals observed in
insect species, families, and orders [7–10]. Its robustness relies on conserved splicing factors
responsible for regulating female-specific splicing, hence, determining and maintaining the
female sex determination [9,11–13].

In the Drosophila melanogaster model system and related Drosophilidae, during em-
bryogenesis, two doses of the X chromosome compose the primary signal activating the
master gene, Sex-lethal (Sxl). At the same time, XY embryos follow a default male sex
determination [14–18]. Sxl encodes a female-specific splicing regulator that promotes
female-specific splicing of tra and of Sxl itself pre-mRNA splicing, maintaining female
sex determination during all development [19]. Structural and functional analysis of the
Drosophila melanogaster transformer (tra) and transformer-2 genes, which encode these two fac-
tors, revealed their involvement in female sex determination by promoting female-specific
splicing of downstream gene regulators, including doublesex (dsx) and fruitless (fru), respon-
sible for modulating hundreds of sexual differentiation genes [6,20–25]. The Drosophila dsx
and fru female-specific exons share copies of a 13 nt long cisregulatory element acting as a
splicing enhancer (dsxRE, dsx repeat element) and recognized by the TRA/TRA2 interacting
complex [26–32]. UV-crosslinking and purified recombinant proteins showed that TRA and
TRA2 bind to this splicing enhancer [33]. Coimmunoprecipitation using a Drosophila cell
line also detected TRA and TRA2 protein interaction. A yeast protein–protein interaction
assay (yeast two-hybrid Y2H; [34]) showed that TRA2 interacts with itself and with TRA
also in the absence of dsx pre-mRNA [35].

Based on these Drosophila data, by inference, a similar model of action was proposed
for TRA and TRA2 orthologous proteins found conserved in the Mediterranean fruitfly
Ceratitis capitata [36–38] and in many other insect species [6]. Indirect evidence supporting
this evolutionary conservation of the TRA-TRA2 interaction model: (1) A conserved female-
specific alternative splicing of tra, dsx, and fru; (2) A conserved tra on/off splicing regulation
in the two sexes; (3) Conserved TRA/TRA2 binding sites in female-specific exons of
dsx and fru orthologues [6,39–43]; (4) The ability of a non-Drosophilidae TRA (Ceratitis
capitata TRA protein), when expressed in Drosophila transgenic mutant flies, to rescue
endogenous tra function, only in the presence of a Drosophila tra2 endogenous gene, despite
its very low protein length (CcTRA/DmTRA, 429aa/197aa) and sequence conservation
(CcTRA/DmTRA 35% similarity and 24% identity) [44].

Nevertheless, in Ceratitis capitata, in addition to the evolutionary conservation of the
tra/tra2 > dsx/fru genetic developmental module, there are relevant differences: the Y
chromosome dictates male sex determination on a default female sex determination [45,46];
the Ceratitis Sxl orthologue is not involved in sex determination [47]. Moreover, Tra/Tra2
putative binding elements are unexpectedly present within the Cctra male-specific exons
region, a finding that supported the conclusion that the Ceratitis tra gene has a novel
autoregulatory function [36]. A maternal input of tra and tra2 genes is essential to start
the positive autoregulatory Cctra loop and act as a feminizing primary signal [36,38]. The
Ceratitis tra autoregulation was found widely conserved in many different insect species,
including Musca domestica [48,49], but not in Drosophila, which lost it before or during the
emergence of the Drosophilidae family [6,50,51].
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In Ceratitis XY embryos, the Y-linked male-determining MoY gene encodes a novel
short protein, which induces either direct or indirect male-specific unproductive splicing
of Cctra (within two hours in 5–7 h old embryos), likely inhibiting the actions of maternal
CcTRA and CcTRA2 on Cctra zygotic pre-mRNAs [52]. Similarly, as in Drosophila, the
male-specific Cctra mRNAs include male-specific exons introducing premature stop codons
and, thus, encoding shorter, likely nonfunctional, proteins (CcTRAM1 59 aa and CcTRAM2
99 aa long) [36]. The continuous reduction/absence of CcTRA protein in the following
embryogenic stages of XY individuals likely leads to the collapse of the Cctra positive
feedback loop and to permanent Cctra male-specific splicing.

In support of this model, temporary depletion of Cctra or Cctra2 mRNAs during
embryogenesis of XX by RNAi or dCas9 led to a permanent shift of Cctra splicing into the
male-specific pattern (mimicking the effect of MoY in XY embryos) and to the development
of XX males [36,38,53]. Unlike Drosophila XX tra/tra males, the reverted Ceratitis XX males
are fertile, indicating the lack of relevant Y-linked fertility factors.

In this intricate framework, we experimentally assessed the direct binding of the
C. capitata TRA and TRA2. We also evaluated the possibility that MOY explicates its function
by interacting with CcTRA or CcTRA2. Moreover, using recently released machine-learning
tools that effectively predict protein structures and their complexes, we also generated an
atomic-level model of the CcTRA/CcTRA2 complex.

2. Materials and Methods
2.1. Rearing of Ceratitis capitata

We used the Benakeion strain, developed by P. A. Mourikis (Benakeion Institute of
Phytopathology, Athens, Greece). The strain was reared in laboratory conditions at 26 ◦C,
60% relative humidity, and exposed to 12 h/12 h light–dark cycles. Adults were fed with
a mixture of sugar and yeast powder (3:1). The larval food was made with 30 gr paper,
400 mL dH2O, 2 mL HCl (Ci = 2%), 10 mL cholesterol (Ci = 2.5%), 8 mL benzoic acid
(Ci = 4%, pH = 2.8), 30 gr yeast powder, and 30 gr sugar. Eggs were collected into Petri
dishes filled with larval food. Pupae were collected and stored in Petri dishes until eclosion.

2.2. RNA Isolation and cDNA Synthesis

According to manufacturer instructions, total RNA was extracted from male and
female adult flies using TRIzol (Ambion, Austin, TX 78744, USA). After the extraction and
quantification, 1 mg of total RNA was reverse-transcribed using LunaScript RT SuperMix
Kit (New England Biolabs, Ipswich, MA 01938, USA) and oligo-dT reverse transcriptase-
based protocol.

2.3. Yeast Two-Hybrid Assay

A Y2H assay based on the GAL-4 system (Matchmaker, two-hybrid system; Clontech,
Palo Alto, CA 94303-4230, USA) was used to investigate the interaction between the MOY,
CcTRA, and CcTRA2 proteins. The full-length coding regions of MoY (MK165756.1), Cctra
(AF434936.1), and Cctra2 (NM_001279408.1) were amplified by PCR using the DreamTaq
polymerase (Invitrogen-ThermoFisher, Waltham, MA 02451, USA) based on the manufac-
turer instructions, using the primer pairs listed in Table 1.

The MoY-, Cctra-, and Cctra2-amplified full-length coding regions were cloned into the
bait vector pGBT9 (Clontech) containing the yeast Gal4 DNA binding domain (BD) and
the prey vector pGAD424 (Clontech) containing the yeast Gal4 activation domain (AD).
In brief, the PCR-amplified products and the vectors were digested using the restriction
endonucleases EcoRI and SalI (Promega, Fitchburg, WI 53711, USA). The manufacturer’s
instructions performed the ligase reaction using the T4 DNA ligase enzyme (NEB). Sequence
analysis confirmed that the DNA fragments cloned into pGBT9 and pGAD424 were in
frame with the Gal4 BD and AD, respectively.
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Table 1. List of the primers used to amplify target cDNAs.

Primer Sequence cDNA bp

Fw_MoY_EcoRI CCGGAATTCCGGATGGATATTGGAAATATTTCATCG 352 bp

Rev_MoY_SalI AAGTCGACCAATCTGCTAGCATGTGTTCC

Fw_CcTRA_EcoRI CCGGAATTCCGGATGAACATGAATATTACAAAGGCTTC 1290 bp

Rev_CcTRA_SalI AAGTCGACCTATTTGTGTGTTTTTGGGCGAAA

Fw_CcTRA2_EcoRI CCGGAATTCCGGATGAGTCCACGTTCACGTAGCC 756 bp

Rev_CcTRA2_SalI AAGTCGACCTAATAACGTGCACGCCGTGGCGA

The Saccharomyces cerevisiae strain AH109 was transformed with all the prey and bait re-
combinant vector combinations using the LiAC/SSDNA/PEG transformation method [54].
The experiment was conducted in triplicate. The double-transformed cells were plated on
a Synthetic-Defined (SD) agar medium that lacked leucine and tryptophan (SD/-Leu/-Trp)
and incubated at 30 ◦C for 3–4 days to verify the presence of the plasmids. The positive
colonies were transferred onto a selective SD medium lacking tryptophan, leucine, and
histidine (SD/-His/-Leu/-Trp) in 20 mM of 3-amino triazole (3-AT).

The protein–protein interaction is verified by the transcriptional activation of the
reporter gene HIS3 and the consequent growth of colonies.

In addition, the self-activation of the proteins was tested by the single transformation
of yeast cells with the recombinant pGBT9 vectors (BD) and growth in SD medium without
histidine and tryptophan (SD/-His/-Trp) containing 20 mM 3-AT. As negative controls,
empty pGBT9 and pGAD424 vectors were used in double transformation experiments with
the recombinant vectors.

2.4. Structural Predictions

Three-dimensional structures of TRA and TRA2 proteins were predicted using the
AlphaFold (AF) v2.0 algorithm [55,56], as implemented in the Colab server (https://colab.
research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb) (ac-
cessed on 25 November 2022) [57].

Predictions were performed without considering any experimental structural tem-
plate derived from homologous proteins (template_mode: none) and using the maximum
allowed number (i.e., 48) of recycles. The best-predicted model (rank 1) out of the five
computed by AF was considered and analyzed after that. The reliability of the AF pre-
dictions was assessed by evaluating the Local Distance Difference Test (LDDT) score and
the Predicted Aligned Error (PAE) [55–57]. The LDDT indicator is a per-residue confidence
score. Protein regions showing values of LDDT higher than 70 are expected to be modeled
with reasonable accuracy.

On the contrary, residues showing LDDT values lower than 50 likely correspond to
regions that do not adopt single structured states in physiological conditions that may
become structured when involved in biomolecular partnerships. PAE matrices report the
estimated errors in the relative position of pairs of residues of protein–protein complexes.
Low PAE values of pairs of residues belonging to different proteins within the complex
suggest that the prediction of their relative positions and orientations is reliable.

3. Results
3.1. CcTRA2 Interacts with CcTRA2 Itself and with CcTRA

To experimentally assess the direct interaction between CcTRA and CcTRA2, we
conducted yeast two-hybrid (Y2H) assays in which each of the two proteins acted either
as bait or prey. To this aim, we amplified the corresponding cDNA fragments by RT-PCR
using RNA extracted from adult medfly females, encoding CcTRA and CcTRA2. Each
cDNA product was cloned in the bait pGBT9 vector (containing the Gal4 Binding Domain,
BD) and in the prey pGAD424 vector (containing the Gal4 DNA Activation Domain, AD).

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb


Insects 2023, 14, 605 5 of 13

We verified that the CcTRA-BD and CcTRA2-BD baits do not autonomously activate
the reporter gene in the yeast cells without a prey protein. The two constructs were
transformed individually with the empty AD reporter vector, and no bait autoactivation
was observed (Figure 1, rows 1–2). As a control, we also individually transformed the
preys CcTRA-AD and CcTRA2-AD, each with the empty BD bait vector, and no activation
was observed (Figure 1, rows 3–4). As a negative control, we confirmed the absence of
activation following the empty BD and AD vectors’ cotransformation, indicating the lack
of intrinsic transcriptional activity on the GAL4-responsive promoter (Figure 1, row 5).
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Figure 1. Yeast two-hybrid assay of CcTRA and CcTRA2 interactions. Row 7 shows the interactions
of CcTRA and CcTRA2. Row 9 shows the interaction of CcTRA2 with CcTRA2 itself. SD-W-L,
Synthetic-Defined agar medium lacking tryptophan and leucine; SD-W-L-H, Synthetic-Defined agar
medium lacking tryptophan, leucine, and histidine. n.d., not-diluted yeast liquid culture (10 µL); 1:10,
1:100, and 1:1000 are the dilutions of the yeast liquid culture.

When we used CcTRA-BD as bait, no interaction was observed with CcTRA-AD
(Figure 1, row 6). Interestingly, the cotransformation of the bait CcTRA-BD with CcTRA2-
AD as preys showed activation at various dilutions (Figure 1, row 7). In contrast, the
cotransformation of CcTRA2-BD with CcTRA-AD showed no interaction (Figure 1, row 8).
A similar lack of interactions in reciprocal combinations has been reported in other stud-
ies [58–61]. This result is possible because steric constraints or improper folding can occur
in specific recombinant protein/GAL4 domain combinations.

In addition, we detected self-interaction of CcTRA2 (CcTRA2-BD cotransformed with
CcTRA2-AD, Figure 1, row 9) also at a tenfold lower dilution (1:100) compared to its
interaction with CcTRA (1:10). These data suggest that, as in Drosophila, Ceratitis capitata
the orthologous female-determining CcTRA protein exerts its function by interacting with
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the orthologous CcTRA2 protein partner, to induce female-specific splicing of target pre-
mRNAs (Ccdsx and Ccfru) bearing specific cisregulatory sequences (Tra/Tra2 binding sites).

3.2. MOY Does Not Interact with CcTRA/CcTRA2 Proteins in the Yeast Two-Hybrid Assay

Once established through Y2H experiments, a physical interaction between CcTRA/
CcTRA2, we applied this approach to corroborate or confute the hypothesis that MOY male-
determining protein induces male-specific splicing of Cctra by interacting with either CcTRA
or CcTRA2 or both. We amplified by PCR a genomic MoY fragment containing the ORF
(MoY is an intronless gene) from genomic DNA extracted from adult males and cloned it in
the vectors BD and AD. No MOY-BD bait autoactivation was observed, as the MOY-BD
does not autonomously activate the reporter gene in the yeast cells without a prey protein
(Figure 2, row 1). The control of the prey MoY-AD and the empty BD bait vector also
showed no activation (Figure 2, row 2). No self-interaction of MOY was observed (Figure 2,
row 3). Neither MOY as bait (MOY-BD) nor MOY as prey (MOY-AD) interacted with
CcTRA or CcTRA2 (Figure 2, rows 4–7).
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Figure 2. Yeast two-hybrid assay of MOY potential interactions. SD-W-L, Synthetic-Defined agar
medium lacking tryptophan and leucine; SD-W-L-H, Synthetic-Defined agar medium lacking trypto-
phan, leucine, and histidine. n.d., not diluted yeast liquid culture (10 µL); 1:10, 1:100, and 1:1000 are
the dilutions of the yeast liquid culture.

3.3. Structural Insights on CcTRA and CcTRA2 Proteins and Their Interactions Unraveled Using
Machine-Learning Predictive Approaches

The impressive success of machine-learning approaches in predicting three-dimensional
protein structures and their complexes [55,56] suggested the application of this methodol-
ogy to the CcTRA and CcTRA2 proteins, for which structural data still need to be included.

In this scenario, we performed trials aimed at predicting the three-dimensional struc-
tures of the individual proteins (CcTRA and CcTRA2) as well as their complex by exploiting
the abilities of the machine-learning algorithms implemented in AlphaFold (AF) in predict-
ing protein structures starting from their sequences [55–57] (see also Methods for details).
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3.3.1. Predicted Structural Properties of the Individual CcTRA and CcTRA2 Proteins

The inspection of the CcTRA sequence indicates that it is characterized by the recurrent
presence of the Arg-Ser (RS) motif [11,36,62] (Figure S1). Moreover, the peculiar abundance
of Arg residues (68 out of 429 residues), distributed along the entire polypeptide chain, is
expected to prevent the folding of the protein in a stable structural state due to the excess
of positive charges. As for CcTRA, the sequence of CcTRA2 is also characterized by the
presence of two RS motifs located in the protein’s N- and C-terminal regions, which are
separated by a central RNA recognition domain (RRM—residues ~95–180) [11,62]. This
domain is well preserved during evolution. Indeed, the CcTRA2 RRM domain presents a
high sequence identity (52%) with that present in human Tra2β.

Applying the AlphaFold approach (AF) on CcTRA did not yield a stable and reliable
three-dimensional model of the protein, in line with the known intrinsically disordered
nature. Indeed, except for short protein regions, most of the residues of the predicted
model present LDDT values (see Methods for the definition) lower than 50, indicating
that these regions of the proteins are essentially unstructured. Again, in line with the
expectations, AF runs using the CcTRA2 sequence confirmed the tendency of the protein’s
N- and C-terminal regions to be intrinsically disordered. On the other hand, a well-
folded domain is predicted in the central portion of the TRA2 sequence. Indeed, residues
100–183 of this predicted model present LDDT larger than 70. The reliability of the model,
whose prediction was performed without considering any experimental template, is
also corroborated by its similarity to the crystallographic structure of the corresponding
domain of human TRA2β [63], as highlighted by the superimposition of the CcTRA2
and TRA2β RRM domain (Figure 3).
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experimental model of the human TRA2β RRM domain (orange) (Protein Data Bank code 2RRB).

3.3.2. Predicted Structure of the CcTRA and CcTRA2 Complex

Once we assessed the ability of AlphaFold to recapitulate the expected structural
properties of CcTRA and CcTRA2, we attempted to predict the structure of the CcTRA–
CcTRA2 complex. As shown in Figure S2, in the best-ranked model of the complex, a region
with low expected errors in the PAE matrix (see Methods for the definition) of distances
between residues of the two proteins can be detected. In particular, the analysis of this blue
intermolecular region in the PAE map indicates that it corresponds to the RRM domain of
CcTRA2 (residues 100–180) and the residues 55–64 of CcTRA (Figure S2A). It is important
to note that the region 55–64 of CcTRA also presents relatively high LDDT values (>70),
indicating the per-residue reliability of the model (see Methods for details). The inspection
of the related three-dimensional model suggests that 55–64 of CcTRA interacts with the
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exposed β-strand (residues 131–138) of the β-sheet of the RRM domain of CcTra2 (Figure 4).
This prediction agrees well with the general stickiness of exposed strands to have a strong
tendency to be involved in edge-to-edge associations [64]. In this CcTRA–CcTRA2 complex,
residues 60–64 of CcTRA adhere to the C-terminal portion (residues 135–139) of the exposed
strand of CcTRA2 (Figure 4A), leading to a β-strand addition in an antiparallel fashion.
This protein–protein interaction is stabilized by a remarkable number of hydrogen bonds
formed by the exposed hydrogen donors and acceptors present on the exposed strand of
CcTRA2 or the main chain (residues 60, 62, and 64) of the side chain (Asn64) of the CcTRA
fragment (Figure 4B).

Insects 2023, 14, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 4. (A) Three-dimensional structure of CcTRA (green) and CcTRA2 (cyan) complex. (B) The 

contact region of the complex is highlighted. Hydrogen bonds are also shown. 

It is important to note that AlphaFold prediction studies of CcTRA2 with a CcTRA 

variant in which residues 54–64 were deleted did not yield favorable interactions between 

the two proteins, as indicated by the absence of intermolecular contact regions with low 

estimated errors in the PAE matrix (Figure S2C). This finding corroborates the role of the 

CcTRA region 54–64 in the recognition of CcTRA2. 

3.3.3. Predicted Structure of the CcTRA and DmTRA2 Complex  

Since previous experiments have demonstrated that CcTRA is also functional in D. 

melanogaster despite the evolutionary distance of these two organisms [44], we also evalu-

ated the basis of its interaction with DmTRA2. A preliminary prediction of the DmTRA2 

structure indicates its close similarity to the structure of CcTRA2 (Figure S3), in line with 

the high sequence identity exhibited by the two proteins. As CcTRA2, a solvent-exposed 

β-strand (residues 124–132), is also present in DmTRA2. The prediction of the structure of 

the complex between CcTRA and DmTRA2 indicates that the formation of this complex 

relies on the same structural determinants that stabilize the CcTRA-CcTRA2 adduct. In-

deed, in this case, residues 60–64 of CcTRA adhere to the C-terminal portion (residues 

127–131) of the exposed strand of DmTRA2 (Figure 5). Although this finding was some-

how expected based on the CcTRA2/DmTRA2 similarity, it nevertheless indicates the pre-

diction’s robustness.  

Although present predictions require some experimental validations, they represent 

a solid base for identifying the structural basis of TRA-TRA2 recognition in C. capitata. 

Figure 4. (A) Three-dimensional structure of CcTRA (green) and CcTRA2 (cyan) complex. (B) The
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It is important to note that AlphaFold prediction studies of CcTRA2 with a CcTRA
variant in which residues 54–64 were deleted did not yield favorable interactions between
the two proteins, as indicated by the absence of intermolecular contact regions with low
estimated errors in the PAE matrix (Figure S2C). This finding corroborates the role of the
CcTRA region 54–64 in the recognition of CcTRA2.

3.3.3. Predicted Structure of the CcTRA and DmTRA2 Complex

Since previous experiments have demonstrated that CcTRA is also functional in
D. melanogaster despite the evolutionary distance of these two organisms [44], we also
evaluated the basis of its interaction with DmTRA2. A preliminary prediction of the
DmTRA2 structure indicates its close similarity to the structure of CcTRA2 (Figure S3), in
line with the high sequence identity exhibited by the two proteins. As CcTRA2, a solvent-
exposed β-strand (residues 124–132), is also present in DmTRA2. The prediction of the
structure of the complex between CcTRA and DmTRA2 indicates that the formation of
this complex relies on the same structural determinants that stabilize the CcTRA-CcTRA2
adduct. Indeed, in this case, residues 60–64 of CcTRA adhere to the C-terminal portion
(residues 127–131) of the exposed strand of DmTRA2 (Figure 5). Although this finding was
somehow expected based on the CcTRA2/DmTRA2 similarity, it nevertheless indicates the
prediction’s robustness.
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Although present predictions require some experimental validations, they represent a
solid base for identifying the structural basis of TRA-TRA2 recognition in C. capitata.

4. Discussion

The data presented here demonstrate that the proteins CcTRA and CcTRA2 phys-
ically interact. Although this finding could be inferred from the analogy of the known
TRA/TRA2 interaction described in D. melanogaster, the experimental validation here
reported is not obvious considering the remarkable molecular differences between the
DmTRA and CcTRA. Indeed, these two proteins do not present any significant sequence
similarity (CcTRA/DmTRA 35% similarity by BLOSUM45 with no adjustment) [44] and
are characterized by radically different sizes, with CcTRA being much larger than DmTRA
(429 versus 197 residues). In this regard, it is also worth noting that even the function of
these two proteins is only partially overlapping, as CcTRA, in contrast to DmTRA, can
autoregulate its splicing and expression. Therefore, despite the divergence in the evolution
of the sequences of CcTRA and DmTRA, their partnership with TRA2 is conserved in these
two distantly related species whose common ancestor dates back more than 100 million
years ago.

In our Y2H experiment, the interaction between CcTRA2 and CcTRA is observed when
CcTRA2 is fused with the GAL4 AD and CcTRA with the BD, but not in the reciprocal
combination. Steric constraints or improper folding can occur in specific recombinant pro-
tein/GAL4 domain combinations. This issue has been previously reported when applying
the Y2H analysis, and some examples of the lack of interaction between two interactors in
both mutual directions can be found in other studies [58–61].

Taking advantage of the recently developed machine-learning methodologies that can
provide reliable three-dimensional structures of proteins [55–57], we generated a putative
model for the CcTRA/CcTRA2 complex. This model suggests that an exposed β-strand of
the RRM binding domain of TRA2 anchors the segment 55–64 of CcTRA, which contains
both charged and hydrophobic residues. Interestingly, the sequence (LFQRDDIVVN) of
this putative TRA2-binding motif of CcTRA is fully conserved in TRA sequences of other
Tephritidae and is remarkably well-preserved in other dipteran species such as Musca
domestica (7 conserved residues out of 10). Surprisingly, it is conserved even in the TRA
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sequences of distant organisms such as the coleopterans Onthophagus taurus (8 conserved
residues) and Trypoxylus dichotomous (7 conserved residues) despite the extreme evolu-
tionary variability of the sequence of the protein. Modeling data also indicate that this
CcTRA motif can interact with the Drosophila TRA2 ortholog, thus providing a structural
explanation of the observed ability of CcTRA to rescue female differentiation by inducing
female-specific splicing of Dmdsx and Dmfru in Drosophila transgenic XX [44].

In contrast to D. melanogaster, the masculinization process of C. capitata relies on a
recently identified male-determining factor [52]. This gene (MoY), which can suppress
the Cctra female-specific splicing early during embryogenesis, encodes for a small pro-
tein containing 70 residues whose sequence does not present any detectable similarity
with functionally and structurally characterized proteins. Therefore, the molecular mech-
anism underlying MOY’s ability to induce masculinization is unknown. As the Y2H
assays reported here successfully unraveled the physical interaction between CcTRA and
CcTRA2, we applied this approach to detect possible interactions between MOY and Cc-
TRA/CcTRA2. Data presented here indicate that MOY does not establish direct interaction
with either of these proteins. Although the following should be noted: (1) In Y2H assays,
false negatives can occur; (2) Species-specific posttranslational modifications may affect
protein–protein interactions. These observations indicate that MOY indirectly affects the
splicing of CcTRA through a mechanism yet to be uncovered.

5. Conclusions

Collectively, the data presented here show that the Y2H approach, combined with
powerful predictive tools of three-dimensional protein structures, could be helpful also in
other insect species to understand the potential links between different proteins acting as
primary sex-determining signals and the conserved TRA and TRA2 transducers. Moreover,
the atomic-level characterization of the CcTRA/CcTRA2 interactions will be helpful for the
design and the development of new compounds that, being able to modulate them, could
be useful to induce masculinization of XX individuals in applications of the Sterile Insect
Technique for agricultural pest insects such as C. capitata [65–68].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects14070605/s1, Figure S1. Sequences of CcTRA, and CcTRA2.
Arg and Ser residues are highlighted. The folded RRM domain of CcTRA2 and the putative CcTRA2-
binding domain of CcTRA are underlined; Figure S2. Predicted Aligned Error matrices for the
CcTRA/CcTRA2 (A) and CcTRA/DmTRA2 (B). On the vertical axis, the A and B letters identify the
residues of CcTRa or CcTRA2/DmTRA2, respectively. The vertical bar reports the color code for
the expected errors in Å. In the panel C, the PAE matrix obtained from the predition of a putative
complex between CcTRA2 and a variant of CcTRA in which the region 54-64 was deleted is reported;
Figure S3. Superimposition of the AF-predicted models of the RRM domain of CcTRA2 (cyan) with
the DmTRA2 (magenta).
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