
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Microservices Integrated Performance and Reliability Testing
Matteo Camilli

matteo.camilli@unibz.it
Free University of Bozen-Bolzano

Bolzano, Italy

Antonio Guerriero
antonio.guerriero@unina.it

Università di Napoli Federico II
Napoli, Italy

Andrea Janes
andrea.janes@unibz.it

Free University of Bozen-Bolzano
Bolzano, Italy

Barbara Russo
barbara.russo@unibz.it

Free University of Bozen-Bolzano
Bolzano, Italy

Stefano Russo
stefano.russo@unina.it

Università di Napoli Federico II
Napoli, Italy

ABSTRACT
Continuous quality assurance for extra-functional properties of
modern software systems is today a big challenge as their complex-
ity is constantly increasing to satisfy market demands. This is the
case of microservice systems. They provide high control on scale
of operation by means of fine-grained service decomposition, but
this demands for careful consideration of the relations between
performance of individual microservices and service failures.

In this work, we propose MIPaRT, a novel methodology and
platform to automatically test microservice operations for perfor-
mance and reliability in combination. The proposed platform can
be integrated into a DevOps cycle to support continuous testing
and monitoring by the automatic (1) generation and execution of
performance-reliability ex-vivo testing sessions, (2) collection of
monitoring data, (3) computation of performance and reliability
metrics, and (4) integrated visualization of the results.

We apply our approach by operating the platform on an open
source benchmark. Results show that our integrated approach
can provide additional insights on performance and reliability be-
haviour of microservices as well as their mutual relationships.

CCS CONCEPTS
• Software and its engineering→ Software performance; Software
reliability; Software verification and validation.

KEYWORDS
Microservices systems, reliability testing, performance testing

ACM Reference Format:
Matteo Camilli, Antonio Guerriero, Andrea Janes, Barbara Russo, and Ste-
fano Russo. 2022. Microservices Integrated Performance and Reliability
Testing. In 3rd ACM/IEEE International Conference on Automation of Soft-
ware Test, May 21–22, 2022, Pennsylvania, PA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AST 2022, May 21–22, 2022, Pennsylvania, PA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The microservices architectural style is widely used by leading com-
panies like Netflix, Amazon, Google, Microsoft to develop large-
scale service-based systems composed of loosely coupled services,
running in their process, and communicating via lightweight mech-
anisms, such as RESTful APIs [1]. Microservices systems are usually
engineered using DevOps, a set of practices for which operations
become part of the development and infrastructure moves into the
code (Infrastructure-as-a-code) [2]. To this aim, operations special-
ists become part of the development teams and system adminis-
trators and corporate IT groups are able to write the code that
maintains the infrastructure. DevOps aims at reducing the time
between committing a change to and the change being deployed
to production, while ensuring high quality [3, 4]. In this work,
we focus on two fundamental qualities for microservices systems:
performance and reliability, and on their inter-relationship.

Continuous testing and monitoring represent two key DevOps
practices. Testing provides engineers with a quality feedback at deci-
sion gates, to establish if a release candidate is ready for production.
To assess whether it meets a desired quality, tests are performed
in production, or in a staging environment with realistic users’
behaviour and workload intensity [5, 6]. Monitoring is essential in
DevOps to collect usage data (how the users interact with the sys-
tem) and raw measurements data (how the system performs). Such
data is typically used by Quality Assurance (QA) teams to drive the
testing sessions and ultimately support release decisions [7].

Figure 1 illustrates the main high-level activities to carry out
integrated performance and reliability testing of microservices in
DevOps cycles. Such an iterative process provides the opportunity
to learn from the history of recent executions, due to the availabil-
ity of online monitoring tools, such as OpenAPM1. Historical data
can be used to improve the knowledge on the expected workload
intensity and the behaviour of the various actors (which we refer to
as behaviour mix). This information is prone to change dynamically.
On the one hand, evolutionary changes (e.g., a new release due to
new pieces of functionality) can cause changes in the behaviour
of the actors or addition of new actors. On the other hand, opera-
tional changes (e.g., new actors and different behaviour mix) can
unveil issues and therefore trigger a new Dev cycle. In this per-
petual loop, tracking changes allows proper testing activities to be
carried out. Indeed, the behaviour of actors in operation can be very
different from the one conceived by the testers before the release.

1https://openapm.io/

1

https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-8747-3446
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://openapm.io/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

AST 2022, May 21–22, 2022, Pennsylvania, PA Camilli, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

performance &
reliability testing

Decision gate

performance/reliability
KPIs

track
execution traces

monitor
microservices

update microservices/
configuration

deploy onto production
environment

plan new release

deploy onto staging
environment

update
usage profile

workload
intensity

behavior
mix

QA

Dev Ops

Figure 1: Continuous performance & reliability testing inte-
grated into DevOps cycles.

For instance, some of the actors can change the way they usually
interact with the microservices due to unforeseen events, like the
circumstances induced by the pandemic. Thus, a central concern in
performance and reliability testing is the rigorous characterization
of the actors and how their behaviour may lead to technical failures.
While performance testing [8, 9] and reliability testing [10, 11]
of microservices systems have been studied as separate problems,
there exists a striking lack of integrated testing approaches able to
assess the two quality attributes and derive mutual relationships.

This paper presentsMIPaRT (Microservices Integrated Perfor-
mance and Reliability Testing), a novel methodology and support
platform to automatically execute ex-vivo testing sessions for con-
tinuous integrated performance and reliability analysis of microser-
vice systems. In a DevOps process, MIPaRT leverages usage and
system data from past Ops phases to automate the generation and
execution of performance and reliability tests at a decision gate. It
then computes and visualizes Key Performance Indicators (KPIs) of
the services exposed to its actors by the system. This way, MIPaRT
offers both coarse-grained and fine-grained means to aid engineers
to pinpoint problems (e.g. bottlenecks, faulty microservices).

This work aims at answering the following research questions
in the context of microservices systems engineering:
RQ1: Does the integrated performance-reliability testing pro-

vide advantages compared to the verification of the two
qualities in isolation?

RQ2: CanMIPaRT detect existing relations between performance
and reliability issues?

To answer these questions,MIPaRT is evaluated through controlled
experiments with the Train Ticket microservices system bench-
mark [12], reproducing two scenarios of evolutionary and opera-
tional changes typically occurring in DevOps. The evaluation shows
MIPaRT features to support finding performance and reliability
issues and their relationships.

The remainder of the paper is as follows. In Sec. 2 we discuss
related work. In Sec. 3 we introduce the Train Ticket benchmark
used as system under test (SUT) in the evaluation. In Sec. 4 we
describeMIPaRT. In Sec. 5 we present the evaluation and we answer
to the research questions. In Sec. 6 we discuss threats to validity.
Finally, in Sec. 7 we report concluding remarks.

2 RELATEDWORK
Related work is examined in the following mainly with reference to
performance and reliability quality factors of microservice systems.

Scalability and performance are among the quality attributes of
microservices that pose most of the testing challenges [13]. The IT
industry considers performance testing as the main pain, demand-
ing for further research efforts [14, 15]. Generating appropriate tests
to reveal issues for these qualities is challenging, as the input space
is usually large and hard to explore for all microservices. Therefore,
trying all possible input value combinations in test generation is
impractical and in many cases even infeasible. For instance, only a
few input values can detect issues in performance [16], and find-
ing those values is mostly a manual, intellectually intensive and
laborious activity [17].

Research and practice generally focus on the separate assess-
ment of each quality attribute. Recent literature proposes ML-
techniques [18–20] and symbolic execution methods [21, 22] to
detect appropriate input values that can discover performance or
reliability issues separately. Their application can be expensive in a
DevOps environment, and sometimes they are not more accurate
than simple random input generation [23]. Using them for reliabil-
ity and performance in combination may be even more expensive.
In addition, methods based on symbolic execution do not scale to
systems with a large set of input data, since the number of paths
to search grows exponentially with respect to the input size [24].
Most of these methods are suited for white-box settings, where
engineers have access to the source code (e.g. [22]).

We propose here a black-box approach that does not require code
availability and is able to automatically detect performance and re-
liability issues at the level of individual microservice request types.
It exploits API specifications to determine valid and invalid request
input, building a DTMC model, randomly sampling the partitioned
input space, and finally computing and visualizing performance
and reliability in combination. The approach generates and exe-
cutes tests ex-vivo in a non-intrusive way, without instrumenting
a specific framework to isolate and test individual microservices,
as instead proposed in [25]. The approach can be integrated into
the staging environment of a DevOps pipeline, allowing for fast
feedback on the discovered issues.

Performance testing. Approaches for performance testing typ-
ically follow one of the two strategies: testing to fulfill single
user experience (e.g., [26]) or to satisfy a scalability requirement
(e.g., [8, 27]). Single-user performance tests evaluate the perfor-
mance of an application under the load of one user. The purpose
of such tests is to understand the control flow of user requests and
identify segments that consume the major part of the response time.
Such an approach is typically adopted in usability engineering [26].
Scalability testing verifies the target system’s ability to meet the
performance requirements under demanding load situations [28].
Recent approaches and tools measure performance degra dation of
microservices against a benchmark configuration of the SUT that
fulfills the given scalability requirement [8, 29, 30]. The approach
has been further adopted to automate the detection of performance
violations and suggest optimal configurations of microservice de-
composition with respect to monolith architectures [31]. The ap-
proach has also been used to associate performance degradation

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Microservices Integrated Performance and Reliability Testing AST 2022, May 21–22, 2022, Pennsylvania, PA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Examples of requests for the Train Ticket benchmark.

Request Core microservice Relative path from /api/v1 Method Arguments (with type and constraints)

createUser adminUserService /adminuserservice/users POST documentNum: numeric (alphanumeric, required), documentType: numeric (positive integer, re-
quired), email: string (alphanumeric), gender: numeric, password: string (alphanumeric and spe-
cial characters, required), userName: string (alphabetic characters), authorization: string (alphanu-
meric, required)

login authService /users/login POST username: string (alphanumeric, required), username: string (alphanumeric and special characters,
required)

searchTicket travelService /travelservice/trips/left POST startingPlace: string (alphabetic characters), endPlace: string (alphabetic characters), departure-
Time: string (date-time format)

booking preserveService /preserveservice/preserve POST accountId: string (alphanumeric, required), contactsId: string (alphanumeric, required), tripId:
string (alphanumeric, required), seatType: string (integer ≥ 0), date: string (date-time format),
from: string (alphabetic), to: string (alphabetic), assurance: string (integer ≥ 0), foodType:
numeric (integer ≥ 0), foodName: string (alphabetic), foodPrice: numeric (float ≥ 0), station-
Name: string (alphabetic), storeName: string (alphabetic), authorization: string (alphanumeric,
required)

getAssuranceTypes assuranceService /assuranceservice/assurances/types GET authorization: string (alphanumeric, required)

pay insidePayService /inside_pay_service/inside_payment POST orderId: string (alphanumeric, required), tripId: string (alphanumeric, required), authorization:
string (alphanumeric, required)

with the prediction of security attacks [9]. Finally, chaos engineering
is an emerging approach in industry to evaluate large scale systems
by running in-vivo experiments [32]. These experiments carry out
performance and scalability tests to identify availability issues that
might occur in production (e.g., in Netflix [32, 33]).

Reliability testing. Automated reliability testing of microservices
is of paramount importance in DevOps, [11]. Several techniques
and tools have been proposed to this aim. DevOpRET is a technique
to estimate reliability at the acceptance testing stage in DevOps
cycles. Heorhiadi et al. propose Gremlin [34], a framework for re-
silience testing to assess the ability of a microservice system to
recover from failures. Jindal et al. introduce Terminus [35] to es-
timate the capacity of a microservice, defined as the maximum
number of successfully processed user requests per second, on
different deployment configurations via load tests, and fitting a
regression model to the acquired performance data. The goal is to
define the appropriate resources for each microservice, so that the
whole system achieves the best perforan minimizing their over-
all consumption. Pietrantuono et al. developed MART [10] and its
enhancement EMART [36] as testing techniques for reliability as-
sessment of microservice-based system, starting from the definition
of an operational profile, namely of the expected usage in operation.

3 BENCHMARK MICROSERVICES SYSTEM
We describe and evaluateMIPaRT with reference to a benchmark
microservice system used in software engineering research, called
Train Ticket2. This containerized train ticket booking application
runs onto 41 microservices implemented by using a modern tech-
nology stack, as described in [37]. The benchmark has been se-
lected according to a number of criteria, including: (𝑖) usage of
well-established microservice architectural patterns; (𝑖𝑖) possibility
of using automated deployment practices in software containers;
(𝑖𝑖𝑖) support for different deployment configuration options.

Table 1 lists a number of services available to Train Ticket users.
Users access the system through a web interface that basically al-
lows tickets to be searched, reserved, bought, and refunded. For

2Train Ticket is an open source project. Sources and documentation are available at
https://github.com/FudanSELab/train-ticket.

each service, the business logic involves a number of microservices;
among them, a core RESTful microservice is identified, listed in
the second column in Table 1; the remaining columns list the core
microservice relative path, the arguments to carry out a user re-
quest, and constraints on their values, as per the documentation.
For instance, a guest user can search (travelservice) a train from
a source city to a destination at desired date and time. A registered
user can log in (login) and then book a ticket (preserveService),
specifying the passenger, the class of the seat, and the assurance
type (assuranceService). Upon successful booking, the user is re-
quired to pay (insidePayService). A user can also change a ticket
(subject to time limitations) or ask for refund. An administrator
user can register new users (adminUserService) and add, delete,
or change the information of trains.

4 MIPART
4.1 Overview
As anticipated in Sec. 1, changes to a deployed system (namely, to its
microservices) typically occur frequently, in short DevOps cycles.
Failures, as well as performance degradation, may occur due to
changes in the users behaviour (e.g., most invoked services) and in
the workload (e.g., number of concurrent users). Both new releases
(evolutionary) and usage profile (operational) changes are tracked
and monitored in a DevOps process. This offers the opportunity to
QA engineers to update the knowledge on the operating conditions,
carry out proper testing activities, take decision at quality gates, and
provide feedback to the other teams. MIPaRT performs automated
performance and reliability testing sessions as part of the QA stage
of a DevOps cycle, triggered by evolutionary or operational changes
(e.g., a new release of a microservice, or a change in the workload).

The methodology follows three stages shown in Fig. 2:

i) definition of the operating conditions (based on the usage
data collected from Ops), composed of workload intensity
and behaviour of the actors (Sec. 4.2);

ii) execution of ex-vivo testing sessions, loading the SUT with
the specified workloads (Sec. 4.3);

iii) integrated analysis, fed by raw measurements, to compute
and visualize performance and reliability estimates (Sec. 4.4).

3

https://github.com/FudanSELab/train-ticket

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

AST 2022, May 21–22, 2022, Pennsylvania, PA Camilli, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(i) definition of the operational setting

workload
intensity

load testing
session

(ii) ex-vivo testing

SUT

(iii) integrated analysis

workload
intensity

raw
measurements

raw
measurements

performance-reliability
metrics

behavior models
of actors behavior mix

behavior mix

deployment
configuration

behavior models

KPIs and
visualization

usage data
from Ops

Ops

decision gate

workload specification

Figure 2: The three stages of MIPaRT.

4.2 Definition of the operating conditions
The first stage consists in defining the operating conditions to be
reproduced for testing the system. Such a definition extends the
one introduced in [9] and it includes the following elements:

• the workload specification that describes allowed requests
that a user can invoke on the SUT together with details on the
way to generate the requests to each operation (i.e., relative
paths, parameters, and constraints, as shown in Table 1);

• a set of behavioural models, each providing a stochastic rep-
resentation of user sessions in terms of (valid and invalid)
requests generated according to the workload specification;

• a workload intensity value: the expected number of concur-
rent users, likely to access the system in operation.

• a behaviour mix, namely a distribution of frequencies of be-
havioural models, representing their occurrence probability
within the defined workload intensity.

A user interacts with the system according to a given behavioural
model. The model is generated by combining the information ex-
tracted from the documentation (i.e., the workload specification)
and the frequency of requests issued by different actors extracted
from the usage data. For example, a possible actor for Train Ticket
is the guest who searches for tickets without logging in, while the
buyer is a logged-in actor who searches and then reserves a ticket.
The buyer may perform the following sequence of requests: visit
the home, login, search ticket, book a ticket, and then pay.

home
/index

login
/users/login

login
/users/login

search ticket
/travelservice/trips/left

search ticket
/travelservice/trips/left

booking
/preserveservice/preserve

booking
/preserveservice/preserve

pay
/inside_pay_service/inside_payment

pay
/inside_pay_service/inside_payment

0.9

0.1
0.02

0.98
0.9

0.1

0.95
0.05

0.8
0.2

0.05

0.95

0.80.2

1.0

0.95

0.05

Figure 3: A DTMC behavioural model for the buyer actor.

In MIPaRT, we propose a behavioural model that provides a
probabilistic representation of user sessions in terms of a Discrete
Time Markov Chain (DTMC) [38]. Here, we extend the modeling
approach introduced in [39] by additionally considering the input
space in the construction of the Markov chain. Thus, the DTMC is
the main building block of our integrated approach. It is the model
that drives the testing activity and then the integrated reliability
and performance assessment. Essentially, the nodes of the DTMC
model represent the requests that can be issued to the system by
providing either a valid or invalid input values, according to the API
specification. Thus, the input space for each request is partitioned
into valid and invalid classes, henceforth referred to as request
classes. The transitions (i.e., weighted edges) in the DTMC specify
the probability of moving from a given request class to the next one.
Figure 3 shows an example of DTMC for the buyer actor. Green
nodes model valid requests, whereas red nodes model invalid ones.
For instance, from the valid request login, a buyer can move to
the valid request searchticket with probability 0.9 and to the
invalid request searchticket with probability 0.1. Based on the
API relative path associated with each DTMC node, we can also
determine the core microservice in charge of handling the requests
(second column in Table 1). For instance, in Fig. 3, the request
search_ticket maps to travelService. The DTMCs are used to
drive the generation of instances of synthetic users (i.e., actors) for
the testing sessions. The behaviour mix defines the percentage of
concurrent users to be sampled for each actor. For instance, for a
workload intensity of 𝑁 concurrent users, the following behaviour
mix:

(guest: 0.5; buyer: 0.3; refund_claimer: 0.2) (1)

is used to emulate a scenario where 50% of the 𝑁 users are guests,
30% of them carry out a reservation, and 20% request refunding.

The operating conditions (behavioural models, behaviour mix,
and workload intensity) are typically extracted automatically from
the usage data collected during the Ops stages of a DevOps cycle
and raw sessions are automatically recorded in session logs and
then analyzed to extract the workload intensity and DTMCs using
clustering algorithms [11, 39]. In this case, a cluster represents an

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Microservices Integrated Performance and Reliability Testing AST 2022, May 21–22, 2022, Pennsylvania, PA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

actor and is a set of sessions represented by similar DTMCs. Thus,
to automatically generate the operating conditions, we first need
the following data in a session log: “session identifier”, “request start
time”, “request end time”, “request relative path”and combinations
of “valid" and “invalid values" for the arguments of each request.
Once the DTMCs are generated, the frequency associated with
DTMC is computed as frequencies of sessions in clusters over all
sessions. Thus, the frequencies defines the empirical categorical
distribution for workload intensity.

4.3 Ex-vivo testing
In this stage, joint performance/reliability tests are performed ex-
vivo in the operational environment3. The SUT is deployed at the
beginning of each test session (and un-deployed at the end), then
loaded with synthetically generated users that replicate the oper-
ating conditions of interest. The sessions are generated and then
orchestrated according to the following factors defined by the tester:

• the DTMC behavioural models of the users;
• the behaviour mix categorical distribution;
• a set Λ of workload intensity values;
• a set of deployment configurations C (e.g., memory, CPU,
and replicas per each microservice).

For each pair ⟨_, 𝑐⟩ ∈ Λ × C, the SUT is deployed by using the
configuration 𝑐 . Thus, the testing session starts and generates the
workload intensity _. Each actor instance is drawn with a probabil-
ity of the actor’s behaviour mix. Given an actor instance, the testing
process automatically samples requests as well as inputs according
to the corresponding DTMC. Namely, each input is generated by
drawing from one of the two classes according to the current node
and outgoing transition probability. For instance, according to Fig. 3,
a buyer instance from the state login, can either perform a search
with a valid input (with probability 0.9) or an invalid one (probabil-
ity 0.1). An invalid search request can be issued, for example, by
inserting special symbols in the argument startingPlace, or by
using a wrong date-time format for the departureTime argument.
Between each request the process applies a pseudo-random think
time using an exponential distribution (with average inter-arrival
time between 1 and 5 seconds) to represent realistic user behaviour.

During all the testing sessions, we collect raw measurement data,
that are then used in the integrated performance and reliability
analysis and visualization as described in the following.

4.4 Performance-reliability analysis
4.4.1 Metrics. The analysis starts by estimating performance and
reliability during the observation period 𝑇 (i.e., duration of a test
session) for each request class 𝑝 (e.g., loginvalid).

For each class 𝑝 , we define the Performance estimator, 𝑃 (𝑝), as
the normalized distance from the average response time ` (𝑝) to a
performance threshold 𝐿(𝑝):

𝑃 (𝑝) =
{
𝐿 (𝑝)−` (𝑝)

𝐿 (𝑝) ` (𝑝) < 𝐿(𝑝)
0 otherwise

(2)

3According to [40], ex-vivo testing “indicates any type of software testing performed
in-house using information extracted from the field”.

The lower the value, the worse is performance. It is worth noting
that the parametric threshold 𝐿(𝑝) in Eq. 2 can be set for any class
𝑝 . There are essentially two ways known in literature to set this
threshold: according to a user-based experience [26] or a scalability
requirement [8]. The former approach follows usability engineering
practices for web-based applications. In this case, 𝐿(𝑝) can be set
to 1 sec if we want to represent the limit for the user’s flow of
thought to stay uninterrupted, or 10 sec for keeping the user’s
attention focused. According to the latter approach and existing
literature [9, 30], 𝐿(𝑝) can be empirically derived as a scalability
threshold: 𝐿(𝑝) = `0 (𝑝) + 3 · 𝜎0 (𝑝), with `0 (𝑝) and 𝜎0 (𝑝) average
and standard deviation of the response time for the request class 𝑝 ,
measured during a testing session carried out under ideal operating
conditions, like a small number of users and full availability of
system resources. We further define Performance Degradation (PD)
as 1−𝑃 (𝑝), so that the higher its value, the worse is the performance.

We then define the Reliability estimator, 𝑅(𝑝), as the ratio of non-
failing requests in𝑇 , according to the Nelson–Aalen non-parametric
estimator [36, 41]:

𝑅(𝑝) = 1 − 𝐹 (𝑝)
𝑁 (𝑝) (3)

with 𝑁 (𝑝) total number of issued requests in 𝑝 , and 𝐹 (𝑝) number
of failed requests in 𝑝 , so that the lower the value, the worse is
reliability. Thenwe define the ratio of Failed Requests (FR) as 1−𝑅(𝑝),
so that higher values correspond to worse reliability. In our work,
detect a failure or success of a request on the HTTP status code.
Specifically, every status code other than 2xx (success) is considered
as a failed request. In our experiments, we empirically observed
recurring issues that we grouped into the two default categories
reported above: server errors (500 and 502 response codes) and
connection errors (codes 503 and 504).

To investigate issues associated with performance and reliability
at finer level,MIPaRT provides engineers with additional metrics
for each request class 𝑝:

• Request Ratio (RR): ratio of requests in class 𝑝 over of all the
requests of the test session.

• Connection Errors ratio (CE): requests that return a connec-
tion error out of all the failed requests in 𝑝 over of all the
requests of the test session.

• Server Errors ratio (SE): requests that return a server error
out of all the failed requests in 𝑝 over of all the requests of
the test session.

4.4.2 Visualization. To detect performance and reliability issues
of a request class 𝑝 , MIPaRT compares the values of the perfor-
mance and reliability estimators, 𝑃 (𝑝) and 𝑅(𝑝), in the so-called
criticality plot shown in Fig. 4. Each class 𝑝 yields a point in the
coordinate space (𝑃 , 𝑅), which, for demonstration purpose, we have
divided in three areas corresponding to high, medium, and low
criticality levels, according the the Euclidean distance from the
most critical point (𝑃 = 0, 𝑅 = 0). In Figure 4, all requests in the
class payvalid have no issue (i.e., 𝑃 (𝑝) = 𝑅(𝑝) = 1), while invalid
requests (payinvalid) yield reliability issues (i.e., 𝑅(𝑝) = 0).

MIPaRT visualizes the five metrics RR, CR, SE, FR, and PD in a
radar plot for each request class 𝑝 as illustrated in Fig. 5. Based on
the area identified by the radar coordinates, engineers can quantify

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

AST 2022, May 21–22, 2022, Pennsylvania, PA Camilli, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Medium

criticality

High

criticality

Low

criticality

●● pay_validpay_invalid

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
reliability

pe
rf

or
m

an
ce

Figure 4: Criticality plot for performance-reliability analy-
sis of request classes.

FR

RR

PD

CE

SE

0.2 0.4 0.6 0.8 1.0

(a) payvalid class

FR

RR

PD

CE

SE

0.2 0.4 0.6 0.8 1.0

(b) payinvalid class

Figure 5: Sample radar plots for requests to the pay service.

and compare performance and reliability of each request class de-
tected as high critical in criticality plot. Using Table 1, engineers
can further trace these results back to the core microservices and
prioritise their maintenance activities to these microservices. Fig-
ure 5a shows the radar plot for the payvalid class. In this case,
the request ratio (RR) is low and all the other indicators are zero,
meaning proper service operation under a relatively small work-
load intensity. Figure 5b shows another example for the payinvalid
class. Even though the request ratio is very small (RR close to zero,
though not null) the class exhibits severe issues according to the
percentage of failed requests out of the total number of requests
issued to 𝑝 (FR axis). More than 60% of the failed requests are server
errors (SE axis), while almost 40% of the failed requests are con-
nection errors (CE axis). Performance related indices show instead
good results. Indeed, the performance degradation (PD axis) is close
to 0. These results suggest engineers investigating the presence of
software defects causing fast failures in the management of invalid
requests to the pay service.

4.5 Integrated platform
MIPaRT is fully automated and requires the following inputs: the
RESTful API specification, the target operating conditions, and the
performance threshold for each class of requests.

The software platform supporting theMIPaRT methodology is
implemented using Python3 and our in-house developed tool PP-
TAM [29, 42]4. The platform integrates and orchestrates multiple
modules that collectively realize the main stages of the approach.
The operational conditions sampled from Ops, are defined in a
declarative manner through the BenchFlow domain-specific lan-
guage [43]. By using the language, the tester essentially declares: the
DTMC behavioural models of the actors, the behaviour mix, the set
of workload intensities, and one ormore deployment configurations.
We make use of Docker (https://www.docker.com) to deploy/un-
deploy the microservices of the Train Ticket benchmark onto an
in-house testing environment composed of two virtualized comput-
ing units: the driver unit (running the testing sessions), and the SUT
unit (running the SUT). Once the SUT is deployed onto its unit, the
orchestrator spawns one or more testing sessions according to the
BenchFlow declaration. The framework Locust (http://locust.io)
is used to generate the workload intensity according to the be-
havioural models and the behaviour mix. The classes can be au-
tomatically generated by using EvoMaster (www.evomaster.org)
provided that the RESTful API includes a schema in OpenAPI/Swag-
ger format (https://swagger.io/specification/). Raw measurements
are collected during each test session to compute the performance
and reliability estimators as well as the additional indices per each
individual class. At the end of the sessions, the tester visualizes the
criticality plot and the radars in a interactive notebook implemented
using Apache Zeppelin (https://zeppelin.apache.org/).

5 EVALUATION
In this section we discuss our experience in using MIPaRT on
different versions of the Train Ticket benchmark. We first introduce
two realistic high-level scenarios in Sec. 5.1, where testers may
benefit from MIPaRT. We then present the design of controlled
experiments in Sec. 5.2 and, finally, we present and discuss the
results in Sec. 5.3 and Sec. 5.4, respectively.

5.1 Scenarios
The following two scenarios exemplify howMIPaRT help engineers
detect performance and reliability issues of a microservice system.

Scenario 1 (evolutionary change). This scenario emulates
the modification or addition of microservices of the target system,
due to changes in requirements or user preferences. Evolutionary
changes or, more in general, maintenance to individual microser-
vices may alter reliability/performance of the exposed functions.
This is, for instance, the case of login or the search of new tickets,
two important functions for Train Ticket. For this reason, a new
QA phase is required since it may trigger additional development
and new release cycles. We reproduced this scenario, starting from
version v1 of Train Ticket, and then introducing a version v2, to be
assessed in a QA phase after a new Dev phase. The two versions of
Train Ticket adopt alternative implementations of the microservices
travelService, adminUserService, and authService.

Scenario 2 (operational change). This scenario emulates an
unexpected increase of the amount of concurrent users (workload
intensity), or unforeseen changes of their behaviour possibly caused
4Open source software publicly available at https://github.com/pptam/pptam-tool.

6

https://www.docker.com
http://locust.io
www.evomaster.org
https://swagger.io/specification/
https://zeppelin.apache.org/
https://github.com/pptam/pptam-tool

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Microservices Integrated Performance and Reliability Testing AST 2022, May 21–22, 2022, Pennsylvania, PA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

by the release of a new piece of functionality or even by external
factors. For example, in a pandemic situation an unexpected number
of users may cancel issued tickets and ask for refund. This situation
yields different interaction patterns and the microservices involved
in issuing vouchers may exhibit performance and reliability issues.
We reproduced this scenario by injecting changes in the way the
system is used during an Ops phase. Specifically, we assume that
due to the pandemic, users are “less prone” to buy tickets than usual,
and increasingly prone to ask for refund. This causes changes in
the DTMCs as well as their behaviour mix.

5.2 Experiments
We designed a set of controlled experiments, operating MIPaRT
with the benchmark system under defined operating conditions
and collected raw measurements to carry out the integrated analy-
sis. The machines used as ex-vivo testing infrastructure have the
following characteristics:

• MIPaRT node: 4 GB RAM, 1 CPU at 2.6 GHz;
• SUT node: 16 GB RAM, 8 CPUs at 2.6 GHz;
• both nodes: magnetic disks with 15,000 rpm, 10 Gbit/s net-
work connections.

We deployed two versions of Train Ticket and varied the operat-
ing conditions, reproducing the two DevOps scenarios described in
Section 5.1. Overall, we identified four actors for the two scenarios:

• guest: search for travel options without logging in;
• buyer : search for travel options, log in and buy tickets;
• renouncing: log in and cancel a reservation;
• refund_claimer: log in and claim refunding of the cost of a
previously issued ticket.

The behaviour of each of these actors is described by a DTMC
model that drives the generation of the requests in each class. In
all testing sessions, we set performance threshold 𝐿(𝑝) = 10 sec for
all classes 𝑝 (i.e., limit for keeping the user’s attention focused in
web applications) according to user-based experience practice [26]
as described in Section 4.4.

5.3 Results
In this section, we illustrates the results for the two considered
scenarios (evolutionary and operational change).

5.3.1 Scenario 1 (evolutionary change). In this scenario, we have
three actors, (guest, buyer, and renouncing) operating the two Train
Ticket versions v1 and v2 with the following behaviour mix:

(guest : 0.5; buyer : 0.4; renouncing : 0.1) (4)
under three workload intensities: low (150 users); medium (200
users), and high (250 users). We execute a testing session for each
triplet (version, behaviour mix, workload intensity), for a total of 6
sessions. Each testing session lasts 20 minutes in which we sample
more than 15𝑘 requests according to the three DTMCs and their
mix. The criticality plots in Fig. 6 show the results for each test of
the two versions v1, v2 (labels of input classes in the low criticality
region are not shown for the sake of readability). The plots for ver-
sion v1 indicate an increase of the number of problematic request
classes with the increase of the workload intensity. For some of the
classes, such a criticality affects both performance and reliability

(e.g., cancelNoRefundinvalid). In version v2,we can observe a gen-
eral decrease in the number of problematic classes. Nevertheless,
the high workload yields a larger number of high-critical classes
than in v1. These classes exhibit a substantial performance degra-
dation and an unreliable behaviour with high workload as shown
in Fig. 6f. The comparison also shows that requests searchTicket
in version v2 are problematic with high workload both for valid
and invalid inputs. The problem refers to a drop in performance in
version v2, although none of the two implementations appears to
solve the reliability issues of the service (see Fig. 6c and Fig. 6f). Ac-
cording to Table 1, the core microservice in charge of handling such
request classes is travelService. With this information, engineers
might prioritize its maintenance in a future Dev phase.

By expanding the analysis to all five metrics of MIPaRT, we
can have a better understanding of the type of failures the services
experiences for Scenario 1. Table 2 shows a summary of the relevant
issues per request class and test session according to the following
eight cases5:

• Performance and Reliability issues (Perf&Rel): when FR > 0.05,
PD > 0.1, CE > 0, and SE > 0;

• Performance issues (Perf): when PD > 0.5;
• Reliability issues (Rel): when FR > 0.5 and SE > 0;
• Connection and Server errors (Conn&Serv): when SE > 0 and
CE > 0;

• Connection errors (Conn): when only CE > 0;
• Server errors (Serv): when only SE > 0;
• No criticality (ok): if there is at least one request for the
considered input class, and none of previous cases applies;

• No requests (noReq): zero requests issued to that class.
The cases have been conceived to indicate which of the issues
may originate from both performance and reliability problems. For
instance, the case 𝑃𝑒𝑟 𝑓&𝑅𝑒𝑙 detects those classes for which reli-
ability and performance are not satisfactory (although they may
be not highly problematic as for the cases 𝑃𝑒𝑟 𝑓 or 𝑅𝑒𝑙), but whose
requests come back with both connection (e.g., load or transmis-
sion problems) and server errors (e.g., code problems). This case
is subtle and may not be easily caught by a tester as FR and PD
of these requests may not be as high as for the cases 𝑃𝑒𝑟 𝑓 or 𝑅𝑒𝑙 .
For instance, although cancelNoRefundvalid is always in the ori-
gin of the criticality plot, it is related only to Performance issues.
This depends on a high response time (always over the thresh-
old), related to CEs occurring for each request. Moreover, we ob-
serve that the changes introduced in v2 improve reliability for
the class createUservalid (mapping to adminUserService) and
loginvalid (mapping to authService). The valid requests issued
to searchTicket (a core microservice for Train Ticket) deserve
specific attention: even though both performance and reliability of
searchTicket𝑣𝑎𝑙𝑖𝑑 degrade as the workload increases, for version
v1 yields a medium criticality level for all workload intensities. For
version v2 the criticality level increases even more with the work-
load intensity. Under workloads low and medium, the reliability is
close to 1.0, whereas the PD increases from 0.60 to 0.78. Under high
workload, we observe a drop in reliability, bringing the class to the
highest criticality level. In Scenario 1, Table 2 helps identify those

5The thresholds have been chosen only to exemplify our approach on Train Ticket
and are not intended to be generally valid for other systems.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

AST 2022, May 21–22, 2022, Pennsylvania, PA Camilli, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Medium

criticality

High

criticality

Low

criticality

●

●
●

●

●
●
●
●
●
●
●

●●

●

●

●

●●●

adminLogin_valid

cancelNoRefund_valid

pay_invalid

searchTicket_valid

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
reliability

pe
rf

or
m

an
ce

(a) version v1, workload low

Medium

criticality

High

criticality

Low

criticality

●

●

●

●●

●
●●●●

●

●

●●

●

●
●●●●

createUser_valid

adminLogin_valid

cancelNoRefund_valid

cancelNoRefund_invalid

pay_invalid

searchTicket_valid

searchTicket_invalid

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
reliability

pe
rf

or
m

an
ce

(b) version v1, workload medium

Medium

criticality

High

criticality

Low

criticality

●

●●

●●

●

●

●
●

●

●

●

●●

●

● ●●
●●

createUser_valid

adminLogin_valid

cancelNoRefund_valid

cancelNoRefund_invalid

pay_invalid

searchTicket_valid

searchTicket_invalid

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
reliability

pe
rf

or
m

an
ce

(c) version v1, workload high

Medium

criticality

High

criticality

Low

criticality

●

●

●

●

●

●
●
●
●
●●
●●

●

●
●
●●●

cancelNoRefund_valid

pay_invalid

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
reliability

pe
rf

or
m

an
ce

(d) version v2, workload low

Medium

criticality

High

criticality

Low

criticality

●

●

●

●

●
●
●
●
●

●

●

●●

●

●

●●●●

createUser_validcancelNoRefund_valid

pay_invalid

searchTicket_valid

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
reliability

pe
rf

or
m

an
ce

(e) version v2, workload medium

Medium

criticality

High

criticality

Low

criticality

●

●
●

●

●●

●

●

●
●●

●

● ●

●●●●

cancelNoRefund_valid

getFoods_valid

searchTicket_valid
searchTicket_invalid

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
reliability

pe
rf

or
m

an
ce

(f) version v2, workload high

Figure 6: Scenario 1 – Criticality plot before (version v1) and after a change (v2) for various workload intensities.

Table 2: Scenario 1 – Summary of the detected issues per classes of user input.

user requests version v1 version v2
(input class) workload low workload medium workload high workload low workload medium workload high

loginvalid Conn&Serv Conn Conn&Serv ok Conn ok
logininvalid Conn Conn Conn ok Conn ok

searchTicketvalid Perf&Rel Perf&Rel Perf&Rel Perf Perf Perf
searchTicketinvalid Rel Rel Rel Serv Perf&Rel Perf&Rel

payvalid ok ok ok ok ok Perf
payinvalid Rel Rel Rel Rel Rel noReq

bookingvalid Conn&Serv Conn&Serv Conn&Serv Conn&Serv Serv Serv
bookinginvalid ok Serv Conn&Serv Serv Serv ok

cancelNoRefundvalid Perf Perf Perf Perf Perf Perf
cancelNoRefundinvalid noReq Perf Perf noReq noReq noReq

createUservalid Perf Perf Perf&Rel Perf Perf ok
navigatetoClientLoginvalid ok ok Conn ok ok ok

adminLoginvalid Rel Perf&Rel Rel Conn Conn ok
getAssuranceTypesvalid Conn Conn Conn ok Conn ok

getFoodsvalid Conn&Serv Conn Conn Conn Conn Perf
homevalid Conn Conn Conn ok ok ok

selectContactvalid Conn Conn Conn Conn Conn ok
selectOrdervalid Conn Conn Conn ok Conn ok

request classes that deserve more attention and be further analysed
through theMIPaRT radar plots. For example, the analysis in Table 2
reports 𝑃𝑒𝑟 𝑓&𝑅𝑒𝑙 issues for the request class searchTicket𝑣𝑎𝑙𝑖𝑑
for all loads in version 𝑣1, whereas 𝑃𝑒𝑟 𝑓 problems for all load of

version 𝑣2. The radar plots for such class are illustrated in Figure 7.
The radars of the class in version 𝑣1 show that under low and
medium workload intensity, the requests show a low failure rate
(FR) all due to server errors, whereas some connection errors occur

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Microservices Integrated Performance and Reliability Testing AST 2022, May 21–22, 2022, Pennsylvania, PA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

FR

RR

PD

CE

SE

0.2 0.4 0.6 0.8 1.0

(a) version v1, workload low

FR

RR

PD

CE

SE

0.2 0.4 0.6 0.8 1.0

(b) version v1, workload medium

FR

RR

PD

CE

SE

0.2 0.4 0.6 0.8 1.0

(c) version v1, workload high

FR

RR

PD

CE

SE

0.2 0.4 0.6 0.8 1.0

(d) version v2, workload low

FR

RR

PD

CE

SE

0.2 0.4 0.6 0.8 1.0

(e) version v2, workload medium

FR

RR

PD

CE

SE

0.2 0.4 0.6 0.8 1.0

(f) version v2, workload high

Figure 7: Scenario 1 – Radar plots for the request class searchTicket𝑣𝑎𝑙𝑖𝑑 per version and workload intensity.

at high workload intensity. The areas in the radars also quantifies
the evolution of such change. With version 𝑣2, performance de-
grades from 0.60 to 1 with the increase of the workload and the
few errors are only associated to the connection. This degradation
causes the accumulation of pending requests into request queue of
the microservice travelService. This in turn causes saturation of
the resources that makes the travelService temporarily unable
to handle the requests, triggering a visible manifestation in terms
of reliability drop.

5.3.2 Scenario 2 (operational change). The experiments consider-
ing this second scenario aim at showingMIPaRT ability to quantify
the impact of operational changes onto performance/reliability ex-
posed by the system in production. We considered two operational
conditions, testing the same version of Train Ticket v2 under low
workload intensity, adopting the two following behaviour mix:

(guest : 0.5; buyer : 0.4; renouncing :0.1; refund_claimer : 0.0) (5)

(guest : 0.3; buyer : 0.4; renouncing : 0.0; refund_claimer : 0.3) (6)
Figure 8 shows the effect of the operational change in terms of

number of requests to request classes. For instance, that the amount
of requests issued to obtain a refund voucher increases after the
change (i.e., behaviour mix in Eq. 6). We also observe that the oc-
currences of the other classes decrease, except for logininvalid,
payvalid, payinvalid, and searchTicketvalid. Figure 9 shows the
criticality plot for the two testing sessions. The red data points
represent the results obtained with the behaviour mix in Eq. 5 (pre-
change), whereas the blue data points represent the results obtained
with the behaviour mix in Eq. 6 (post-change). The plot highlights
the effects of the operational change on performance and reliabil-
ity associated to input partitions. We can make for instance the

following observations. According to Fig. 8, the voucher is never
requested before the operational change: both performance and reli-
ability issues associated with getVouchervalid requests occur after
the operational change and they are detected and made visible by
MIPaRT. The reliability issues associated with requests payinvalid
are detected also after the operational change. This is consistent
with Fig. 8 that shows a comparable number of occurrences of this
request class.

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of requests

createUser_valid
navigateToclientLogin_valid

adminLogin_valid
cancelNoRefund_valid

booking_valid
booking_invalid

getAssuranceTypes_valid
getFoods_valid

home_valid
login_valid

login_invalid
pay_valid

pay_invalid
searchTicket_valid

searchTicket_invalid
selectContact_valid

selectOrder_valid
setNewContact_valid

getVoucher_valid
getVoucher_invalid

Re
qu

es
t p

ar
tit

io
ns

Profile 1
Profile 2

Figure 8: Scenario 2 – Request count of input classes.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

AST 2022, May 21–22, 2022, Pennsylvania, PA Camilli, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Medium

criticality

High

criticality

Low

criticality ●

●

●

●

●
●●●●●●●

●

●

● ●●●

cancelNoRefund_valid

pay_invalid

●

●

●
●
●
●
●
●

●

●

●●
●●

●

●
●●●

createUser_valid

getVoucher_invalid

pay_invalid

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
reliability

pe
rf

or
m

an
ce

Figure 9: Scenario 2 – Criticality plot showing the effects of
operational changes.

5.4 Discussion of the results
From the application of MIPaRT and its visualization layer (Scenario
1), we can provide the QA team with insights on performance,
reliability, and performance and reliability jointly. Thus,MIPaRT
elevates the attention on those request classes, that developers may
consider more critical according to the analysis performed with
MIPaRT and decide their Dev activities of the future DevOps cycles.
In particular, developers are able to detect issues and then prioritize
activities on those microservices whose requests may not evidently
show issues of performance or reliability only. MIPaRT captures
variation of such issues under operational changes (Scenario 2).

RQ1 Summary

Does the integrated performance-reliability testing provide
advantages compared to the verification of the two qualities
in isolation?
The integrated testing approach yields additional insights
compared to performing performance or reliability testing
in isolation. The future Dev activities can be prioritized ac-
counting for both extra-functional qualities. Furthermore,
MIPaRT quantifies the joint effect on both performance and
reliability caused by evolutionary/operational changes.

With our platform, developers can also have further insights
on the nature of the issues of between performance and reliability
(Scenario 1, table summary and radar plots) and how such issues
can be affected by a specific operational change (Scenario 2).

RQ2 Summary

Can MIPaRT detect existing relations between performance
and reliability issues?
According to our controlled experiments,MIPaRT is able
to detect some relations between the two extra-functional
qualities. In particular, by using the radar plot visualization
we have been able to characterize reliability issues either
as fast failures possibly caused by implementation defects
or saturation of resources caused by performance issues.

6 THREATS TO VALIDITY
External validity threats of this work concern the replication of
our experience to other systems or settings. We addressed them
selecting a representative benchmark inMSA research and adopting
a common technology stack in microservices systems, as described
in [37].We also built an ex-vivo testing environment using amodern
infrastructure supporting continuous deployment. As described
in [11], this represents a common setting for DevOps practices.

Threats to internal validity could limit the extent to which the
results obtained in the evaluation support our claims. We mitigated
these threats through a careful design of the two scenarios of in-
terest (i.e., evolutionary and operational changes) as well as the
controlled experiments.

Construct validity threats concerns possible misinterpretation
of what our measures reflect in our controlled experiments. Thus,
we mitigated these threats by assessing the metrics used in MI-
PaRT. Reliability has been measured by using the Nelson-Aalen
non-parametric estimator that represents a de-facto standard in
software reliability engineering [36]. Performance has been mea-
sured based on well-established practices according to the usability
engineering guideline presented in [26].

Conclusion validity threats concern the possibility of obtaining
results by chance since the testing sessions were guided by stochas-
tic sampling. We addressed them by sampling a large number of
requests. Each test session lasted around 20 minutes, during which
we sampled more than 15𝑘 requests.

7 CONCLUSIONS
Performance and reliability are two fundamental quality factors
for microservices systems, typically analyzed separately. We be-
lieve that in such contexts where software releases for the service
building blocks (microservices) are very frequent, and where ser-
vice usage patterns may change often too, QA teams would benefit
from the availability of techniques and tools to rapidly and jointly
investigate performance and reliability issues which may arise due
to evolutionary and operational changes. To this aim, we have pro-
posed MIPaRT, a framework for microservices systems ex-vivo
testing for joint analysis of performance and reliability aspects.
MIPaRT builds on techniques for service usage, workload model-
ing, and for integrated performance-reliability testing. It provides
QA engineers with a platform to automatically generate test cases,
orchestrate testing sessions, computing relevant metrics and visu-
alize results, for continuous assessment of microservices systems.
This comes at the cost of the availability of microservices specifica-
tions and of service usage and system monitoring data, which are
typically readily available in RESTful microservice systems develop-
ment and operation contexts. We described controlled experiments
in operatingMIPaRT with an open microservices systems bench-
mark, showing its benefits in integrated performance and reliability
testing.

REFERENCES
[1] J. Lewis and M. Fowler. Microservices - a definition of this new architectural

term. Available at: http://martinfowler.com/articles/microservices.html, 2014.
URL https://martinfowler.com/articles/microservices.html.

[2] M. Loukides. What is DevOps? O’Reilly Media, Inc., 2012.
[3] L. J. Bass, I. M. Weber, and L. Zhu. DevOps - A Software Architect’s Perspective.

SEI series in software engineering. Addison-Wesley, 2015.

10

https://martinfowler.com/articles/microservices.html

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Microservices Integrated Performance and Reliability Testing AST 2022, May 21–22, 2022, Pennsylvania, PA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[4] P. Abrahamsson, G. Botterweck, H. Ghanbari, M. G. Jaatun, P. Kettunen, T. J.
Mikkonen, A. Mjeda, J. Münch, A. N. Duc, B. Russo, and X. Wang. Towards a
secure DevOps approach for cyber-physical systems: An industrial perspective.
International Journal of Systems and Software Security and Protection, 11(2):38–57,
2020.

[5] J. A. Morales, H. Yasar, and A. Volkman. Implementing DevOps practices in highly
regulated environments. In Proceedings of the 19th International Conference on
Agile Software Development: Companion, XP ’18. ACM, 2018.

[6] K. C. Bourne. Chapter 7 - change control management. In K. C. Bourne, editor,
Application Administrators Handbook, pages 96–111. Morgan Kaufmann, Boston,
2014.

[7] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Signature Series
(Fowler). Pearson Education, 2010.

[8] A. Avritzer, V. Ferme, A. Janes, B. Russo, H. Schulz, and A. van Hoorn. A quan-
titative approach for the assessment of microservice architecture deployment
alternatives by automated performance testing. In Proceedings of the 12th Euro-
pean Conference on Software Architecture (ECSA), volume 10469 of Lecture Notes
in Computer Science, pages 159–174. Springer, 2018.

[9] A. Avritzer, V. Ferme, A. Janes, B. Russo, A. van Hoorn, H. Schulz, D. Menasché,
and V. Rufino. Scalability assessment of microservice architecture deployment
configurations: A domain-based approach leveraging operational profiles and
load tests. Journal of Systems and Software, 165(110564):1–16, 2020.

[10] R. Pietrantuono, S. Russo, and A. Guerriero. Run-time reliability estimation
of microservice architectures. In 2018 IEEE 29th International Symposium on
Software Reliability Engineering (ISSRE), pages 25–35. IEEE, 2018.

[11] A. Bertolino, G. De Angelis, A. Guerriero, B. Miranda, R. Pietrantuono, and
S. Russo. DevOpRET: Continuous reliability testing in DevOps. Journal of
Software: Evolution and Process, 2020;e2298:1–17, 2020.

[12] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding. Fault analysis and
debugging of microservice systems: Industrial survey, benchmark system, and
empirical study. IEEE Transactions on Software Engineering, 47(2):243–260, 2021.

[13] N. Alshuqayran, N. Ali, and R. Evans. A systematic mapping study in microser-
vice architecture. In Proc. IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA 2016), pages 44–51. IEEE, 2016.

[14] J. Soldani, D.A. Tamburri, and W.-J. Van Den Heuvel. The pains and gains
of microservices: A systematic grey literature review. Journal of Systems and
Software, 146:215–232, 2018.

[15] E. Casalicchio and V. Perciballi. Auto-scaling of containers: The impact of relative
and absolute metrics. In Proc. FAS*W@SASO/ICCAC, pages 207–214. IEEE, 2017.

[16] T. Ahmad, A. Ashraf, D. Truscan, and I. Porres. Exploratory performance testing
using reinforcement learning. In 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 156–163. IEEE, 2019.

[17] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Automating perfor-
mance bottleneck detection using search-based application profiling. In Proceed-
ings of the 2015 International Symposium on Software Testing and Analysis, ISSTA
2015, page 270–281. ACM, 2015.

[18] M. H. Moghadam. Machine learning-assisted performance testing. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019, page
1187–1189. ACM, 2019.

[19] Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding performance
problems with feedback-directed learning software testing. In Proceedings of the
34th International Conference on Software Engineering (ICSE), page 156–166. IEEE,
2012.

[20] Sunghun Kim, E. James Whitehead, and Yi Zhang. Classifying software changes:
Clean or buggy? IEEE Transactions on Software Engineering, 34(2):181–196, 2008.
doi: 10.1109/TSE.2007.70773.

[21] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey of
symbolic execution techniques. ACM Computing Surveys, 51(3):1–39, 2019.

[22] B. Chen, . Liu, and W. Le. Generating performance distributions via probabilistic
symbolic execution. In Proceedings of the 38th International Conference on Software
Engineering (ICSE), page 49–60. ACM, 2016.

[23] A. Sedaghatbaf, M. H. Moghadam, and M. Saadatmand. Automated performance
testing based on active deep learning. In 2021 IEEE/ACM International Conference
on Automation of Software Test (AST), pages 11–19. IEEE, 2021.

[24] J. Koo, C. Saumya, M. Kulkarni, and S. Bagchi. Pyse: Automatic worst-case test
generation by reinforcement learning. In 12th IEEE Conference on Software Testing,
Validation and Verification (ICST), pages 136–147. IEEE, 2019.

[25] L. Gazzola, M. Goldstein, L. Mariani, I. Segall, and L. Ussi. Automatic ex-vivo
regression testing of microservices. In Proceedings of the IEEE/ACM 1st Inter-
national Conference on Automation of Software Test, AST ’20, page 11–20. ACM,
2020.

[26] J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1994.

[27] M. Andreolini, M. Colajanni, and P. Valente. Design and testing of scalable web-
based systems with performance constraints. In 2005 Workshop on Techniques,

Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-
PERF’05), pages 15–25, 2005.

[28] C.-P. Bezemer, S. Eismann, V. Ferme, J. Grohmann, R. Heinrich, P. Jamshidi,
W. Shang, A. van Hoorn, M. Villavicencio, J. Walter, and F. Willnecker. How
is performance addressed in DevOps? In V. Apte, A. Di Marco, M. Litoiu, and
J. Merseguer, editors, 2019 ACM/SPEC International Conference on Performance
Engineering, ICPE 2019, Mumbai, India, April 7-11, 2019, pages 45–50. ACM, 2019.

[29] A. Avritzer, D. S. Menasché, V. Rufino, B. Russo, A. Janes, V. Ferme, A. van Hoorn,
and H. Schulz. PPTAM: production and performance testing based application
monitoring. In Companion of the 2019 ACM/SPEC International Conference on
Performance Engineering (ICPE), pages 39–40. ACM, 2019.

[30] M. Camilli and B. Russo. Modeling performance of microservices systems with
growth theory. Empirical Software Engineering, 27(39):1–44, 2022.

[31] M. Camilli, C. Colarusso, B. Russo, and E. Zimeo. Domain metric driven decom-
position of data-intensive applications. In 2020 IEEE International Symposium on
Software Reliability Engineering Workshops, ISSRE Workshops, Coimbra, Portugal,
October 12-15, 2020, pages 189–196. IEEE, 2020.

[32] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and
C. Rosenthal. Chaos engineering. IEEE Software, 33(3):35–41, 2016.

[33] D. Kesim, A. van Hoorn, S. Frank, and M. Häussler. Identifying and prioritizing
chaos experiments by using established risk analysis techniques. In M. Vieira,
H. Madeira, N. Antunes, and Z. Zheng, editors, 31st IEEE International Symposium
on Software Reliability Engineering (ISSRE), pages 229–240. IEEE, 2020.

[34] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar. Gremlin:
Systematic resilience testing of microservices. In 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), pages 57–66. IEEE, 2016.

[35] A. Jindal, V. Podolskiy, and M. Gerndt. Performance modeling for cloud microser-
vice applications. In 2019 ACM/SPEC International Conference on Performance
Engineering, ICPE ’19, page 25–32. ACM, 2019.

[36] R. Pietrantuono, S. Russo, and A. Guerriero. Testing microservice architectures
for operational reliability. Software Testing, Verification and Reliability, 30(2):
e1725, 2020.

[37] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao. Benchmarking
microservice systems for software engineering research. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings,
ICSE 2018, pages 323–324. ACM, 2018.

[38] J. R. Norris. Markov chains. Number 2 in Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge university press, 1997.

[39] C. Vögele, A. van Hoorn, E. Schulz, W. Hasselbring, and H. Krcmar. WESS-
BAS: Extraction of probabilistic workload specifications for load testing and
performance prediction–a model-driven approach for session-based application
systems. Software & Systems Modeling, 17(2):443–477, 2018.

[40] A. Bertolino, P. Braione, G. De Angelis, L. Gazzola, F. Kifetew, L. Mariani, M. Orrù,
M. Pezzè, R. Pietrantuono, S. Russo, and P. Tonella. A survey of field-based testing
techniques. ACM Computing Surveys, 54(5):92:1–92:39, 2021.

[41] W. Nelson. Theory and applications of hazard plotting for censored failure data.
Technometrics, 42(1):12–25, 2000.

[42] A. Avritzer, M. Camilli, A. Janes, B. Russo, J. Jahic, A. van Hoorn, R. Britto,
and C. Trubiani. PPTAM_ : What, Where, and How of Cross-domain Scalabil-
ity Assessment. In 18th IEEE International Conference on Software Architecture
Companion ICSA-C, pages 62–69. IEEE, 2021.

[43] V. Ferme and C. Pautasso. A declarative approach for performance tests execution
in continuous software development environments. In Proceedings of the 2018
ACM/SPEC International Conference on Performance Engineering, ICPE ’18, page
261–272. ACM, 2018.

11

	Abstract
	1 Introduction
	2 Related work
	3 Benchmark microservices system
	4 MIPaRT
	4.1 Overview
	4.2 Definition of the operating conditions
	4.3 Ex-vivo testing
	4.4 Performance-reliability analysis
	4.5 Integrated platform

	5 Evaluation
	5.1 Scenarios
	5.2 Experiments
	5.3 Results
	5.4 Discussion of the results

	6 Threats to Validity
	7 Conclusions
	References

