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Abstract: The prevalence of chronic kidney disease (CKD) is rising, especially in elderly individuals.
The overlap between CKD and aging is associated with body composition modification, metabolic
abnormalities, and malnutrition. Renal care guidelines suggest treating CKD patient with a low-
protein diet according to the renal disease stage. On the other hand, geriatric care guidelines underline
the need for a higher protein intake to prevent malnutrition. The challenge remains of how to reconcile
a low dietary protein intake with insuring a favorable nutritional status in geriatric CKD populations.
Therefore, this study aims to evaluate the effect of a low-protein adequate energy intake (LPAE) diet
on nutritional risk and nutritional status among elderly CKD (stage 3–5) patients and then to assess
its impact on CKD metabolic abnormalities. To this purpose, 42 subjects [age ≥ 65, CKD stage 3–5
in conservative therapy, and Geriatric Nutritional Risk Index (GNRI) ≥ 98] were recruited and the
LPAE diet was prescribed. At baseline and after 6 months of the LPAE diet, the following data were
collected: age, sex, biochemical parameters, anthropometric measurements, body composition, and
the GNRI. According to their dietary compliance, the subjects were divided into groups: compliant
and non-compliant. For the compliant group, the results obtained show no increased malnutrition risk
incidence but, rather, an improvement in body composition and metabolic parameters, suggesting
that the LPAE diet can provide a safe tool in geriatric CKD patients.

Keywords: CKD; low-protein diet; malnutrition risk; GNRI; geriatric nutritional risk

1. Introduction

Chronic kidney disease (CKD) is a worldwide public health problem, associated with
a high risk of morbidity and mortality, representing a significant public health concern,
with increasing incidence and prevalence. It is estimated that 600 million people all over
the world suffer from CKD and its prevalence is rising especially among older adults, as a
consequence of socio economic development and better life expectancy [1]. Aging and CKD
are both associated with metabolic and nutritional derangements, chronic inflammation,
malnutrition as well as protein-energy wasting (PEW), important comorbid conditions
that predict poor clinical outcomes and an increased risk of multimorbidity, disability and
mortality [2,3]. Aging is a natural process affecting skeletal muscle and adipose organ
physiology, during which both tissues undergo quantitative and functional changes char-
acterized by an increase in fat mass with a redistribution in favor of visceral depots and
a decrease in fat free mass and loss of muscle mass, this last one referred to as ‘sarcope-
nia’ [4–10]. On the other hand, CKD itself is associated with functional alterations of both
muscle mass and adipose tissue. These derangements are related to a systemic, chronic
low-grade inflammation and to an increased risk of metabolic abnormalities, particularly
insulin resistance (IR), CKD progression, cardiovascular disease and diabetes [9,10].

Interestingly, IR is a common and very early alteration in elderly CKD patients, having
the potential to power up a vicious cycle of impaired muscle function and PEW contributing
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to the progression of CKD, worsening morbidity and mortality [11–14]. Therefore, the
overlap of body composition changes associated with CKD and aging, metabolic abnor-
malities, inflammation, IR, and malnutrition represents a very important aspect of the
comprehensive management of elderly patients with CKD. The optimal nutritional care
for elderly patients with advanced CKD is still uncertain, and there is an urgent need for
evidence-based indications regarding the adequate approach in this setting [15]. Indeed,
although protein restriction provides direct benefits to CKD patients, it is only a very
relevant part of the more complex dietary management of CKD patients, since it is equally
important to maintain an adequate energy intake.

The benefits of protein restriction stem from the fact that oral protein loading con-
tributes to glomerular hyperfiltration, accompanying increased hemodynamic stress, in-
creased production of pro-inflammatory cytokines and growth factors, and decreased
glomerular membrane selectivity, as well as the vasodilation of the arteriole caused by
increased plasma glucagon levels. Thus, hyperfiltration increases intraglomerular pressure
and possible protein loss, leading to glomerulosclerosis and tubulo-interstitial fibrosis,
which are major contributors to the progression of CKD [16]. In addition, in CKD patients,
as the elimination of nitrogen products (derived from protein and amino acid catabolism)
gradually decreases, so-called “uremic toxins” accumulate in the blood and tissues, leading
to inflammation, anorexia, and nausea, with a consequent decreased energy intake [17].
Therefore, in the nutritional management of CKD patients, it is evidently important to
provide an adequate protein and energy intake, to ensure both a proper nitrogen balance
and appropriate protein utilization in order to maintain an optimal nutritional status [16].

The high prevalence of malnutrition and sarcopenia in old age has led to guidelines
from the European Society for Clinical Nutrition and Metabolism (ESPEN) recommend-
ing, for elderly individuals, a daily protein intake at or above 1–1.2 g/Kg of their ideal
body weight (IBW)/day, higher than the recommended daily allowances in the general
population, presently set at 0.8 g/Kg of IBW/day [18]. Conversely, the strategies for CKD
management and its complications include reducing protein intakes. However, the rec-
ommended level of dietary protein intake differs across guidelines. The current Kidney
Disease: Improving Global Outcomes (KDIGO) guidelines suggest maintaining a dietary
protein intake of 0.6–0.8 g/Kg of IBW/day, while the PROT-AGE Study Group recommends
a dietary protein intake of 0.8 g/Kg of IBW/day and >0.8 g/Kg of IBW/day for elderly
CKD patients with a glomerular filtration rate (GFR) < 30 mL/min and 30 to 60 mL/min,
respectively [19,20]. In contrast, the recent 2020 Kidney Disease Outcome Quality Initiative
(KDOQI) guidelines on nutrition in CKD recommend moderate-to-severe protein restric-
tion in CKD patients without diabetes (0.4–0.6 g/Kg of IBW/day) in order to slow disease
progression, prevent or correct metabolic disorders, maintain an adequate nutritional
status, and postpone the start of dialysis [21]. Therefore, both geriatric and nephrology
recommendations pose a difficult dilemma with regard to daily protein intake targets to
prevent malnutrition and protein energy wasting, to slow CKD progression and improve
metabolic abnormalities in CKD elderly patients. On the other hand, both geriatric and
renal guidelines underline the need for a concomitant adequate energy intake in order to
prevent malnutrition and optimize the anabolic utilization of proteins and muscle mass
maintenance. In light of the above data, the goal of this study was to evaluate the effect
of a low-protein adequate energy intake (LPAE) diet on nutritional risk and nutritional
status among CKD (stage 3–5) elderly patients. Furthermore, a secondary objective was
to evaluate the impact of the LPAE diet on metabolic abnormalities associated with CKD
(stage 3–5) elderly patients.

2. Materials and Methods
2.1. Study Design

This is a retrospective monocentric study approved by the Ethical Committee of the
Federico II University Medical School of Naples on 18 July 2018 (Project identification code
181/18), and all patients gave written informed consent. Between January 2019 and June
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2019, forty-two CKD (3–5 stage) patients with an age ≥ 65 years old attended a dedicated
dietary counseling clinic, managed by a medical doctor specialist in clinical nutrition and a
dietitian in our department. They were recruited according to the following inclusion crite-
ria: age ≥ 65 years old, CKD (3–5 stage) in conservative therapy, Geriatric Nutritional Risk
Index (GNRI) ≥ 98. Individuals with diabetes, bedridden, or with other possible causes of
malnutrition (like malabsorptive syndromes, cancer, dementia, depression, neurological
disorders, gastrointestinal disorders, or infections) were excluded from the study popu-
lation. Recruited subjects were advised to consume an LPAE diet, according to KDIGO
guidelines, with a protein intake of 0.6–0.8 g/Kg of IBW/day and an energy intake of
30–35 kcal/g/Kg of IBW/day [19,22]. Where needed, protein-free products, made from
carbohydrates, almost free of protein, phosphorus, sodium, and potassium, were used to
raise energy intakes.

2.1.1. Data Collection

We extracted the following variables from the database at baseline and after 6 months
on the LPAE diet: age, sex, biochemical parameters, anthropometric measurements, body
composition, Geriatric Nutritional Risk Index (GNRI), and pharmacological treatments.
Dietary compliance (with both prescribed energy and protein intake) was estimated after
6 months on the LPAE diet.

2.1.2. Biochemical Parameters

Overnight fasting venous blood samples were gathered from patients, and the levels
of serum albumin, serum electrolytes (calcium, phosphorus, potassium), total cholesterol,
LDL-cholesterol, HDL-cholesterol (HDL-C), triglycerides (TG), blood glucose, uric acid,
blood urea, creatinine, serum hemoglobin, and parathyroid hormone (PTH) were evaluated
by using standard analytic laboratory methods. The estimated glomerular filtration rate
(eGFR) was evaluated, using CKD-EPI formula [23]. The TG/HDL ratio, a practical
alternative to HOMA-IR for identifying subjects with IR, was calculated [24,25]. Blood
pressure was measured using an aneroid sphygmomanometer.

2.1.3. Anthropometric Measurements

Subjects had to be without shoes and in light clothes. Body weight and height were de-
termined using a calibrated balance beam scale and a stadiometer (Seca 711; Seca Hamburg,
Germany), then body mass index [BMI (Kg)/(m2)] was calculated. Waist circumference
(WC) was assessed, according to the National Institutes of Health (NIH) protocols, with a
no-stretch tape measure, halfway between the lower edge of the rib cage and the iliac crest.

2.1.4. Body Composition Analysis

Body composition was assessed using a bioelectrical impedance analysis (BIA) with an
800 µA current at a single frequency of 50 kHz (BIA 101 RJL, Akern Bioresearch, from Flo-
rence, Italy) [26]. The exam was performed according to ESPEN guidelines: the electrodes
were placed on the hand and the foot, according to Kushner, while patients lay supine with
limbs slightly apart from their body, after an overnight fast [18,27]. The BIA parameters
used to assess body composition were fat-free mass (FFM), fat mass (FM) (expressed in %),
and phase angle (PA). Skeletal muscle mass (SM) was calculated by using the following
BIA equation from Janssen et al. 2000 [28]:

SM (Kg) = [(h2/BIA resistance × 0.401) + (gender × 3.825) + (age × 0.071)] + 5.102

where height (h) is expressed in cm, and BIA resistance in ohms. For gender: men = 1
and women = 0. Age in years is used [28]. This value can be converted into the skeletal
muscle mass index (SMI) by dividing the limb skeletal muscle mass (Kg) by the square of
the height (m2).
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2.1.5. Definition of the Geriatric Nutritional Risk Index

The GNRI has been described by Bouillanne et al. and it is an effective and simple risk
index that evaluates nutritional risk and a proven predictive index for prognosis in elderly
individuals, those undergoing dialysis, cardiovascular patients, and those requiring health
care. The GNRI formula is as follows:

GNRI = GNRI = [1.489 × serum albumin (g/L)] + [41.7 × (actual weight/ideal weight)].

Ideal weight was calculated using the Lorentz equation (for men: H − 100 − [(H −
150)/4]; for women: H − 100 − [(H − 150)/2.5]; H: height).

Patients were assigned to one of two different malnutrition risk groups referring
to the original GNRI classification: no nutritional risk (GNRI ≥ 98) or malnutrition risk
(GNRI < 98) [29].

2.1.6. Dietary Intake and Dietary Compliance

Dietary intake was evaluated with the use of food frequency questionnaires (FFQs),
performed at baseline and after 6 months of the LPAE diet [30–32]. Dietary compliance
to the prescribed energy and protein intake was estimated after 6 months on the LPAE
diet, using a ratio (Rt) of actual vs. recommended intake ×100%. Fair dietary compliance
was defined as energy Rt % ≥ 90% and protein Rt < 110% and poor compliance as energy
Rt % < 90% and protein Rt ≥ 110 [33].

2.2. Endpoints

The primary endpoint was to estimate the nutritional risk (GNRI) score and body
composition changes in the compliant and non-compliant groups after 6 months on the
LPAE diet.

The secondary endpoint was to evaluate the improvement or worsening of blood
metabolic and calcium–phosphorus metabolism parameters associated with CKD stages
3–5, after 6 months on the LPAE diet.

2.3. Statistical Analyses

Data were expressed as mean ± standard deviation of the mean (DS). The paired-
samples t-test, independent-samples t-test, and chi-squared test were performed. All
statistical analyses were performed using SPSS20 (SPSS Inc., Chicago, IL, USA). The statisti-
cal significance was set at p < 0.05.

3. Results

The baseline demographic characteristics, anthropometric measures, body composi-
tion, and metabolic parameters of the study population (n = 42; 83% males; mean age of
71.5 ± 5.5 years old; mean BMI of 27.3 ± 3.1 Kg/m2) are detailed in Table 1. After 6 months
from the baseline, participants were classified as compliant or non-compliant, according to
protein and energy intake (Table 2). The compliant group (n = 19; 45.2%) was adherent to
both the prescribed protein and energy intake; the non-compliant group (n = 23; 54.8%)
showed a significantly increased protein (p < 0.05) and a significantly decreased energy
intake (p < 0.05) compared to the prescribed ones (Table 2). Table 3 shows the results after
6 months in both compliant and non-compliant patients. At the beginning of the study,
the groups did not differ in terms of anthropometric, clinical, or demographic features.
After 6 months from the baseline, the GNRI was ≥98 in all compliant patients, while two
patients in the non-compliant group with a baseline no-nutritional-risk status worsened
towards malnutrition risk (GNRI score 98 vs. 91 and 87, respectively). Furthermore, a
significant improvement in FFM (77.8 ± 7.1% vs. 77.1 ± 7.5%, p < 0.05), SM (40.5 ± 5.5 Kg
vs. 39.2 ± 46 Kg, p < 0.05), and SMI (14.6 ± 1.2 Kg/m2 vs. 14.2 ± 1.1 Kg/m2, p < 0.05), and
a significant decrease in FM (21.8 ± 7.6% vs. 23.4 ± 8.1%, p < 0.05) and WC (101.1 ± 10.3 cm
vs. 98.4 ± 9.1 cm, p < 0.05) were observed in the compliant group only. Still, a significant
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increase in systolic blood pressure (136.4 ± 13.0 mmHg vs. 128.9 ± 13.6 mmHg, p < 0.05)
was detected in the non-compliant group. On the other hand, no significant changes were
observed in BMI, albumin, or hemoglobin either in the compliant or in non-compliant
groups (Tables 3 and 4). After 6 months from the baseline, a significant improvement was
also observed in the biochemical parameters of plasma glucose, serum urea levels, HDL-C,
triglycerides, serum phosphate, PTH levels, serum uric acid levels, and TG/HDL ratio
(p < 0.05) in the compliant group but not in non-compliant patients, who, on the contrary,
showed a significant increase in serum phosphate and PTH levels (p < 0.05). Moreover,
in both the compliant and non-compliant groups, no significant difference was observed
regarding eGFR after 6 months compared to the baseline (Table 4). Remarkably, our data
show a percentage decrease in uric acid, phosphate, PTH, and the TG/HDL ratio index in
the compliant group (−21.7%, −11.6%, −7.4%, and −18.8%, respectively), and a percentage
increase in the non-compliant group (+4.4%, +14.5%, +39%, and +4%, respectively), from
the baseline to 6 months, with significant differences between the two groups (p < 0.05)
(Figure 1). No modifications in the patients’ pharmacological therapy were observed during
the observation period for any of the population.

Table 1. Anthropometric features, body composition characteristics, and metabolic parameters of the
study population.

Baseline Anthropometric Features, Body Composition Characteristics,
and Metabolic Parameters

Male sex, n (%) 35 (83.3%)

Age, years 71.5 ± 5.5

Weight, Kg 74.7 ± 13.4

BMI, Kg/m2 27.3 ± 4.1

Waist circumference (WC), cm 97.7 ± 11.9

Fat-free mass, % 75.9 ± 7.9

Skeletal muscle mass, Kg 38.6 ± 4.6

Skeletal mass index, Kg/m² 14.1 ± 1.3

Fat mass,% 24.2 ± 8.1

Phase angle, Φ 5.4 ± 1.1

Systolic blood arterial pressure, mmHg 131.2 ± 14.1

Diastolic blood arterial pressure, mmHg 77.4 ± 9.7

Hypertension (n, %) n. 37 (88.1%)

Dyslipidemia (n, %) n. 21 (50.0%)

Glomerular filtration rate (mL/min/1.73 m²) 25.8 ± 11.5

CKD stage
Stage 3 (N.15; 35.7%)
Stage 4 (N 19; 45.2%)
Stage 5 (N 8; 19.0%)

Creatinine, mg/dL 2.9 ± 1.2

Blood urea, mg/dL 95.3 ± 38.3

Potassium, mg/dL 4.9 ± 0.6

Phosphorus, mg/dL 3.8 ± 1.0

Total calcium, mg/dL 9.4 ± 0.5

Albumin, g/dL 4.2 ± 0.4

Total cholesterol, mg/dL 165.9 ± 37.3

HDL cholesterol, mg/dL 43.3 ± 11.8
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Table 1. Cont.

Baseline Anthropometric Features, Body Composition Characteristics,
and Metabolic Parameters

Triglycerides, mg/dL 138.0 ± 73.9

Hemoglobin, g/dL 12.9 ± 1.7

Glucose, mg/dL 93.4 ± 13.2

Uric acid, mg/dL 7.0 ± 1.6

PTH, pg/mL 147.9 ± 120.9

TG/HDL ratio 3.6 ± 2.5
Abbreviations: GNRI, geriatric nutritional risk index; BMI, body mass index, HDL, high-density lipoprotein;
TG/HDL ratio, triglyceride/high-density lipoprotein ratio; PTH, parathyroid hormone.

Table 2. Dietary features of the compliant and non-compliant groups at the baseline and after
6 months on the LPAE diet.

Compliant n. 19, 45.2% Non-Compliant
n. 23, 54.8%

Prescribed After 6 Months Prescribed After 6 Months

Protein Intake
(g/IBW/day) 0.7 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 *

Energy Intake
(kcal/IBW/day) 29.0 ± 3.2 28.8 ± 3.1 30.7 ± 3.1 25.6 ± 3.4 *

* p values < 0.05 vs. baseline. Abbreviations are: IBW, ideal body weight.

Table 3. Anthropometric parameters, malnutrition risk (GNRI) and the body composition features of
compliant and non-compliant patients at baseline and after 6 months on the LPAE diet.

Compliant Group
n. 19

Non-Compliant Group
n. 23

Baseline After 6 Months Baseline After 6 Months

Weight, Kg 77.4 ± 15.7 75.7 ± 14.5 72.5 ± 11.0 71.3 ± 8.8

BMI, Kg/m2 27.8 ± 4.1 27.2 ± 3.7 26.9 ± 4.1 26.5 ± 3.3

Waist circumference, cm 101.1 ± 10.3 98.4 ± 9.1 * 95.4 ± 12.7 94.3 ± 11.6

GNRI ≥ 98, n (%) 19 (100%) 19 (100%) 23 (100%) 21 (91.3%)

Fat-free mass, % 77.1 ± 7.5 77.8 ± 7.1 * 76.5 ± 8.1 76.9 ± 9.3

Skeletal mass, Kg 39.2 ± 46 40.5 ± 5.5 * 37.9 ± 4.6 36.9 ± 5.1

Skeletal mass index,
Kg/m² 14.2 ± 1.1 14.6 ± 1.2 * 14.1 ± 1.4 13.7 ± 1.4

Fat mass, % 23.4 ± 8.1 21.8 ± 7.6 * 23.5 ± 8.1 23.0 ± 9.3

Phase angle, Φ 5,3 ± 0.9 5.4 ± 0.8 5.6 ± 1.1 5.7 ± 1.4

Systolic blood arterial
pressure, mmHg 134.2 ± 14.5 132.9 ± 15.1 128.9 ± 13.6 136.4 ± 13.0 *

Diastolic blood arterial
pressure, mmHg 79.1 ± 11.1 76.1 ± 11.7 76.0 ± 8.5 79.5 ± 9.8

* p values < 0.05 vs. baseline. Abbreviations: GNRI, Geriatric Nutritional Risk Index; BMI, body mass index.
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Table 4. Metabolic features of the compliant and non-compliant groups at baseline and after 6 months.

Compliant
n. 19

Non-Compliant
n. 23

Baseline After 6 Months Baseline After 6 Months

Blood glucose, mg/dL 92.8 ± 12.8 85.6 ± 13.1 * 94.4 ± 13.8 96.4 ± 26.8

Total cholesterol,
mg/dL 162.8 ± 43.2 160.0 ± 35.1 168.4 ± 32.5 179.6 ± 36.8

HDL cholesterol,
mg/dL 38.4 ± 9.6 41.4 ± 8.7 * 47.4 ± 12.1 47.4 ± 12.5

Triglycerides, mg/dL 141.9 ± 73.4 111.9 ± 40.2 * 134.8 ± 75.9 128.6 ± 51.8

Creatinine, mg/dL 2.8 ± 1.2 2.8 ± 1.4 2.9 ± 1.2 3.2 ± 1.6

Blood urea, mg/dL 96.7 ± 36.9 71.4 ± 28.8 * 94.2 ± 40.1 86.6 ± 39.1

Uric acid, mg/dL 7.7 ± 1.6 5.8 ± 1.4 * 6.5 ± 1.5 6.6 ± 1.5

Phosphorus, mg/dL 4.2 ± 1.1 3.5 ± 0.7 * 3.4 ± 0.6 3.9 ± 0.7 *

Potassium, mg/dL 4.8 ± 0.6 4.8 ± 0.4 5.0 ± 0.6 5.1 ± 0.6

Calcium, mg/dL 9.5 ± 0.7 9.4 ± 0.6 9.2 ± 0.3 9.4 ± 0.6

PTH, pg/mL 140.8 ± 132.5 102.4 ± 115.9 * 153.4 ± 113.9 206.1 ± 168.4 *

eGFR (CKD-EPI),
mL/min/1.73 m2 26.7 ± 10.1 28.5 ± 14.1 25.4 ± 12.7 24.4 ± 12.4

TG/HDL ratio 3.9 ± 2.4 2.8 ± 1.3 * 3.3 ± 2.6 3.1 ± 1.8

Hemoglobin, g/dL 13.2 ± 1.9 13.0 ± 1.7 12.7 ± 1.5 12.4 ± 1.6

Albumin, g/dL 4.2 ± 0.5 4.0 ± 0.3 4.1 ± 0.3 4.1 ± 0.4
* p values < 0.05 vs. baseline. Abbreviations: GNRI, Geriatric Nutritional Risk Index; BMI, body mass index, HDL
high-density lipoprotein; TG/HDL ratio, triglyceride/high-density lipoprotein ratio; PTH, parathyroid hormone.
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4. Discussion

In the literature, there are conflicting opinions about the need for nutritional care, with
specific regard to protein intake, in elderly CKD patients. The present study contributes to
answering open questions on this topic.

The benefits of a low protein intake in reducing hyperfiltration and slowing the
progression of kidney disease are widely described in the literature. This nutritional
intervention must, however, be accompanied by an adequate energy intake in order to
obtain a correct nitrogen balance and the optimal use of proteins by our body to avoid
the loss of muscle mass and to reduce malnutrition risk. Hence, patients’ follow-up and
adherence to the prescribed nutritional treatment is crucial.

Our data showed a satisfying compliance rate of 45.2% with the prescribed dietary
intake, considering as “compliant” those patients who adhered to both the prescribed
protein and energy intake. Similar to our findings, previous studies on dietary restrictions
show that adherence is a challenge for many CKD patients, ranging greatly between 20%
and 70% [34,35]. However, it also represents a challenge for those involved in the nutritional
management of CKD patients and, as with other therapies, jeopardizes the achievement of
the set objectives.

The main finding of our study was that an LPAE diet, monitored by a nutrition unit
dedicated to care, does not increase malnutrition risk and improves body composition and
metabolic parameters in CKD elderly patients.

Malnutrition in older adults can be caused by a variety of factors, including a loss of
appetite, a lack of ability to chew and swallow, depression, dementia, chronic diseases, and
an increased use of prescription medications [36]. Considering all these factors affecting
the risk of malnutrition, the recent ESPEN guidelines suggest that high-protein diets may
counterbalance sarcopenia and malnutrition in elderly individuals [18]. We should note
that the challenge remains of how to reconcile a low dietary protein intake with ensur-
ing a favorable nutritional status and avoiding protein-energy wasting risks in geriatric
CKD populations.

There is no single measure to assess malnutrition in CKD patients. So far, in this
study, we have determined the GNRI, anthropometric data, and biochemical parameters of
patients and performed bioelectrical impedance analysis to assess their nutritional status
and body composition. In the present study, we did not observe an associated increased
incidence of malnutrition risk but, rather, an improvement in body composition after
6 months on the LPAE diet.

Contrasting data are reported in the literature regarding the effect of a low-protein
diet on nutritional status in CKD patients. In 2022, Caldiroli et al. observed that, in older
CKD patients at risk of malnutrition, the prescription of a low-protein diet does not induce
malnutrition, as detected using the malnutrition inflammation score [37]. Similarly, no
detrimental effect of being on a very-low-protein diet was recorded in older patients in the
“pre-dialysis” phase [38]. This is consistent with the results of our study.

However, in previous studies, the selection criteria usually included a heterogeneous
population of patients at different levels of malnutrition risk (low, moderate, and high),
and body composition was not evaluated, while our nutritional approach was tested in a
cohort of homogeneous older adults with no nutritional risk status at baseline. Interestingly,
according to the GNRI, an LPAE diet does not seem to raise the incidence of malnutrition
risk, while it improves body composition by increasing FFM and skeletal muscle mass
and decreasing FM and WC after 6 months on the LPAE diet. On the other hand, an
increased incidence of malnutrition risk (8.7%) was observed in the non-compliant group.
The obtained improvement in body composition and decrease in WC represent a novelty
compared to previous studies, which, on the contrary, a worsening was observed in anthro-
pometric and body composition parameters [39,40]. In particular, Barril and colleagues
evaluated the effects of a protein intake < 0.8 g/Kg of IBW/day on body composition in
CKD stage 3–5 patients [41]. They concluded that the subjects with the lowest protein
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intake experienced a worsening in body composition with a loss of muscle mass; no data,
however, were provided regarding the energy intake of these patients.

Furthermore, we observed no significant difference in mean albumin, hemoglobin,
body weight, or BMI values in either the compliant or non-compliant group. It is important
to note that energy intake is of crucial importance in the dietary management of CKD elderly
patients when dietary protein restriction is prescribed. In fact, while, in the compliant group,
the protein intake should be sufficient to preserve muscle mass and nutritional status, in
the non-compliant group, since the energy intake is adequate, a lower energy and a higher
protein intake compared to the amount prescribed directly cause an increased malnutrition
risk. Therefore, we demonstrate that an appropriate low-protein diet with adequate energy
intake is nutritionally safe in order to improve body composition without increasing
malnutrition risk, thus reconciling low protein intake with a good nutritional status in
CKD elderly patients. Further studies are required to investigate the long-term efficacy and
feasibility of the LPAE diet in preventing malnutrition risks in CKD elderly patients.

The secondary objectives of the study were to evaluate whether an LPAE diet could
have a specific indication in the metabolic complications of CKD.

The systematic review by Rhee et al., in agreement with our data, concluded that
low-protein diets (<0.8 g/Kg of IBW/day) were associated with an improvement in CKD
metabolic abnormalities, not leading to protein-energy malnutrition or safety concerns [42].
However, in these previous studies, dietary energy intake recommendations were not al-
ways advised [42]. Notably, our study showed important opposite changes in the metabolic
parameters of urea, phosphorus, uric acid, PTH levels, and the TG/HDL ratio, which
are key targets in the conservative management of CKD, in both the compliant and non-
compliant groups.

The pathological effects of phosphate on bones and the cardiovascular system motivate
interventions to treat hyperphosphatemia. In clinical practice, the interventions to reduce
phosphate levels consist of dietetic restrictions and phosphate binders. Although dietary
phosphorus management is complex, there is a close relationship between protein and
phosphorus intake [43]. Proteins are rich in phosphorus, so most of the scientific societies
recommend reducing protein intake from the early stages in patients with CKD, to reduce
the phosphorus intake. One gram of protein contains 13–15 mg of phosphorus, of which
30–70% is absorbed through the intestine [44]. Thus, an intake of 90 g of protein a day
results in the absorption of 600–700 mg of phosphorus daily. Previous studies suggest that
following a low-protein diet with a reduced phosphorus content lowers serum phosphorus,
improves secondary hyperparathyroidism, and may delay kidney function decline [45–47].
Further experimental and clinical studies have shown that a low-phosphorus diet prevents
the secondary hyperparathyroidism and hyperphosphatemia associated with CKD [48].
As such, an 800–1000 mg/d phosphorus recommendation has become a foundational part
of the nutritional guidelines in CKD for individuals in stage 3–5 with serum phosphorus
or PTH above a target level [21]. According to previous studies, reducing protein intake
following the LPAE diet lowered phosphate and PTH serum levels, while they worsened in
the non-compliant group, with a significant percentage change between groups (Figure 1).

Moreover, in addition to the increased phosphate levels observed in CKD patients,
there is growing evidence that serum urea is a toxin, and there is no pharmacological
therapy to treat and reduce its levels [49]. The reduction in several molecules derived by
cellular metabolism, such as urea, obtained with low-protein diets has a positive impact on
inflammatory status and pro-thrombotic events, with the consequent effect of reducing car-
diovascular risk in CKD patients [50]. Additionally, urea is a contributing factor to insulin
resistance, as circulating urea directly impairs insulin secretion by pancreatic islets [51]. As
expected, the urea serum levels lowered as a consequence of the adherence to the LPAE
diet. Similarly, uric acid levels also decreased in the compliant group after six months on
the LPAE diet, with a significant percentage change between groups (Figure 1). Hence,
multiple clinical and experimental data suggest that uric acid exerts pro-oxidant actions,
inducing an increased production of oxygen free radicals that is potentially harmful to
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the vascular wall and other tissues [52]. Furthermore, uric acid is another factor that can
contribute to IR, since it blocks the insulin-mediated endothelial nitric oxide release that
is critical to insulin action [53]. Therefore, IR and uric acid are independently linked, and
IR in metabolic syndrome models can be improved by lowering the serum uric acid [54].
In our CKD compliant patients, the LPAE diet directly lowered uric acid and urea levels,
likely improving the insulin resistance as a consequence. The TG/HDL-C ratio may be the
best reliable marker for predicting IR in the non-obese elderly population [55]. Indeed, the
observed decrease in TG/HDL-C ratio in the compliant group, after 6 months on the LPAE
diet, confirms the improvement in insulin sensitivity proposed by Rigalleau et al., who
claimed that a low-protein diet played an effective beneficial role against insulin resistance
independently of its influence on the progression of CKD [56]. Remarkably, when data were
expressed as the percentage change from baseline in each group, significant differences
between the compliant and non-compliant groups were also observed for the TG/HDL-C
ratio (Figure 1). In particular, compliant patients experienced a statistically significantly
greater benefit in terms of reduced uric acid and a reduced TG/HDL-C ratio compared
to non-compliant patients, suggesting that the LPAE diet is an effective dietary strategy
for improving metabolic control in CKD patients. Notably, the decreased abdominal fat
defined by WC may be also a responsible factor for the improvement in insulin sensitivity
in the compliant group (Table 2). All of this is very important during aging, as skeletal
muscle dysfunction synergizes with visceral fat accumulation, with both amplifying the IR
that occurs even in the very early stages of CKD.

Moreover, a low-protein diet, using protein-free products, may help to reduce sodium
intake. Bellizzi et al. showed a significant reduction in sodium intake (with a reduction
of 27% in the excreted fraction of sodium) and blood pressure levels after six months on
a very-low-protein diet compared to any variation in a low-protein diet [57]. However,
in our study, another notable finding regarding the benefits of the LPAE diet, although
not the focus of our study, is that we found no significant blood pressure lowering effects
in the compliant group, while significantly increased blood pressure was observed in the
non-compliant group after 6 months on the LPAE diet.

The major strength of this study is that the nutritional status of the patients was
comprehensively studied according to a number of common biochemical and clinical
criteria or other tools for the assessment of malnutrition risk in CKD. A limitation to the
study is that this is an observational, but not randomized, trial.

5. Conclusions

This observational study aims to answer the long-standing question of the nutritional
management of elderly CKD patients, seeking to alleviate concerns regarding a lower
protein intake in these subjects. In fact, in CKD elderly subjects, a LPAE diet does not imply
a risk of developing malnutrition; rather, it was proven to improve the nutritional status
and body composition. Notably, the LPAE diet increased the FFM and decreased the FM
and WC—the latter a warning sign for visceral fat—and contributed to improving CKD
metabolic abnormalities, including IR. Further longitudinal randomized studies on a larger
population sample will certainly be needed to confirm the long-term nutritional safety of
the LPAE diet in elderly patients.
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