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A B S T R A C T

In the railway domain, rolling stock maintenance affects service operation time and efficiency. Minimizing train
unavailability is essential for reducing capital loss and operational costs. To this aim, prediction of failures
of rolling stock equipment is crucial to proactively trigger proper maintenance activities. Indeed, predictive
maintenance is a golden example of the digital transformation within Industry 4.0, which affects several
engineering processes in the railway domain. Nowadays, it may leverage artificial intelligence and machine
learning algorithms to forecast failures and schedule the optimal time for maintenance actions. Generally, rail
systems deteriorate gradually over time or fail directly, leading to data that vary extremely slowly. Indeed,
ML approaches for predictive maintenance should consider this type of data to accurately predict and forecast
failures.

This paper proposes a methodology based on Long Short-Term Memory deep learning algorithms for
predictive maintenance of railway rolling stock equipment. The methodology allows us to properly learn long-
term dependencies for gradually changing data, and both predicting and forecasting failures of rail equipment.
In the framework of an academic-industrial partnership, the methodology is experimented on a train traction
converter cooling system, demonstrating its applicability and benefits. The results show that it outperforms
state-of-the-art methods, reaching a failure prediction and forecasting accuracy over 99%, with a false alarm
rate of ∼0.4% and a mean absolute error in the order of 10−4, respectively.
1. Introduction

The manufacturing industry is going through the so-called Industry
4.0 revolution, in which we are assisting in the massive integration
of physical and digital worlds in production environments. Industrial
Internet of Things, Big Data, Artificial Intelligence, and 4G and 5G
are some of the enabling technologies of this revolution, which are
strongly impacting the transport industry. Such technologies permit the
collection of a large amount of data gathered from heterogeneous on-
board devices and equipment, distributed on train vehicles and railway
track sides.

The huge amount of data gathered from (smart) sensors and trans-
mitted to diagnosis systems, on-board or in a control room, can be
leveraged through proper techniques to unveil degradation patterns of
components and predict failures in useful time for optimal maintenance
decisions. Railway transport players usually rely on planned mainte-
nance, which however brings the side effect of taking unnecessary
actions, leading to an increase in operating costs. Condition-based main-
tenance (CBM) is a relatively recent extension, which allows estimating
the actual conditions of equipment by performing direct measurements;
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it improves planned maintenance through proactivity, by repairing or
replacing degraded devices when defined conditions are met. Predictive
Maintenance advances CBM using monitoring data and effective predic-
tive techniques to determine the time when a fault is likely to occur. In
this way, companies can plan maintenance operations when actually
required, with advantages in cost reduction, reduced mean time to
failures, repair stop reduction, and overall profit (Peres, Rocha, Leitao,
& Barata, 2018; Sezer, Romero, Guedea, Macchi, & Emmanouilidis,
2018). The obvious benefit is that maintenance is done at the right
time, that is, before a fault occurs (preventing long downtime) but not
unnecessarily too early, ultimately reducing the unavailability of rolling
stock as well as of infrastructure equipment.

Machine Learning (ML) algorithms are becoming today compelling
tools for maintenance in many heterogeneous domains, as they support
predictive techniques. In Rahhal and Abualnadi (2020) the authors use
ML to predict the light bulb failure time. In Cachada et al. (2018) ML
is used for the early detection of the occurrence of machine failures.
ML techniques have also been proposed for rotating machinery failure
prediction (Saon, Hiyama, et al., 2010), for the remaining lifetime
vailable online 9 March 2023
957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2023.119767
Received 8 June 2022; Received in revised form 24 February 2023; Accepted 24 Fe
bruary 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:luigi.desimone@unina.it
https://doi.org/10.1016/j.eswa.2023.119767
https://doi.org/10.1016/j.eswa.2023.119767
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.119767&domain=pdf


Expert Systems With Applications 222 (2023) 119767L. De Simone et al.

g
f

prediction of hard disks in computing clusters (Basak, Sengupta, &
Dubey, 2019; De Santo, Galli, Gravina, Moscato, & Sperli, 2022),
and for Remaining Useful Life (RUL) of wind turbines (Nichenametla,
Nandipati, & Waghmare, 2017). A semi-supervised technique, obtained
by combining supervised and unsupervised Deep Learning algorithms,
is proposed in Ellefsen, Bjørlykhaug, Æsøy, Ushakov, and Zhang (2019)
to improve the accuracy in the evaluation of turbofan engine’s RUL.
Thanks to data made available by the NASA Prognostics Center of
Excellence (NASA, 2020), ML techniques are also applied to evaluate
the degradation of aircraft engines (Aydin & Guldamlasioglu, 2017;
Chen et al., 2020). ML handles high-dimensional and multivariate data
and helps to extract hidden relationships within data in complex and
dynamic environments. Indeed, ML is gaining popularity to improve the
operations and reliability also in the railway domain: a comprehensive
survey of studies that apply ML in rail track maintenance tasks is
provided by Nakhaee, Hiemstra, Stoelinga, and van Noort (2019).
However, the performance of ML algorithms strongly depends on the
appropriate choice of the ML technique (Williams, Zander, & Armitage,
2006). Generally, rail systems deteriorate gradually over time or fail
directly (Bai, Liu, Wang, Sun, & Wang, 2017), leading to data that vary
extremely slowly. Indeed, an ML approach for predictive maintenance
should consider this type of data to accurately predict and forecast
failures.

In the railway domain context, we define the following research
questions in the context of failure prediction for rolling stock equip-
ment, i.e., (R1) how to properly learn long-term dependencies for
radually changing data?, (R2) how to predict with high accuracy
ailures and their severity levels?, and (R3) how to forecast with high

accuracy failures?
This paper presents a deep learning-based methodology which an-

swers the research questions depicted above. In particular, the proposed
methodology allows, in an ensemble, predicting and forecasting failures
to plan maintenance interventions before their occurrence, optimiz-
ing the overall cost and duration of maintenance interventions. It is
based on Long Short-Term Memory (LSTM) networks, which are an
extension of recurrent neural networks (RNN), explicitly designed to
learn long-term dependencies for gradually changing data (Hochreiter
& Schmidhuber, 1997). The proposed methodology analyzes data from
the many sensors connected to the various subsystems composing a
railway vehicle. The experimentation focuses on the train traction
converter cooling subsystem, one of the most critical on-board systems.
We analyzed operational data of a train fleet spanning several months.
The framework enables classic statistical data analysis, like trend esti-
mation (e.g., Mann–Kendall) and correlation, to identify coarse-grained
relationships between dataset features and failure characterization.
Then, it uses LSTM networks to both predict and forecast failures and
provide valuable insights to maintainers of rolling stock equipment.
Our solution allows achieving over 99% of accuracy both for prediction
and forecasting tasks, outperforming other ML models and techniques
in the predictive maintenance literature. Further, comparing the error
in the prediction and forecasting tasks, in the best case, we attained
a false alarm rate of ∼0.4% and a mean absolute error in the order of
10−4, respectively, which are very promising comparing to the exist-
ing study. The industry partner validated the proposed methodology
against the real target system acknowledging the proper assumptions
and approaches.

The remainder of the paper is organized as follows. Section 2 sum-
marizes the state-of-the-art ML applications for predictive maintenance
in various industry areas. Section 3 shows a theoretical background
regarding the target system and the LSTM approach used for prediction.
Section 4 depicts the proposed framework for dataset analysis and fault
prediction. Section 5 analyzes the results obtained. Section 6 concludes
2

the paper.
2. Related work

Emerging maintenance strategies focus on forecasting failures to
plan the necessary actions with timing that maximizes the use of the
systems, while not compromising functionality. Unlike the traditional
experience-based diagnostic approach of maintainers and technicians,
this recent paradigm is based on the ability to document and analyze
knowledge and data related to anomalies and failures, minimizing
human errors and standardizing methods and procedures.

The two broad categories of predictive maintenance are knowledge-
based and data-driven. The former combines the knowledge of main-
tainers and designers with analysis techniques such as FMECA (Failure
Mode, Effects, and Criticality Analysis) and RAMS (Reliability, Avail-
ability, Maintainability, and Safety). The latter is based on data pro-
cessing using Artificial Intelligence and Machine Learning algorithms.

In the railway domain, tele-diagnostic systems have been introduced
for some decades. They allow sensing of the operating conditions of
the many on-board train subsystems and send data in real time to a
control room to detect train anomalies. This laid the ground for new
prognostic systems (Corfiati, Dalla Chiara, & Galfrè, 2011), able not
merely to provide maintainers with information about the occurrence
of anomalies, but to predict them to prevent unavailability.

For predicting failures and estimating the RUL of railway systems,
statistical techniques have first been investigated. Guclu et al. exploited
AutoRegressive-Moving-Average (ARMA) to predict the degradation of
railway turnout systems (Guclu, Yilboga, Eker, Camci, & Jennions,
2010); their experiments target ten turnout systems, and the results
show a Root Mean Square Error (RMSE) for the prediction equal to
0.65. Particle Filter-based techniques (Jouin, Gouriveau, Hissel, Péra,
& Zerhouni, 2016) have been used in Mishra, Odelius, Thaduri, Nissen,
and Rantatalo (2017) to predict the RUL of ballasted railway track
systems, in a window of the failure prediction as long as 18 months
with a confidence interval of 98%. While classical statistical techniques
can provide good prediction ability, they do not easily identify hidden
variations in the relationships between the data, which instead rep-
resent the strengths of ML techniques and the reason why they are
increasingly used in predictive maintenance tasks.

More recently, ML techniques for anomaly detection, diagnosis, or
prognosis of railway rolling stock subsystems have been proposed and
experimented with in several studies. Barmada et al. proposed Support
Vector Machine (SVM) for fault detection of current arcs in the pan-
tograph system (Barmada, Raugi, Tucci, & Romano, 2013). Fink et al.
used Deep Belief Networks (DBN) to predict operational disruptions
caused by rail vehicle door systems (Fink, Zio, & Weidmann, 2015);
their technique achieves an accuracy in the prognosis of 96%. Also, Yin
et al. leveraged DBN to perform the automatic fault diagnosis of vehicle
on-board equipment in high-speed trains (Yin & Zhao, 2016). Recently,
Yokouchi et al. proposed an LSTM-based system for anomaly detection
of railway vehicle air-conditioning unit (Yokouchi & Kondo, 2021),
while Hu et al. designed an LSTM autoencoder in order to estimate RUL
of turbofan engines (Hu & Dai, 2022).

Few studies in the literature target rail traction (sub)systems. Zhang
et al. adopted Bayesian Networks (BNs) on features extracted with Re-
stricted Boltzmann Machines (RBM) to estimate the RUL of the traction
converter of China Railway high-speed trains (Zhang, Wang, Lu, &
Jiang, 2019). The authors focused on the DC-link circuit in the CRH2
traction system, showing accuracy in predicting the degradation of the
capacities and resistances in the circuit by about 98%. Zhu et al. eval-
uated the degradation of the CRH2 train traction system (Zhu, Zhang,
Lu, & Jiang, 2019). They applied the seq2seq framework (Google Inc.,
2020) in the encoding and decoding phases within an LSTM model;
their results show accuracy in the prediction of 90%. Both these studies
used datasets of train operational data generated by a hardware-in-loop
system.
Table 1 summarizes the related studies.



Expert Systems With Applications 222 (2023) 119767L. De Simone et al.

w
t
o
M
m
a
i
i
a
1
s
a
d
f
g
d
t
p
p
p
t
e
p
e

3

d
o
o
a
i
n
t
L
p

3

c
p

e
s
t

Table 1
Failure diagnosis and prediction studies in the railway domain.

Authors Technique Target system Results

Mishra et al. (2017) Particle filter-based Railway switches Better performance compared to regression models with an
18-month RUL prediction for 4 railway switches

Guclu et al. (2010) ARMA Railway turnout RUL turnout system with RMSE of 0.65
Barmada et al.
(2013)

SVM Pantograph Fault detection with 90% of accuracy

Fink et al. (2015) DBN Rail vehicle door Predict operational disruptions caused by rail vehicle door
systems with an accuracy of 96%

Yin and Zhao
(2016)

DBN Vehicle on-board equipment Diagnose faults of vehicle on-board equipment in high-speed
trains with accuracy up to 95%

Yokouchi and
Kondo (2021)

LSTM Air-conditioning unit Detection of anomalies up to 1.5 months before they become
apparent

Hu and Dai (2022) LSTM autoencoder Turbofan Engine RUL of the turbofan engine with RMSE = 0.14
Zhang et al. (2019) RBM - BN Traction Better RUL matching compared to BN- and DBN-based

prediction methods

Zhu et al. (2019) LSTM seq2seq Traction RUL of the traction system with an error of 90%
Since the surveyed article focused on a different target system, it
ould be unfair to compare the existing approaches with the results ob-

ained in our experimentation. However, we can still analyze the orders
f magnitude between metrics used for evaluating the performance of
L employed in state-of-the-art studies, when available. Given that, our
ethodology allows achieving very high accuracy (both for prediction

nd forecasting tasks), over 99%, which is greater than the maximum,
.e., 96%, obtained by state-of-the-art studies. Also comparing the error
n the prediction and forecasting tasks, in the best case, we attained

false alarm rate of ∼0.4% and a mean absolute error in the order of
0−4, respectively, which are very promising comparing to the existing
tudy. Despite this, we remark that our study is not merely about
pplying an ML algorithm to a specific case study. Instead, we provide a
eep learning-based methodology that allows properly treating datasets
rom rolling stock equipment, by taking into account peculiarities like
radually changing data, the train routes, to improve accuracy in pre-
iction and forecasting tasks. To the best of our knowledge, our study is
he first attempt at leveraging LSTM machine learning models to both
redict and forecast failures of a critical train traction subsystem. The
roposed methodology combines LSTM models with an advanced data
re-processing algorithm, with the final aim of supporting the optimiza-
ion of maintenance activities and reducing train unavailability. It has
xperimented on real train operational data provided by the industry
artner, producing remarkable results acknowledged by the domain
xperts.

. Background

In this section, we introduce the reader to the basic notions to un-
erstand the proposed methodology. Section 3.1 provides an overview
f the traction converter cooling system, which is the target we focus
n in the experimental section. This is fundamental to point out which
re the key features to be considered when the rail vehicle traction
s properly working and reveals failures. Due to the gradually change
ature of key features we leveraged the LSTM machine learning model
hat easily fit such a behavior. We discuss in Section 3.2 the basics for
STM networks, which are one of the fundamental blocks within the
roposed methodology.

.1. Traction converter cooling system

In this section, we provide a brief background on the traction
onverter cooling system, which is the target on which we apply the
roposed methodology described in Section 4.

In the railway domain, the need for efficient cooling of electronic
quipment is due to guarantee proper control of the temperature of
emiconductors junction. A water and glycol mixture was selected as
he medium for heat transfer due to its high thermal conductivity. The
3

cooling system consists mainly of a liquid tank/expansion tank, a pump,
a heat exchanger with the modules to be cooled, and some measuring
and control equipment. In our system, the hydraulic circuit provides
cooling for two main power inverter modules and one auxiliary mod-
ule. The hydraulic circuit cools the Insulated Gate Bipolar Transistors
(IGBT) as well as the resistors located on each of the three modules
through a high thermal efficiency plate. The liquid is in turn cooled
through a heat exchanger with forced ventilation air.

The cooling system is positioned on the roof of the train inside a
converter box. Cooling air is taken from the head of the carriage (in the
train direction) and is discharged on the sides, after passing through
a sealed compartment, inside which transformers and inductors are
located.

Fig. 1 shows the hydraulic circuit block diagram with its compo-
nents and measuring equipment:

• The WT control unit tank is used both as a filling and compensa-
tion tank, as the fluid is subject to variations in volume depending
on the temperatures reached. If anomalous overpressures are
generated, the safety valve VS vents the system;

• The TL1/TL2 switches control the cooling liquid level. In par-
ticular, TL1 signals a pre-alarm for liquid refilling, in case of
reduction in volume; TL2 signals that the minimum admissible
level has been reached, resulting in the shutdown of the system
(excluding the converter);

• The PM1 centrifugal pump produces the liquid circulation at
proper flow rate;

• The pressure point of the PS pressure switch is positioned
on the delivery pipe, set to a minimum pressure value, in cor-
respondence to which a malfunction of the pump or incorrect
valve positioning is possible. Passing this threshold determines a
shutdown of the plant;

• The P1 pressure gauge displays the pressure value present in
the system;

• On the return line, the flow sensor (SF) connected to the
Flow Control Board FL1 (Coflu/4 Assembly) displays and
controls the flow rate of the liquid circulating in the system.
A minimum flow rate is set on the board, below which correct
refrigeration is no longer guaranteed, determining a system shut-
down. The typical causes that can determine the intervention of
the minimum threshold of FL1 are similar to those described for
the PS pressure switch;

• In the operational phase, the filter basket (F) is used
to retain the particles with dimensions greater than a specified
threshold. The filter is ignored in the nominal operating position;

• Inside each module (external to the control unit) there are PT100
thermometers, set on a temperature limit value suited for the
correct functioning of the semiconductors. They allow continuous
temperature monitoring.
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Fig. 1. Hydraulic circuit, converters unit.
Fig. 2. An example of the TACU H2O flow feature signal trend over time.
𝑐

For all the above components, operating conditions are monitored
and data are stored in datasets, provided by the industrial partner.
These can be analyzed to unveil long-term dependencies among mea-
surements of the relevant physical dimensions within the traction
system. We focus the experimentation on measurements regarding the
cooling liquid level (i.e., Status Level (TL1/TL2)), and the flow sensor
within the flow control board (i.e., Assembly FTF (FL1)). As suggested
by the industrial experts, and more detailed in Section 4.1, these
components strongly impact traction operation.

Fig. 2 shows a trend of the flow rate of the cooling liquid in a trac-
tion control unit, namely the TACU1_H2OFlow feature in a dataset.
This trend is gradual changing, with some time intervals in which the
signal drops to zero due to failures during operation. This behavior
suggests leveraging a machine learning model, which is capable of
identifying such trend characteristics. We leveraged the Long Short-
Term Memory (LSTM) model to answer the research question R1, which
is about how to properly learn long-term dependencies for gradually
changing data.

3.2. Long short-term memory networks

Because of the sequential, gradually changing nature of the features
in our dataset, it is important to capture in the model their depen-
dencies over time. To this aim, we leverage a model based on Long
Short-Term Memory (LSTM) networks (Gers, Schmidhuber, & Cum-
mins, 2000; Hochreiter & Schmidhuber, 1997). These are an extension
of Recurrent Neural Networks (RNNs) with an efficient gradient-based
algorithm to keep the error constant, avoiding its explosion or van-
ishment. The main advantage concerning traditional RNNs is that
LSTM networks are explicitly designed for keeping the memory of time
dependencies among inputs for a long period.
4

Fig. 3 shows the internal structure of an LSTM cell. It consists of
three gates referred to as the input gate, exit gate, and forget gate,
governed by the following equations:

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 ) (1)

𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (2)

�̃� = 𝜎𝑐 (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐 ) (3)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡 (4)

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (5)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝜎ℎ(𝑐𝑡) (6)

where: 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 denote, respectively, the forget gate, the input gate,
and the output gate; 𝑊𝑓 , 𝑊𝑖, 𝑊𝑐 , and 𝑊𝑜 denote the weight matrices
related to the relative gates; 𝑈𝑓 , 𝑈𝑖, 𝑈𝑐 , and 𝑈𝑜 denote the recurrent
connections to the relative gates; 𝜎𝑔 , 𝜎𝑐 , and 𝜎ℎ refer to a sigmoid
function, hyperbolic tangent function, and hyperbolic tangent function,
respectively; finally, ⊙ denotes the Hadamard product (element-wise
product).

The first step performed when data enter the LSTM cell is to select
the information to store. This step is regulated by Eq. (1). The 𝑥𝑡
data array containing the values of the features at instant 𝑡 is input,
along with the ℎ𝑡−1 output. The result obtained is given in input to
the activation function (sigmoid 𝜎𝑔) which returns a value between 0
and 1 for each element of cell state 𝑐𝑡−1, where 0 and 1 indicate if the
element can be ignored or stored in time, respectively. The second
step is related to the input gate and allows the LSTM to establish which
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Fig. 3. Internal structure of an LSTM cell.

new information to store. This step is realized through two operations
related to Eqs. (2) and (3). At the end of these operations, the state of
the LSTM cell is updated through Eq. (4). Finally, the last step consists
of the generation of the LSTM output through Eqs. (5) and (6) which
select the part of the new state to be put in output.

In the following, we describe the methodology and show how LSTM
accomplishes classification and forecasting tasks to predict traction
converter cooling system failures.

4. Methodology

Because of the sequential, gradual changing nature of the features,
it is important to capture dependencies among features over time. The
proposed methodology, based on LSTM networks, is shown in Fig. 4. It
entails the following steps:

• Data Exploration, data collected from various sensors in the
system are analyzed to determine the relationships between the
present characteristics and identify a trend over time of this latter,
whose results are crucial to identify the faults within the system.

• Data Pre-processing: the dataset is prepared for the application
of the next step of prediction. This step consists in data cleaning,
spike filtering, routes extraction, and sequence extraction, described
in detail in Section 4.2.

• Fault Analysis: failure prediction (classification) and forecast-
ing tasks based on LSTM, for each temporal sequence after the
pre-processing step.

4.1. Data exploration

The available dataset contains data from sensors and control units
from the traction converter cooling system. The dataset also includes
the train identifier, train location with GPS coordinates, train current
speed, and the timestamp of the measurement. The dataset consists of
79,861 samples, with 131 different features, covering time series related
to a fleet of 10 different trains in operation from November to December
2019. We focused on the specific period since it was indicated by our
industry partner because they wanted to analyze the most problematic
time interval for their train fleet. The data corresponding to the first
half of November is acquired with a sampling time of 60 s, while
from the second half of November until the first half of December the
sampling time is about 1 s and then returns to 60 s from the second
half of December. As described in the subsequent data pre-processing
step (specifically, the data cleaning task), the processing is carried out
to uniform the sampling at 60 s.

In addition to the traction converter cooling system dataset, the
industry partner provided another dataset with diagnostic data about
failures that occurred during train operations in the same period.
This dataset contains all the diagnostic events, a brief description, the
5

duration, and the concerned train within the fleet. The dataset is crucial
to get insights into maintenance and fault predictions.

All the raw data within the dataset were collected by our industry
partner by using their own network of Internet of Thing (IoT) sensors
installed on-board trains, which have a direct connection to a central-
ized database system capable of storing a high volume of data each
of them characterized by timestamp. As soon as the train completes
the operation for that day, an operator triggers the function of storing
recorded data in a centralized database. The database can be accessed
for further elaboration. Other details on the monitoring architecture
cannot be provided due to the non-disclosure agreement.

In order to explore more insights into the dataset features, this
first step consists of statistical tests to identify potential trends in the
dataset, as well as possible correlations between features. In the first
case, the Mann–Kendall test was applied (Kendall Maurice, 1975),
while in the second case, a covariance and correlation analysis was
carried out (Quade, 1967).

For the case study, this first step unveiled an unknown correla-
tion between the IGBT sensor (the TACU1_ThIGbt2 feature) and
the temperature of the cooling circuit (the TACU3_ThH20 feature),
and an interesting aspect is the detection of an anomaly when both
Mann–Kendall and covariance tests failed. This result is confirmed
by the comparison with the available diagnostic data. In particular,
the anomalies identified are those related to the events within the
flow rate (low or below the minimum) and level (low or very low) of
the cooling liquid. Indeed, our industry partner acknowledged us that
diagnostic events related to the flow rate (i.e., TACU_FL1 with low
severity, and TACU_FL2 with a high severity) and the level of cooling
liquid (i.e., TACU_TL1 with low severity, and TACU_TL2 with a high
severity) are precursors of train traction failures. Given the size of the
dataset, it was decided to split it into the different routes traveled by
train.

4.2. Data pre-processing

In this step, a series of operations are carried out necessary to make
the dataset ready for the training of the LSTM algorithm.

4.2.1. Data cleaning
When dealing with data collected from physical sensors, data clean-

ing becomes the first mandatory step for their analysis. In particular,
to obtain a proper dataset, we need to filter out:

• Missing or incomplete data: delete values within the dataset that
appear as blank or as special values (e.g., Not a Number, or Null);

• Unusual values: eliminate unexpected values compared to the
normal distribution of the dataset;

• Incorrect data formatting : reviewing the dataset so that all data
are present in the correct format which corresponds to defining
decimal values with a point and not a comma;

• Combination of redundant values: find the data with the same
information.

As defined before, the dataset had sampled data with a different
sample time, so it was necessary to standardize the sampling of the
data to 60 s. We use a simple algorithm that analyzed data sampled
each second and averages them on a one-minute interval.

4.2.2. Routes extraction
An ad hoc strategy has been implemented to extract the train routes

from the dataset, as basic elements for further analysis for the deep
learning model. The implemented solution removes the dependency
on GPS coordinates for the train position. Indeed, this feature, within
the provided dataset, can be a piece of unreliable information for the
actual operation of a train for inferring train routes. Therefore, we
implemented an algorithm that leverages the stop time of a train in a
station, to select the best thresholds able to recognize the beginning of
a new train route. The obtained threshold is about 10 minutes, with 63
unique train routes found.
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Fig. 4. The proposed failure prediction methodology.
Fig. 5. Aggregate signal of diagnostic events TACU_TL1, TACU_TL2, TACU_FL1,
TACU_FL2 series over time for the Milano-Bologna train route.

4.2.3. Spike filtering
In order to implement fault prediction through LSTM networks,

we need to know the error label to be assigned to each sample in
the dataset. According to the provided diagnostic dataset, we add this
information to the traction converter cooling system dataset. Then,
a preliminary analysis of the dataset, enhanced with failures data,
showed up several spikes that could invalidate the LSTM prediction
due to the non-negligible fluctuations in the signal. For instance, Fig. 5
shows the aggregate signal about the four diagnostic events TACU_TL1
and TACU_TL2 events, (which denote a low and very low level of
the cooling liquid), and TACU_FL1, TACU_FL2 events (which denote
low or below the minimum flow rate). We can notice several spikes
with different duration, in which 0-signal indicates the absence of
failures, while 1-signal indicates a failure of a specific duration over
time according to the analyzed route.

In order to address the spike problem, we developed an algorithm
(formalized in the form of pseudo-code shown in Algorithm 1) that
includes, as input, the time-series of traction converter cooling system
dataset enhanced with failure events, and then it evaluates, for each
route, the duration of each spike to choose if that spike should be
filtered out because it is most likely noise or not.

After an initial analysis of the spike distributions and their duration,
a signal with a duration less than or equal to the low_thr (set equal
to 240 s) was chosen for filtering out a spike (Algorithm 1, line 4);
that signal will not be considered a significant diagnostic event (fault)
because of its short duration. Instead, a signal that has a duration
6

Input: Traction converter cooling system dataset enhanced with
failure events. 𝑙𝑜𝑤_𝑡ℎ𝑟 = 240𝑠, ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 = 800𝑠,
𝑚𝑎𝑥_𝑠𝑝𝑖𝑘𝑒_𝑐𝑜𝑢𝑛𝑡 = 3

Output: Traction converter cooling system dataset with spikes filtered
1 while Route is available in the route list do
2 while Diagnostic event is available in the route do
3 Compute the duration of the event;
4 if Duration ≤ low_thr then
5 Count the number of consecutive spikes (spikes’ train);
6 if spikes’ train size is ≤ max_spike_count then
7 Filter the current event and the related spike’s train;
8 else
9 Merge all the spikes within the spikes’ train as one

high signal;
10 end
11 else if Duration > low_thr and < high_thr then
12 Ignore the event;
13 else if Duration ≥ high_thr then
14 Find the first next significant failure (duration ≥

high_thr);
15 Count the number of spikes (signal with duration ≤

low_thr) between the two signals;
16 Keep high only the first spike and filter out the

remaining spikes in the spikes’ train;
17 end
18 end
19 end

Algorithm 1: Algorithm pseudo-code for spike filtering.

greater than or equal to high_thr (set equal to 800 s) is chosen as
a significant fault (Algorithm 1, line 13).

We further refine the spike filtering technique by counting the num-
ber of consecutive spikes (spikes’ train) between two signals (Algorithm
1, lines 5–9). If the number of consecutive spikes (event samples with
a duration within low_thr), which form a spikes’ train, is less than
max_spike_count (set equal to 3; this choice was made based on the
analysis performed previously), the algorithm filters out the diagnostic
event and the related spikes’ train (Algorithm 1, line 7). Otherwise, if
the size of the spikes’ train is greater than max_spike_count, the
algorithm merges the diagnostic event sample within the spikes’ train
to obtain a single high signal (Algorithm 1, line 9).

In the remaining cases, according to a conservative approach, if
the current diagnostic event sample has a duration greater than or
equal to high_thr, we search for the next significant diagnostic event
sample (duration ≥ 800 s in our case); then, the algorithm computes
the spikes’ train within these two samples and keeps high only the
first spike in that train, filtering out the remaining spikes (Algorithm
1, lines 14–18). Finally, when the current diagnostic event sample has
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Fig. 6. Aggregate signal of diagnostic events after application of spike filtering
algorithm.

a duration between low_thr and high_thr, the algorithm simply
ignores (keeps high) the signal (Algorithm 1, lines 11–12).

Fig. 6 shows the aggregate signal of targeted diagnostic events
(TACU_TL1, TACU_TL2, TACU_FL1, TACU_FL2) over time after ap-
plying the proposed algorithm.

4.2.4. Sequence extraction
In order to explore the time dependencies within the features pe-

riodically collected for each sensor, we extract the characteristic se-
quences on specific time windows (TW). Let 𝑤 and 𝑎𝑡 be the time window
size and the set of features (𝑓1, 𝑓2...𝑓𝑛) at time 𝑡, respectively. The
developed model aims to predict health status at time 𝑡 + 1 (𝐻𝑠(𝑡 +
1)) considering the sequence (𝑎𝑡−𝑤+1, . . . , 𝑎𝑡−1, 𝑎𝑡). For each 𝑎𝑡, the
health status 𝐻𝑠(𝑡) is defined, and the feature sequence at time 𝑡 is
extracted considering the 𝑤−1 previous samples. As a result, we obtain
each sequence that consists of a bi-dimensional array of size 𝑤 × 𝑛,
where 𝑛 is the number of features considered. The result of this step
is a sequence-based dataset. More specifically, the obtained dataset
consists of bi-dimensional arrays, each associated with a health level
representing the traction converter cooling system’s health condition
between two consecutive samples (i.e., 𝑎𝑡 and 𝑎𝑡+1).

4.3. Fault analysis

This step aims at performing both a multiclass classification task
and a forecasting task. More in detail, three severity levels, which
have been suggested by our industry partner, have been established
to categorize the components under analysis in terms of their level of
severity. In the classification task, each feature sequence is assigned to
one of the classes Good, Minor, Major. In particular, they indicate
respectively: Good, a normal state of the component; Minor a warning
related to the flow rate (low or below the minimum) of the cooling
liquid; Major, a very low level of the cooling liquid.

In the forecasting task, each feature sequence extracted with a
specific TW is assigned as a label that is the trend of the features in
the next sequence (prediction window).

The input to each LSTM layer is a three-dimensional data structure
of size 𝑧×𝑤×𝑛, where: 𝑧, is the total number of sequences (or the batch
size at each iteration); 𝑤 is the size of each sequence – i.e., the size of
a time window in terms of time steps; 𝑛 is the total number of features
describing each time step. The network has two stacked LSTM layers
with 256 units, followed by a single dense layer.
7

5. Experimental analysis and results

This section aims to evaluate the effectiveness of our approach
applied in a real case study in the railway domain. We test the pre-
diction performance of the proposed approach on the dataset including
samples from sensors and control units from the traction converter
cooling system. As described in Section 4.1, the dataset consists of
79,861 samples related to 10 different trains acquired with a time step
of 60 s and 1 s. More in detail, each sample consists of 100 measures of
sensors and control units from the traction converter cooling system.
In particular, we analyze the performance provided by the proposed
approach both for classification and forecasting tasks.

In all experiments, 10-fold cross-validation (CV) has been performed
to assess generalization ability. This is of crucial importance for a trust-
worthy comparison of the performance of different models, avoiding
the use of sequences from the same train both in the training and in
the evaluation phase. For each CV repetition, 8 folds are used as the
training set, 1 as the validation set, and 1 as the test set. Moreover,
for each CV repetition, ADAM (Kingma & Ba, 2014) has been used as
the optimizer by setting the hyper-parameters 𝛽1, 𝛽2, and the learning
rate, respectively equal to 0.9, 0.999, and 10−4. The loss function
used to train the classification model is 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦, for
forecasting model 𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑒𝑟𝑟𝑜𝑟. The number of training epochs
had been fixed to 150 and 100 for classification and forecasting, respec-
tively. Firstly, we evaluate the performance of both the effectiveness
and efficiency of the proposed framework in learning the model. The
LSTM-based network design comprised 880,158 parameters (neurons),
leading to a model storage size of approximately 9.3 MB. Furthermore,
the average inference time required to generate a prediction was mea-
sured, with the results indicating an average duration of approximately
3 s. The values are acceptable and acknowledged by our industry
partner.

5.1. Failure prediction

In order to answer the research question R2, we first report the
results obtained for the prediction (classification) task, where each
feature sequence is assigned to one of the classes Good, Minor,
Major.

The performance of our approach is first evaluated in terms of
accuracy. Since the distinction between good and failed signals is
preserved in the labeling of the dataset, we can express the results
in terms of accuracy on good sequences (𝐴𝐶𝐶𝐺) and accuracy on
failed sequences (𝐴𝐶𝐶𝐹 ) — respectively, the fraction of sequences
correctly classified as Good, and the fraction of sequence classified
as the health levels (Minor or Major) as suggested by our industry
partner. Furthermore, we evaluate the performance of our approach in
terms of failure prediction ability, by assessing the Failure Detection Rate
(FDR) and the False Alarm Rate (FAR). This is done by considering the
class Good as System good status, and the classes Minor and Major as
System failed statuses. Intuitively, FDR is the fraction of failed sequences
that are correctly classified as failed, while FAR is the fraction of good
sequences that are incorrectly classified as failed.

Tables 2 and 3 show the results of the classification task based on
the LSTM technique. In particular, Table 2 reports the performance for
different sizes of the time window used in the sequence extraction step
(Section 4.2.4). We explored time window sizes from 5 to 60 minutes.
As expected, given the ability of LSTM networks to learn long-distance
dependencies, we obtain the best results with a time window equal to
60 minutes. For completeness, we detail the performance of our best
model (TW size = 60 minutes) for each class in Table 3.

We compared our solution against Decision Tree, Random Forest, and
Multilayer Perceptron, which are classical ML approaches often adopted
in industrial domains (Angelopoulos et al., 2020; Gourisaria, Agrawal,
Harshvardhan, Pandey, & Rautaray, 2021). The purpose of this compar-
ison in addition allows us to analyze the effectiveness of our model in
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Table 2
Performance values for the LSTM models obtained by varying TW size.

TW size
[min.]

Accuracy FDR FAR 𝐴𝐶𝐶𝐺 𝐴𝐶𝐶𝐹 𝐴𝐶𝐶𝑀𝑎𝑗𝑜𝑟 𝐴𝐶𝐶𝑀𝑖𝑛𝑜𝑟

5 98.67% 98.58% 1.98% 99.56% 95.19% 86.66% 95.41%
10 98.84% 98.96% 1.70% 99.80% 95.08% 92.85% 95.13%
15 98.86% 99.24% 1.23% 98.82% 99.00% 94.33% 99.12%
30 99.04% 99.32% 1.05% 99.02% 99.10% 97.77% 99.14%
60 99.45% 99.42% 0.35% 99.64% 98.76% 100.00% 98.73%

Table 3
Results of best model (𝑇𝑊 𝑠𝑖𝑧𝑒 = 60 min) detailed by each class.

Metric Good Major Minor

Accuracy 99.64% 100.00% 98.73%
Precision 99.80% 71.40% 99.00%
Recall 99.60% 100.00% 98.70%

learning the temporal patterns characterizing the dataset. In fact, these
classical ML models are sequence-independent models, i.e., they do not
leverage a sliding window for training but a single tuple. The results of
the comparison are reported in Table 4. Specifically, results obtained
show that the LSTM-based solution performs better, confirming that the
temporal nature of the data provides useful information for the task
under analysis.

5.2. Failure forecasting

According to the research question R3, we train the LSTM-based
model in order to implement the forecasting task. The requirement set
by domain experts is to be able to predict patterns of the fault signal
within a fixed time window in the next future (prediction TW ); this
serves to evaluate whether it is possible to complete the next route
before train departure after a stop, or maintenance is required. Table 5
shows the results of the forecasting task. The results are reported for
sequence extraction window size varying between 30 and 120 minutes,
while the prediction TW varies between 15 and 60 minutes. Model
performance was evaluated in terms of accuracy and Mean Absolute
Error (MAE). Regarding the classification task, the accuracy metric
provides the percentage of correctly classified sequences. Since the fault
signal assumes only the values 1 and 0, in the forecasting task the
accuracy measures how much the discretized predicted signal overlaps
with the real one, while MAE indicates how much the predicted fault
signal diverges from the actual one.

Table 5 shows forecasting results, aggregating all low- and high-
severity diagnostic events (in the Low & High column), only low-severity
diagnostic events (i.e., the Low column), and only high-severity events
(i.e., the High column) respectively. In all cases, the best results were
obtained by analyzing temporal sequences with a duration of 120
minutes and predicting the pattern of the signal in the subsequent 60
minutes.

Fig. 7 shows an example of the prediction provided by our frame-
work via LSTM for forecasting the trend of a fault signal (i.e., the aggre-
gate signal of diagnostic events TACU_TL1, TACU_TL2, TACU_FL1,
TACU_FL2). In particular, the example is related to the configuration
with a sequence extraction window TW equal to 120 minutes with a
prediction TW equal to 60 minutes.

5.3. Threats to validity

The proposed methodology is subject to few threats to validity,
which commonly affect every data-driven experimentation and re-
search. Specifically, as internal validity, we need to consider the pos-
sibility that the hyper-parameters used to train the LSTM model could
not be optimal. However, we performed cross-validation to improve the
generalization ability of the trained model, discovering the best hyper-
parameters to achieve the highest accuracy for the target dataset. As
8

Fig. 7. Example of forecasting of a fault signal.

external validity threat, we need to consider that, by using different
datasets, the provided results for prediction and forecasting tasks could
be not universal. However, such a threat to validity does not invali-
date the contribution since the proposed methodology can be applied
seamlessly to different datasets, by a proper recalibration of chosen
hyperparameters and training setup.

6. Conclusion and future work

Recent advancements in smart sensors and IT have led to con-
tinuous data collection from various on-board subsystems of railway
rolling stock, enabling monitoring of mechanical, thermal, and electri-
cal conditions, operational efficiency, and multiple other performance
indicators. These new capabilities enable the planning of maintenance
activities, minimizing the number and the cost of unscheduled outages.
Minimizing unplanned train outages through predictive maintenance is
fundamental to ensuring the reliability and stability of a transport net-
work as a whole. In the Industry 4.0 era, via the industrial Internet of
Things, the fertilization of traditional railway engineering with recent
artificial intelligence techniques based on deep learning algorithms may
bring important benefits.

We have proposed an LSTM-based methodology tailored for pre-
dictive maintenance in the railway domain. Specifically, the proposed
framework deals with two different tasks: (i) time series classification
in three severity levels as suggested by our industry partner, which
can be used to assess the health status in the real-time system; (ii)
time series forecasting for different time windows size to predict the
system behavior in the next future, which is very useful to evaluate if
it is possible to complete the next route when the train stops. We have
validated the proposal against a real-world dataset from the traction
converter cooling system of a train fleet maintained by the indus-
try partner. The results show that our methodology allows achieving
very high accuracy (both for prediction and forecasting tasks), over
99%, which outperforms other machine learning models proposed in
the railway domain. Also comparing the error in the prediction and
forecasting tasks, in the best case, we attained a false alarm rate of
∼0.4% and a mean absolute error in the order of 10−4, respectively,
which are very promising comparing to the existing study. These results
were acknowledged by the industry partner, giving valuable insights
to railway engineers in supporting predictive maintenance leading to
reduced downtime of trains stopped due to breakdowns.

Future work will explore the possibility of leveraging other kinds
of data-preparation techniques to improve accuracy in prediction and
forecasting; further, we will exploit different, and more advanced,
deep architectures for predictive maintenance and anomaly detection
based on Generative Adversarial Network (Xia et al., 2022), as well
as eXplainable Artificial Intelligence (XAI) techniques (Bešinović et al.,
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Table 4
Results of the best model compared with classical ML models.

Methods Accuracy FDR FAR 𝐴𝐶𝐶𝐺 𝐴𝐶𝐶𝐹 𝐴𝐶𝐶𝑀𝑎𝑗𝑜𝑟 𝐴𝐶𝐶𝑀𝑖𝑛𝑜𝑟

Our solution 99.45% 99.42% 0.35% 99.64% 98.76% 100.00% 98.73%
Decision Tree 96.92% 92.16% 1.69% 98.30% 91.46% 75.80% 91.87%
Random Forest 98.18% 93.61% 0.58% 99.41% 93.28% 83.87% 93.61%
Multilayer Perceptron 93.19% 95.73% 2.05% 92.92% 94.28% 90.32% 94.38%
B

B

C

C

C

D

D

E

F

F

G

G
G

G

H

H

J

K

Table 5
Results of model for forecasting task by aggregating all the high- and low-severity
diagnostic events (i.e., the Both column), only the low-severity diagnostic events (the
Low column), and only the high-severity diagnostic events (High column).

Time
Window

Predicted
TW

Low & High Low High

Accuracy MAE Accuracy MAE Accuracy MAE

30 15 99.42% 0.0197 99.92% 0.0017 99.92% 0.0014
60 30 99.38% 0.0186 99.95% 0.0013 99.95% 0.0011
120 60 99.71% 0.0184 99.97% 0.0009 99.96% 0.0008

2021). Further, we will explore the use of contexts (Bala & Chana,
2015) and context histories (Rosa, Barbosa, Kich, & Brito, 2015),
which characterize datasets to improve predictive maintenance tasks.
Indeed, contexts can be used for context prediction (da Rosa, Barbosa,
& Ribeiro, 2016) and pattern similarity analysis (Dupont, Barbosa, &
Alves, 2020; Filippetto, Lima, & Barbosa, 2021) in the railway domain
to improve failure root cause analysis. Finally, we are planning to use
the proposed framework in other kinds of subsystems within the train
fleet.
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