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Abstract
In this paper, we propose a portmanteau test for misspecification in combination of uni-
form and binomial (CUB) models for the analysis of ordered rating data. Specifically, 
the test we build belongs to the class of information matrix (IM) tests that are based on 
the information matrix equality. Monte Carlo evidence indicates that the test has excel-
lent properties in finite samples in terms of actual size and power versus several alter-
natives. Differently from other tests of the IM family, finite-sample adjustments based 
on the bootstrap seem to be unnecessary. An empirical application is also provided to 
illustrate how the IM test can be used to supplement model validation and selection.

Keywords CUB model · Information matrix test · Ordered data · Misspecification

1 Introduction

The array of statistical models for the analysis of rating data is truly enormous. 
Among the many alternatives that have been proposed, the CUB mixture model, 
introduced by Piccolo (2003), D’Elia and Piccolo (2005), offers a unique approach 
to the problem; its most distinctive feature lies in its parameterization, which lends 
itself to an interpretation of the data generating process as a combination of percep-
tual and decisional aspects of the choice. A recent comprehensive discussion of the 
state of the art about the thread of research triggered by the seminal paper (Piccolo 
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2003) can be found in Piccolo and Simone (2019a, b), whereas a comparative analy-
sis with the class of cumulative link models is performed in Piccolo et al. (2019). 
The main advantage of a modelling paradigm based on finite discrete mixtures is 
that it allows for a very versatile interpretation of the response distributions.

It is for this reason that the CUB model has been used in a wide range of appli-
cations, including sensory studies (Capecchi et al. 2016; Piccolo and D’Elia 2008; 
Corduas et al. 2013), consumers’ preferences, satisfaction and opinions (D’Elia and 
Piccolo 2005; Capecchi et al. 2019a, b; Ribecco et al. 2022; Tovar et al. 2023; Xu 
and Zhang 2020; Finch and Hernández Finch 2020), subjects’ perceptions on vari-
ety (Manisera et al. 2020), discrimination (Capecchi and Curtarelli 2020; Capecchi 
and Simone 2019), pain (D’Elia 2008), and health (Venson et al. 2023), to quote a 
few. In all applications, the explicit account of the uncertainty surrounding the rating 
process has provided effective visualization of results and added values to the char-
acterization and interpretation of response profiles. From the methodological point 
of view, several extensions have enriched the literature, as in Manisera and Zuc-
colotto (2014), Corduas (2015), Cappelli et al. (2019), Di Nardo and Simone (2019), 
Biasetton et al. (2023), Corduas (2022), Simone et al. (2023), for instance.

Software implementations are available for the R environment (Iannario et  al. 
2018), as well as for Gretl (Simone et al. 2019) and STATA (Cerulli et al. 2022). 
Maximum likelihood inference is then based on the observed information matrix 
(Piccolo 2006): recently, the Louis’ identity was used to derive the Information 
matrix as part of the EM algorithm and to implement an acceleration procedure 
which allows the best-subset variable selection become more feasible from the com-
putational point of view (Simone 2020, 2021).

Given the peculiar interpretation of the parameters of the CUB model, the issue 
of model misspecification is clearly one of great importance. Yet, despite its wide-
spread adoption in empirical applications, surprisingly few efforts have been so far 
devoted to model diagnostics and validation.

In order to make inference robust to potential misspecification, two main ave-
nues are possible: either the CUB model is taken to represent an approximation to 
an underlying unknown data generating process, or its usage must be validated ex 
post by appropriate diagnostic tests: see for instance (Agresti et al. 2022; Colombi 
and Giordano 2019) for the case of categorical data models. In the former case, the 
appropriate inference procedures lie in the realm of Quasi-Maximum Likelihood 
and associated concepts (see for example Lv and Liu (2014) for the issue of model 
selection), which may be somewhat out of the reach of the average practitioner. 
Therefore, the present paper offers a contribution in the latter direction: we describe 
a testing procedure to check for the correct specification of CUB models via the 
information matrix test, introduced in White (1982) and developed henceforth for a 
wide array of statistical models (see for example Lucchetti and Pigini 2014).

The paper is organized as follows: Sect. 2.1 is devoted to a concise presentation 
of the modelling framework we move within; similarly, Sect.  2.2 establishes the 
necessary background for the implementation for the information matrix test for the 
class of CUB models. The proposal is discussed and validated via extensive Monte 
Carlo experiments presented in Sect. 3, whereas Sect. 4 provides two examples on 
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real data: we show how the proposed procedure can supplement model selection 
within the class of CUB models. A conclusion section ends the paper.

2  Definitions and preliminaries

2.1  The CUB model

For rating data such as those collected in survey studies to assess subjective evalu-
ations and opinions, the class of CUB models employs a mixture of two distribu-
tions in its baseline specification. Suppose that Ri measures the response of i-th sub-
ject over m ordered categories, with m > 3 . The data generating process is described 
as the combination of a feeling component and an uncertainty component. The for-
mer component is assumed a shifted binomial distribution:

The latter accounts for heterogeneity of the distribution and is modelled via a dis-
crete uniform distribution over the m categories.

As a result, a CUB model for Ri is specified via the following mixture:

with �i ∈ (0, 1] and �i ∈ (0, 1) . Note, however, that for � = 0 the parameter � in 
under-identified. As a consequence, in all the experiments when we generate CUB 
data (for example, in the simulation analysis of the size of the test) we will not con-
sider the � = 0 case.

As for the interpretation of the parameters, the larger �i is, the more the distribu-
tion is concentrated along the lowest scores. Thus, if the scale gives larger scores to 
positive evaluations, a low level of �i indicates a positive tendency in the i-th obser-
vation with respect to the topic under investigation. For instance, if the respond-
ent is asked to express his/her accordance to a given statement,  then 1 − �i can be 
viewed as a measure of agreement, or an indicator of satisfaction if he/she is asked 
to assess the quality of a service/product. After this interpretation, �i is referred to 
as the feeling parameter. The mixing weight �i of the feeling component in (2) is, 
instead, referred to as uncertainty parameter.

A richer CUB model can be obtained by including explanatory variables so that 
the feeling and/or uncertainty components directly depend on respondents’ profiles: 
if yi is the row vectors of p covariates yi for the i-th subject that drives his/her uncer-
tainty, whereas wi is the row vectors of q covariates driving his/her feeling, then a 
logit link is customarily employed1:

(1)br(�i) =

(
m − 1

r − 1

)
�m−r
i

(1 − �i)
r−1 r = 1,… ,m.

(2)Pr(Ri = r|�i, �i) = �ibr(�i) + (1 − �i)
1

m
, r = 1,… ,m,

1 Clearly, the choice of the logit link could be generalized, but it is generally preferred on the grounds of 
simplicity of implementation and interpretation.



 F. Di Iorio et al.

1 3

where �(x) ≡ log
(

x

1−x

)
 . This generalization is referred to as a CUB(p,  q) model, 

with estimable parameters �� = (�0, �1) and �� = (�0, �1) . A simple CUB model with 
no covariates is indicated with CUB(0, 0) model (in this case, �i = � and �i = � are 
constant among subjects).

Finally, the CUB model can be inflated to take into account the presence of a 
“shelter” category (see Iannario 2012). A shelter category c ∈ {1,… ,m} is an 
item in the support of Ri that receives an upward bias of preference with respect 
to the expected response. The shelter effect can be accommodated in the CUB 
model by introducing a further mixture element, that is a degenerate distribution 
D(c)

r
= I(R = c) , whose probability mass is concentrated at r = c . Thus, the model 

becomes:

where the weight �i measures the shelter effect. The shelter coefficient may be con-
stant across individuals ( �i = � ), or it can, in turn, depend on a set of s covariates xi:

Given the previous parameterization, the matrices Y,W and X may or may not pos-
sess an arbitrary number of common columns, that is the same covariates can be 
used as explanatory variables for feeling, uncertainty and shelter at the same time.

Estimation of CUB models is typically performed by maximum likelihood, where 
the log-likelihood is as follows:

with � is the vector of parameters. Maximization of the likelihood may be performed 
via the EM algorithm (McLachlan and Krishnan 1997; Dempster et al. 1977) as in 
Iannario et al. (2018), or by gradient-based methods as in Simone et al. (2019).

2.2  The Information Matrix (IM) test

The test we propose builds on a conditional moment approach and uses the fact that, 
under correct specification, the information matrix equality implies that the score 
variance and the expected Hessian should sum to zero. This result provides a set of 
moment conditions that can be empirically tested. The original idea was put forward 
in White (1982).

The information matrix test is therefore a test for E(Ci) = 0 , where E is the expec-
tation operator and

(3)�(�
i
) = �0 + y

i
�

�

1

(4)�(�
i
) = �0 + w

i
�

�

1

(5)Pr(Ri = r) = �iD
(c)
r

+ (1 − �i)
[
�ibr(�i) + (1 − �i)

1

m

]
r = 1,… ,m,

(6)�(�
i
) = �0 + x

i
�

�

1

(7)�(�) =

n∑
i=1

log
[
Pr(Ri = r|yi,wi, xi;�)

]
=

n∑
i=1

log
(
pi;�

)
=

n∑
i=1

�i(�)
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where �i is the log-likelihood for the i-th observation ( i = 1,… , n ), � is the k-vector 
of parameters and Gi ≡

��i

��
 ; all quantities are evaluated at the “true” vector � = �0 . 

Clearly, Ci is a vector with k̃ = k(k+1)

2
 elements. In the rest of the paper, we will adopt 

the notational convention to indicate individual elements of the moment condition 
vector Ci by superscripting the two elements of the vector � with respect to which 
the derivatives are taken: for example, C�,�

i
 indicates �

2
𝓁i

����
+

�𝓁i

��
⋅
�𝓁i

��
.

Under a set of regularity conditions (see White 1982, pages 2–10) that ensure 
asymptotic normality of the relevant quantities and the existence of an appropri-
ate covariance matrix, a Wald-type test for Ci = 0 is asymptotically �2 distrib-
uted. Note that in some cases the degrees of freedom of the limit distribution 
may be smaller than k̃ . More generally, the number of moment conditions to use 
in practice is open to choice. Such choice must be based on a mix of different 
considerations: small sample performance, ease of computation and scope of the 
alternative hypothesis. Tests based on a subset of the available moment condi-
tions are sometimes termed “directional”. See e.g. Golden et al. (2016), Lucchetti 
and Pigini (2013) for an extended discussion.

This strategy leads to many well-known and established test procedure: for exam-
ple, it can be proven that the Jarque-Bera test for normality (Jarque and Bera 1980) is a 
simple special case of the IM test. In order to compute the test statistic, the covariance 
matrix of Ci is needed. In White’s original formulation, this involves the third deriva-
tives of the log-likelihood, which can make computation awkward in some cases. 
However, as pointed out in Chesher (1983) and Lancaster (1984), the test can be inter-
preted as a score test, which leads to a simplified formulation, in which the asymptotic 
version of the test is calculated via an Outer Product of the Gradient (OPG) “artificial 
regression” (see also Davidson and MacKinnon 2001): the test statistic equals nR2 of 
the regression of a vector of ones on a matrix M, with typical row M�

i
= [G�

i
,C�

i
] , that 

is a pseudo-model of the form

It can be proven that in the cases hinted at above, where some of the moment condi-
tions are redundant, the artificial regression approach makes this problem evident 
because some of the columns of C may be collinear with G and the column rank of 
the matrix M is not full. Under the null, the test statistic has an asymptotic �2 distri-
bution with degrees of freedom given by df = rank(M) − k.

In this paper, like in most applications, the “score form” of the test is adopted on 
account of its computational advantages, although for certain models its finite-sample 
performance can be inferior to other methods, as argued in Orme (1990). It must be 
noted in this regard that the problems are linked to the inefficient estimation of higher-
order moments, and that an increasingly common alternative to analytical methods to 
correct the score form of the IM test has been the recourse to bootstrap methods, as sug-
gested by Horowitz (1994). This technique has been used, among others in  Lucchetti 

(8)Ci = vech

[
�2�i(�)

�����
+ GiG

�
i

]
,

(9)� = G� + C� + residual
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and Pigini (2013, 2014), who tested the bivariate normality assumption in the bivariate 
probit and sample selection models.

That said, these problems do not arise in the present case, as will be shown in the 
rest of the paper: the CUB model is used for analyzing variables whose support is 
discrete, finite, and as a rule very small. Therefore, the issues typically encountered 
with higher-order moments in the general case are not a particularly serious problem 
here. This is arguably the reason why the experiments presented in Sect. 3.1 show 
that a bootstrap correction is, by and large, unnecessary.

2.2.1  The IM test for the CUB(0, 0) model

To give a practical example of the way the IM test can be applied to CUB models, 
consider the CUB(0, 0) model, where

and adapt the notation of Appendix A to this special case as

Considering that �pi
��

= br(�) and �pi
��

= �br(�)vr(�) , it is straightforward to compute 

the score Gi =

[
G�

i
,G

�

i

]�
 with respect to � and � as

The first two elements of the Hessian are also easy to calculate as

(10)Pr(Ri = r|�, �) = pi = �br(�) + (1 − �)
1

m

�br(�)

��
= br(�)vr(�)

vr(�) =
m − r

�
−

r − 1

1 − �

qr(�) = −
�vr(�)

��
=

m − r

�2
+

r − 1

(1 − �)2
.

(11)G�
i
=

��i

��
= s�

i
=

br(�)

pi

(12)G
�

i
=

��i

��
= s

�

i
=

�br(�)vr(�)

pi
= �s�

i
vr(�)

(13)
�2�i

��2
= h�

i
= −

[
s�
i

]2

(14)
�2�i

����
= h

�,�

i
= vr(�)s

�
i

(
1 − �s�

i

)

(15)
�2�i

��2
= h

�

i
= �

[
h
�,�

i
vr(�) − s�

i
qr(�)

]
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The moment conditions can now be computed as

In this case, the regularity conditions needed for the test to be asymptotically �2

-distributed are trivially satisfied under the null, since all the derivatives of the 
expressions above exist and are continuous in the interior of the parameter space, 
and moments of all orders exist for expressions (16)–(18) since the support of R is 
positive and finite (assuming a numerical coding for categories).

As for the degrees of freedom of the limit distribution of the test, note that in the 
artificial regression (9), only the third moment condition can be used: C�,�

i
 is identi-

cally 0, and C�,�

i
 is a scalar multiple of G�

i
 (see Eq. 12). As a consequence, the IM 

test for the CUB(0, 0) model has an asymptotic �2
1
 distribution.

3  Monte Carlo evidence

In this section, we analyze the features of the IM specification test via a series of 
simulation experiments, investigating its empirical size and its power against a range 
of alternatives.

3.1  Empirical size

In order to focus on the many aspects of interest, we begin by considering the spe-
cial case of the simple CUB(0,0) model and gradually generalize the experiments to 
more complex specifications. To assess the empirical size of the IM test for the sim-
ple CUB(0,0) model, we simulated artificial data from eight different Data Generat-
ing Processes, corresponding to the points in the parameter space shown in Fig. 1.

The reason for choosing these points can be motivated as follows: apart from the 
obvious relevance of the point at the center of the parameter space (F), we consider 
the performance of the test for  values of the parameter � close to the boundary of 
the parameter space, that is 0.1 and 0.9. Since the parameter space for this model is 
(0, 1) × (0, 1) , all points are clearly in the interior of the parameter space, thus satis-
fying one of the basic regularity conditions. However, since for � → 0+ the Hessian 
tends to a singular matrix and the parameter � is under-identified in the limit, it is 
interesting to consider the performance of the test for moderate ( � = 0.25 ) and seri-
ous ( � = 0.1 ) cases of weak identification; in the latter case, we also consider the 
intermediate case (B) to get a clearer picture of the test performance.

(16)C
�,�
i

=
[
s�
i

]2
+ h�

i
=
[
s�
i

]2
−
[
s�
i

]2
= 0

(17)C
�,�

i
=

[
s�
i
s
�

i

]
+ h

�,�

i
= s�

i
vr(�)

(18)C
�,�

i
=

[
s
�

i

]2
+ h

�

i
= �s�

i

[
vr(�)

2 + qr(�)
]
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Each of these DGPs was simulated J = 1000 times, for a varying number of 
categories m = 5 and m = 7 and varying sample sizes n = 128, 512, 1024 , that we 
consider as representative of typical empirical applications. Since the IM test 
is known to be liable to severe size bias in finite samples (see Horowitz 1994), 
we also examined the performance of bootstrap-corrected version of the IM test 
along the lines of Lucchetti and Pigini (2014). The number of bootstrap replica-
tions B is set to 999.

In practice, our experiment can be described as follows:

1. for each j = 1,… , J

(a) generate a sample R(j) of n ordinal observations from a CUB(0,0) model 
over m categories, with parameters � = (�, �);

(b) estimate the CUB(0, 0) model by ML, and compute the IM test statistics Tj 
using the estimated parameters �̂;

(c) for b = 1…B

  (i) generate a bootstrap sample R(j,b) by sampling from a CUB(0,0) model 
with parameters �̂;

  (ii) compute the corresponding IM test statistics Tj,b ; in case of failure, 
regenerate R(j,b) and repeat.

  (iii) upon successful computation of Tj,b , determine the quantile of order 
1 − � for the empirical distribution of {Tj,b ∶ b = 1,… ,B} , say q(j)

1−�

2. Estimate the empirical size �̂� of the uncorrected IM test as: 

 that is, by counting the frequency of the IM statistic Tj exceeding the �2
1
 critical 

value p1−�.
3. Estimate the empirical size �̃� of the bootstrap-corrected IM test as: 

�̂� =
1

J

J∑
j=1

1
{
Tj > p1−𝛼

}
,

Fig. 1  Selected points in the 
CUB(0,0) parameter space for 
the Monte Carlo experiment
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 that is, by counting the frequency of the IM statistic Tj exceeding the bootstrap 
critical value q(j)

1−�
.

Note that, at step 1(c)(ii), the computation of the test may fail because the gener-
ated data make the model under-identified; typically, this happens when no observa-
tions are generated with Ri = m.

Tables  1, 2, 3 report the empirical rejection rates over 1000 MC replications; 
entries in boldface indicate cases when the empirical rejection rate �̄� was signifi-
cantly different form the nominal rejection rate � , that is when

where �̄� is �̂� or �̃� , according to cases.
It appears that the size of the IM test for the CUB model without covariates 

seems to be rather satisfactory in most of the cases considered, even without a boot-
strap correction. As is common with conditional moment tests, size bias is largely 
a  small  sample phenomenon. However, for a large region of the parameter space 

�̃� =
1

J

J∑
j=1

1

{
Tj > q

(j)

1−𝛼

}
,

√
n

������
�̄� − 𝛼√
𝛼(1 − 𝛼)

������
> 1.96

Table 1  Empirical size of the IM Test for CUB models if n = 128

failed = percentage of failed IM test evaluations (see text)
boldface: empirical size significantly different from nominal size (5% level)

Parameters Size m = 5 m = 7

 Label � � 0.01 0.05 0.10 Failed 0.01 0.05 0.10 Failed

A 0.1 0.1 �̂� 0.02 0.06 0.11 1.4 0.02 0.07 0.12 0.8
�̃� 0.01 0.04 0.09 0.01 0.06 0.10

B 0.1 0.5 �̂� 0.02 0.07 0.11 0.6 0.01 0.06 0.10 0.3
�̃� 0.02 0.06 0.10 0.01 0.05 0.10

C 0.1 0.9 �̂� 0.02 0.08 0.13 1.9 0.01 0.06 0.10 1.0
�̃� 0.01 0.07 0.12 0.01 0.05 0.09

D 0.25 0.1 �̂� 0.01 0.05 0.11 0.5 0.01 0.05 0.11 0.2
�̃� 0.01 0.05 0.10 0.01 0.05 0.10

E 0.25 0.9 �̂� 0.02 0.05 0.09 0.6 0.01 0.05 0.11 0.2
�̃� 0.01 0.04 0.09 0.01 0.04 0.11

F 0.5 0.5 �̂� 0.01 0.05 0.12 0.0 0.01 0.04 0.10 0.0
�̃� 0.01 0.05 0.11 0.01 0.04 0.09

G 0.9 0.1 �̂� 0.02 0.06 0.10 0.0  0.02 0.08  0.13 0.0
�̃� 0.01 0.02 0.05 0.00 0.04 0.09

H 0.9 0.9 �̂� 0.02 0.07 0.11 0.1 0.01 0.06 0.12 0.0
�̃� 0.01 0.05 0.10 0.01 0.05 0.11
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Table 2  Empirical size of the IM Test for CUB models if n = 512

failed = percentage of failed IM test evaluations (see text)
boldface: empirical size significantly different from nominal size (5% level)

Parameters Size m = 5 m = 7

 Label � � 0.01 0.05 0.10 Failed 0.01 0.05 0.10 Failed

A 0.1 0.1 �̂� 0.02 0.06 0.11 1.0 0.02 0.06 0.12 0.4
�̃� 0.01 0.06 0.10 0.02 0.05 0.11

B 0.1 0.5 �̂� 0.01 0.05 0.11 0.3 0.01 0.05 0.10 0.0
�̃� 0.01 0.06 0.11 0.01 0.05 0.10

C 0.1 0.9 �̂� 0.01 0.06 0.12 1.0 0.01 0.06 0.11 0.3
�̃� 0.01 0.05 0.10 0.01 0.05 0.10

D 0.25 0.1 �̂� 0.01 0.05 0.09 0.0 0.01 0.06 0.12 0.0
�̃� 0.01 0.05 0.09 0.01 0.07 0.12

E 0.25 0.9 �̂� 0.01 0.05 0.10 0.0 0.01 0.05 0.10 0.0
�̃� 0.01 0.05 0.11 0.01 0.05 0.10

F 0.5 0.5 �̂� 0.01 0.06 0.10 0.0 0.01 0.05 0.10 0.0
�̃� 0.01 0.05 0.11 0.01 0.05 0.10

G 0.9 0.1 �̂� 0.01 0.05 0.11 0.0 0.01 0.05 0.10 0.0
�̃� 0.01 0.05 0.10 0.01 0.05 0.10

H 0.9 0.9 �̂� 0.01 0.05 0.11 0.0 0.01 0.05 0.09 0.0
�̃� 0.01 0.05 0.11 0.01 0.04 0.09

Table 3  Empirical size of the IM Test for CUB models if n = 1024

failed = percentage of failed IM test evaluations (see text)
boldface: empirical size significantly different from nominal size (5% level)

Parameters Size m = 5 m = 7

 Label � � 0.01 0.05 0.10 Failed 0.01 0.05 0.10 Failed

A 0.1 0.1 �̂� 0.01 0.05 0.10 0.4 0.01 0.04 0.08 0.0
�̃� 0.01 0.05 0.10 0.01 0.04 0.08

B 0.1 0.5 �̂� 0.01 0.05 0.10 0.1 0.01 0.04 0.09 0.0
�̃� 0.01 0.05 0.10 0.01 0.04 0.09

C 0.1 0.9 �̂� 0.01 0.06 0.09 0.5 0.01 0.05 0.10 0.0
�̃� 0.01 0.05 0.09 0.01 0.04 0.09

D 0.25 0.1 �̂� 0.01 0.06 0.11 0.0 0.01 0.05 0.10 0.0
�̃� 0.01 0.05 0.11 0.01 0.05 0.10

E 0.25 0.9 �̂� 0.01 0.06 0.13 0.0 0.01 0.05 0.10 0.0
�̃� 0.01 0.06 0.12 0.01 0.05 0.10

F 0.5 0.5 �̂� 0.01 0.06 0.12 0.0 0.01 0.04 0.09 0.0
�̃� 0.01 0.06 0.12 0.01 0.05 0.09

G 0.9 0.1 �̂� 0.01 0.06 0.11 0.0 0.01 0.05 0.09 0.0
�̃� 0.01 0.06 0.11 0.01 0.04 0.08

H 0.9 0.9 �̂� 0.02 0.06 0.11 0.0 0.01 0.06 0.10 0.0
�̃� 0.01 0.06 0.10 0.01 0.05 0.09
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the actual rejection rate is not significantly different from the nominal size even for 
moderately sized samples ( n = 128 ): entries in boldface indicate that the hypothesis 
that the empirical size was equal to the nominal one was rejected at a 5% level.

The regions of the parameter space where the sample size bias is most severe 
are the ones closer to the lower border of the parameter space for the uncertainty 
parameter (points A, B and C); it is safe to explain this result by the fact that in that 
parameter region, especially when � is small, the model is only weakly identified, so 
a procedure such as the IM test, which is essentially based on the curvature of the 
log-likelihood, can be expected to perform rather poorly in small samples.

3.1.1  Empirical size of the IM test for CUB models with shelter

As a final Monte Carlo exercise on the empirical size, we report the main results for 
the IM test for CUB models with a shelter specification (see Sect. 2.1). Table 4 lists 
the DGP configurations we considered, on sample sizes n = 128, 256, 512, 1024 . 
The shelter category is usually chosen a priori or selected on the basis of goodness 
of fit criteria; in the following, we will be mainly concerned with testing the correct 
specification of the shelter against alternative shelter choices.

Tables 5 and 6 report the empirical size obtained in a Monte Carlo exercise with 
1000 replications to verify the performance of the IM test for CUB with shelter.

In this context, it is important to note that the position of the shelter is not irrel-
evant, especially in small samples, because different choices for parameters � and 

Table 4  Selected CUB with 
shelter for DGP

Experiment m � � � Shelter at

1 9 0.6 0.4 0.1 1
2 10 0.7 0.5 0.05 10
3 7 0.3 0.1 0.1 5

Table 5  Empirical size of the 
IM Test for CUB models with 
shelter n = 128 and n = 256

n = 128 n = 256

0.01 0.05 0.10 0.01 0.05 0.10

Exp. 1 0.01 0.06 0.11 0.01 0.04 0.09
Exp. 2 0.01 0.05 0.11 0.01 0.05 0.10
Exp. 3 0.01 0.06 0.10 0.01 0.06 0.11

Table 6  Empirical size of the 
IM Test for CUB models with 
shelter n = 512 and n = 1024

n = 512 n = 1024

0.01 0.05 0.10 0.01 0.05 0.10

Exp. 1 0.01 0.05 0.08 0.01 0.04 0.09
Exp. 2 0.01 0.06 0.10 0.02 0.06 0.11
Exp. 3 0.01 0.05 0.09 0.01 0.05 0.10
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� have a dramatic impact on the shape of the distribution. As a result, if the shelter 
is not distant from the mode, the estimation procedure of the parameters obtained 
through gradient-based ML methods may encounter difficulties and the procedure 
may not converge.2

3.2  Empirical power without covariates

In this section, we provide and discuss Monte Carlo evidence related to the study of 
the power of the Information Matrix test for CUB models.

A general remark on the power of the IM test is in order here: as White (1982) 
argued, the QMLE �̂� can be thought of as a consistent estimator of �∗ , the point 
in the parameter space that minimizes the Kullback–Leibler divergence to the true 
probability distribution. If the model is correctly specified, �∗ is the “true” parameter 
vector, and inference is standard; otherwise, �̂� may not have usual desirable asymp-
totic properties if �∗ is not in the interior of the parameter space. Since the IM test is 
based on the QMLE �̂� , it is particularly interesting to perform Monte Carlo experi-
ments under alternatives for which the pseudo-true value �∗ may lie on the bound-
ary (note that the QML estimator will generally be away from the boundary even in 
these cases).

Having said this, power analysis can be undertaken from different perspectives in 
order to assess the extent by which the IM test is able to detect violation of the dis-
tributional assumptions of CUB models, depending on the data generating process 
(DGP): a modification of one mixture component, or an entirely different model. 
With some more details, our power analysis will follow this scheme:

• First, we will check the power performance of the IM test when modifying only 
the feeling or the uncertainty components, by assuming, respectively, the addi-
tion of over-dispersion and the inclusion of shelter effect: see Sects. 3.2.1 and 
3.2.2, respectively. In the latter setting, we will also discuss the behavior of the 
test when the interest lies in verifying the correct location of the shelter, assum-
ing that CUB with shelter is the DGP: see Sect. 3.2.2.

• Then, in Sect. 3.3 we will switch to power analysis when specifying covariates 
for either CUB components and when assuming the proportional odds version of 
the cumulative models (POM) as DGP.

• Last, we will discuss power performance in case the DGP does not belong to the 
class of CUB models: this will be the case of the discretized beta and the beta-
binomial distributions: see Sect. 3.2.3.

In all cases, we report results corresponding to a significance level of � = 0.05.

2 The IM test procedure developed with gretl allows to distinguish between non-convergences of the 
MLE and cases where the number of degrees of freedom of the IM test is zero.
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3.2.1  Testing over‑dispersion under the alternative

Over-dispersion in ordinal ratings and count data is a subtle phenomenon to meas-
ure: it can be empirically shown that it is related to an excess in variability with 
respect to the underlying model, where variability has to be meant as mutual differ-
ences among frequencies (see Piccolo and Simone 2019a). Within the class of CUB 
mixture models,  accounting for over-dispersion is usually handled by assuming a 
beta-binomial distribution for the feeling component. For r = 1,… ,m , this probabil-
ity model is parameterized as follows:

where the parameter � has the same interpretation as in the binomial distribution and 
the additional parameter � ≥ 0 accounts for over-dispersion, so that the binomial 
distribution arises as the limiting case � = 0 : its mixture with a uniform distribution 
is referred to as CUBE model.

Clearly, the CUBE model nests CUB as a special case, so in principle a test for 
discriminating between the two could be based on the hypothesis H0 ∶ � = 0 . How-
ever, we believe the performance of the IM test is worth investigating for several 
reasons: first, the point � = 0 is on the boundary of the parameter space, so it is not 
obvious to ascertain if the usual regularity conditions apply. Moreover, testing for 
� = 0 implies assuming that the alternative model is known a priori, which is obvi-
ously not the case in actual practice; the advantage of the IM test is in this case its 
being agnostic with respect to the alternative DGP.

In short, in this subsection we investigate the performance of the IM test when 
the data feature over-dispersion that cannot be accounted for by CUB models. To 
this goal, we will determine the empirical power function for different scenarios 
with a CUBE model as DGP, for varying values of �.

It is worth remarking here that the most likely elements that determine the power 
of the IM test in this case are (a) the value of � , since for � = 0 , the two models 
coincide; (b) the distance of � from 0.5, since for � = 0.5 both distributions are sym-
metric and the only distinguishing feature of CUB vs CUBE is over-dispersion, and 
(c) the value of the parameter � , since for � → 0+ , the number of observations com-
ing from the feeling portion of the mixture is small, thereby making the effective 
sample size much smaller than the actual one.

In the light of the above, our findings are rather unsurprising: we display selected 
results corresponding to � = 0.05 in Fig. 2, with values of ( �, �) matching the ones 
used for the analysis of the empirical size; since power can be small for some con-
figurations, we set the sample size n to 212 to make results visually more evident. 
We find evidence that power performance is poor for large heterogeneity (low val-
ues of � ), whereas they are satisfactory for symmetric distribution ( � = 0.5 ) only for 
a  large number of categories. In general, power improves with larger m, arguably 

(19)

gr(�,�) =

�
m − 1

r − 1

�
r∏

k=1

[1 − � + �(k − 1)]
m−r+1∏
k=1

[� + �(k − 1)]

[1 − � + �(r − 1)] [� + �(m − r)]
m−1∏
k=1

[1 + �(k − 1)]

;
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due to a larger variability in higher sample moments. By focusing on symmetric dis-
tributions ( � = 0.5 ), it can be said that a constrained parameter space for � in (0, 0.2) 
is advisable, since in this case the beta-binomial distribution converges quite fast 
to a uniform distribution for larger values of � . Indeed, over-dispersion is inversely 
related to mutual differences among frequencies.

Notice that CUB models are reversible (in the sense that, if R ∼ CUB(�, �) , then 
m − R + 1 ∼ CUB(�, 1 − �) ); for this reason, Fig. 2 does not display the results cor-
responding to � = 0.9 , since these coincide with those corresponding to � = 0.1.

3.2.2  Shelter effect

In this subsection, we study the performance of the IM test to detect misspecifi-
cation within the uncertainty component, with respect to the presence of a shelter 
effect (for the sake of illustration, this will be assumed at c = 1 ) or its potential 
misplacement.

From Eq. (5), it is clear that when � = 0 , the CUB with shelter model collapses to 
a baseline CUB model. In our first experiment, we explore the power of the IM test 
to detect the presence of a shelter effect when the estimated model has none.

Figure  3 displays the empirical power function for different choices of model 
parameters. In this setting, it can be seen that the behavior is quite satisfactory, 
unless the location of the shelter coincides with the modal value of the underlying 

Fig. 2  (Empirical) Power function of the IM test for CUB models if the DGP is a CUBE model
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binomial distribution (if � = 0.9 , for instance), especially for low values of m. Thus, 
larger values for m are preferable for inferential procedures in this regard.

In the next three experiments, we assume that the DGP is a CUB with shelter, but 
we assume that the correct location of the shelter category is unknown and test its 
location via IM test. Thus, in this circumstance model misspecification amounts to 
the distance between the true shelter category and the one assumed under the null. 
Figure 4 displays the results for varying n with the following DGPs, showing that 
the IM test behaves consistently. 

Experiment 1: m = 9;� = 0.6;� = 0.4;� = 0.1 , and shelter at c = 1 . For the underly-
ing CUB model, the modal value is at Mo = 6 ; Thus, we have run the IM test for 
a CUB model with shelter assuming that the shelter is at s = r, r ≠ c;

Experiment 2: m = 10;� = 0.7;� = 0.5;� = 0.05 , and shelter at c = m . For the 
underlying CUB model, the modal values are at Mo = 5, 6 ; thus, we have run the 
IM test for CUB with shelter assuming that the shelter is at s = r, r ≠ c;

Experiment 3: m = 7;� = 0.3;� = 0.1;� = 0.1 , and shelter at c = 5 . For the under-
lying CUB model, the modal value is at r = 7 ; thus, we have run the IM test for 
CUB with shelter assuming that the shelter is at s = r, r ≠ c.

Fig. 3  Empirical power function of the IM test for CUB models if the DGP is a CUB with shelter at 
c = 1

Fig. 4  (Empirical) Power function of the IM test on CUB  with shelter at r ≠ c , if the DGP is a CUB 
with shelter at c 
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3.2.3  Power with discretized beta and beta‑binomial as DGP

In this section, we perform some Monte Carlo experiments where 
data are generated using alternative distributions, with samples of size 
n = 128, 256, 512, 1024, 2048 , and different number of categories m = 5, 7, 10 . 
The chosen data generating processes are as follows:

• Discretized Beta DB(a, b) (Ursino and Gasparini 2018): If X ∼ Beta(a, b) is a 
beta-distributed random variable, a discrete random variable D over the sup-
port {1,… ,m} follows the discretized beta distribution DB(a, b) with param-
eters a, b > 0 if, for r = 1,… ,m : 

 The broad flexibility of this distribution makes it possible to consider a broad 
range of shapes, as shown in Fig. 5.

• Beta-binomial defined in (19). We analyzed the power of the IM test for CUB 
models against the four scenarios for the DGP, listed in Table 7, each tested 
with m = 5, 7, 10:

  Figure 6 displays the distributions for all the chosen scenarios.

It should be remarked that for some parameter configurations the probability 
limit of the CUB estimator may lie on the boundary of the parameter space; spe-
cifically, when the true probability is U-shaped, � → 0 or � → 1 , and � → 0 if the 
shelter effect is negligible, so standard asymptotic arguments do not apply and the 

Pr(D = r|a, b) = Pr

(
r − 1

m
≤ X <

r

m

|||| a, b
)
.

Fig. 5  DB distributions used for power analysis with m = 5, 7, 10

Table 7  Parameter values for 
beta-binomial model used as 
DGP

1 2 3 4

� 0.1 0.3 0.5 0.8
� 0.2 0.15 0.25 0.3
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distribution of the estimator is unknown. It is especially interesting to analyse the 
power properties of the IM test via simulation under these scenarios. Section C in 
the appendix analyses these cases in greater depth.

We start our discussion by assuming the discretized beta model as DGP. If the 
data exhibit a U-shape distribution, the practitioner may want to use a CUB model 
with shelter. In this case, the IM test can be used to assess the validity of the choice. 
Thus, we run the IM test for a CUB with shelter at c = 1 or c = m if the largest fre-
quency is at r = m ( a > b ) or r = 1 ( a < b ), respectively.

Power performance is displayed in Fig.  7 and they generally improve for 
growing m, but with a slower increase with n when the U-shape of the distri-
bution is more evident for low values of m.3 It can be shown that a U-shape 
DB model corresponds to a mixture of a J-shaped DB model with a reverse 
J-shaped DB model (see the Appendix to Simone (2022)). In order to show our 

Fig. 6  Beta-binomial distributions used for power analysis with m = 5, 7, 10

3 For one scenario, convergence of power to 1 is quite slow, so we show results up to n = 8192 to aid 
visualization.

Fig. 7  (Empirical) Power function of the IM test for CUB model with shelter if the DGP is a U-shaped 
discretized beta, with shelter at c = 1 for (a = 0.5, b = 0.3) and at c = m for (a = 0.2, b = 0.8)
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arguments, without loss of generality assume the case a = 0.1, b = 0.2 : the cor-
responding U-shape DB distribution will have modal value at c = 1 , and a huge 
excess of frequency at c = m , with a flat distribution in between, and it is equiv-
alent to a mixture between a DB(0.1, 1) and a DB(1, 0.2).

If the latter distribution can be approximated by a binomial, accounting for 
feeling, the former J-shaped distribution can be in turn written as a mixture of 
a DB model close to the uniform distribution ( DB(1, 1.2) ) and an almost degen-
erate DB model (a = 2, b = 0.2) with mode at r = 1 . As a consequence, in case 
of extremely polarized distributions arising from the DB model as a DGP (low 
values of both a,  b), the power performance of the IM test to check the cor-
rect specification of a CUB with shelter become satisfactory slowly, and in gen-
eral faster for larger m, while the power performance of the IM test to check 
the correct specification of a baseline CUB without shelter are satisfactory, as 
expected. It could be surmised that the poor power properties of the IM test 
in the case (a = 0.5, b = 0.3) could be attributable to the pseudo-true parameter 
�∗ being on the edge of the parameter space. This, however, is also true for the 
(a = 0.2, b = 0.8) model, which yields much better power properties.

Therefore, the power of the IM test for CUB models appears to be larger when 
the shape of the distribution is untypical of CUB models, which is not surpris-
ing. More in detail, in the case of U-shaped distributions, the test is very power-
ful to detect misspecification if the U-shape is particularly marked: performance 
worsens as the U-shape becomes flatter, in which case an IM test for CUB with 
shelter gives more satisfactory performance instead.

These considerations are due to the circumstance that some binomial distribu-
tions are well approximated by a DB model (Ursino and Gasparini 2018). This 
issue explains why, when the DGP is a unimodal DB model, with modal value 
at an inner category (that is, different from 1 and m), performance of the IM test 
for CUB models for small samples are satisfactory only for moderate or large 
number of categories and for distributions with a certain extent of heterogene-
ity. For the sake of completeness, Fig. 8 displays the empirical power function 
for a Monte Carlo experiment related to data generated from a DB(a, b) , with 
a = 1.5, b = 2 , for varying m and n.

We now switch to the analysis of the power performance of the IM test if the 
DGP is a beta-binomial model. Figure 9 displays the results at a glance. It fol-
lows that the performance of the test are very satisfactory, especially for medium 
and large scales. A larger value of n is instead needed to attain satisfactory per-
formance for symmetric distributions ( � = 0.5 ), especially for a small number of 
categories ( m = 5).

3.3  Empirical power with covariates

In this section, we analyze the power of the IM test with respect to model 
misspecification in terms of explanatory variables in the model. We begin by 
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exploring this aspect by itself and then combine covariate omission with mis-
specification of the data distribution assuming POM as DGP.

3.3.1  CUB with covariates as DGP

We generate data using the CUB(1,1) model as DGP, with a dummy covariate D 
entering both feeling and uncertainty Eqs. (3)–(4):

In this case, the parameter space is R4 so any possible set of values lie in the interior 
of the parameter space; for our experiment, the parameters �0, �1, �0, �1 were chosen 
so as to yield:

The dummy variables Di are iid with Pr(Di = 1) = 0.6 . Figure 10 shows the result-
ing conditional and unconditional distributions for m = 5, 7, 10.

We then run the IM test for CUB models with covariates by considering as null 
hypothesis three separate cases of misspecification, that is CUB(0,0),  CUB(1,0) 
and CUB(0,1). Figure  11 displays the results corresponding to significance level 
� = 0.05.

�(�i) = �0 + �1 Di, �(�i) = �0 + �1 Di.

(�i|Di = 0) = 0.3, (�i|Di = 1) = 0.7

(�i|Di = 0) = 0.6, (�i|Di = 1) = 0.2.

Fig. 8  (Empirical) Power function of the IM test for CUB model if the DGP is a unimodal discretized 
beta with inner modal value
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Testing the correct specification of CUB(0,0), CUB(1,0) or CUB(0,1) via the IM 
test if the DGP is a CUB(1,1) model is equivalent to testing if the missed speci-
fication of significant effects of D for at least one model components is success-
fully identified. Results show satisfactory performance of the power of the IM test 
to check the correct specification of CUB(1,0) and CUB(0,1) models. With respect 
to the null of a CUB(0,0) model, instead, performances are weakest due to the uni-
modality of the overall distribution: in particular, the empirical power converges to 1 
more slowly as n grows.

3.3.2  Proportional odds model as DGP

In the following paragraph, we show and discuss the performance of the IM test 
for CUB models if data are sampled according to a proportional odds version of a 
cumulative link model (POM, McCullagh 1980):

Fig. 9  (Empirical) Power function of the IM test for CUB models if the DGP is a beta-binomial model
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In the POM model, the data generating process does not include any uncertainty 
component. Then, our power analysis aims at showing how the IM test for possi-
ble CUB model specifications behaves. In other words, if the data provide evidence 
against such null hypothesis, one could conclude that mixture models including an 
uncertainty component are unlikely to be adequate for the data at hand.

As for the variable x, we considered two cases: one where x is continuous, gener-
ated from a standard Gaussian distribution, and one when x comes from a Bernoulli 

�(Pr(Ri ≤ r|� , �, xi)) = �r − � xi, r = 1,… ,m.

Fig. 10  Power analysis: Generating CUB distributions (conditional to D and unconditional) for fixed val-
ues of m (top: m = 5 , center: m = 7 , bottom: m = 10)
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distribution with p = 0.6 . In this case we computed the power of the IM test to check 
the correct specification of the possible CUB models (CUB(0,0) with no covariate, 
CUB(1,0) and CUB(0,1) with covariate only for one  component, and CUB(1,1)). 
Figure 12 displays the empirical power as a function of n, for varying m and signifi-
cance level � = 0.05 , showing that in this case the test behaves satisfactorily, with 
slightly superior performance if x is Bernoulli rather than continuous for low and 
moderate sample sizes, and generally improving with growing m.

Fig. 11  (Empirical) Power function of the IM test for CUB specification without covariates or with 
covariates only for one component, assuming CUB(1,1) as DGP

Fig. 12  (Empirical) Power function of the IM test for CUB specifications if the DGP is a POM with 
N(0, 1) or Bernoulli covariate
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4  Example applications

In this section, we provide two examples of our proposed test procedure. First, in 
Sect.  4.1 we illustrate how to check for misspecification of CUB models without 
covariates, possibly with shelter, on a real dataset that has been traditionally used 
as a test bed in the CUB literature. Next, in Sect. 4.2 we illustrate the usage of the 
IM test as a support tool to specification search in the context of a CUB model with 
covariates.

4.1  Student satisfaction

As an illustrative example, we consider the survey on student satisfaction for the 
Orientation services provided by the University of Naples Federico II in 2002. The 
data contain n = 2179 questionnaire responses, with ratings collected over m = 7 
ordered categories4. We report the results of the IM test to check for the correct 
specification of a CUB model without covariates on the ratings expressed for global 
satisfaction and satisfaction on willingness of the staff, competence of the staff, 
information provided and office hours.

As can be seen from Table 8, results for nearly all ratings (with the only excep-
tion of global) indicate that the plain CUB(0,0) model is probably misspecified. 
In order to improve on the simple CUB(0,0) model, we consider a possible shelter 
effect: results reported in Table 9 indicate that indeed a CUB with specification of 
a shelter at category c = 7 can be assumed to be correctly specified at a 5% signifi-
cance level (4% for willingn).

Table 8  Statistics p values 
for the IM test for baseline 
CUB(0,0) specification

Informat Willing Officeho Compete Global

IM statistics 15.512 29.137 57.053 20.434 2.216
p value 0.000 0.000 0.000 0.000 0.137

Table 9  p values for the IM test 
for CUB(0,0) with shelter

Shelter category

1 2 3 4 5 6 7

Informat 0.00 0.00 0.00 0.00 0.00 0.00 0.05
Willingn 0.00 0.00 0.00 0.00 0.00 0.00 0.04
Officeho 0.00 0.00 0.00 0.00 0.00 0.00 0.14
Compete 0.00 0.00 0.00 0.00 0.00 0.00 0.53
Global 0.07 0.08 0.15 0.03 0.11 0.02 0.43

4 This dataset is bundled within both the R and gretl libraries under the name univer. For a full 
description of the dataset, see Iannario et al. (2018).
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For the global variable, instead, we use the LR test as a model selection pro-
cedure among the specifications that pass the IM test (see Table 8): for this survey 
item, the CUB(0,0) model without shelter can be accepted as a valid model speci-
fication. For the other items, matching results from the IM and LR tests shows that 
shelter category at c = 7 is the unique setting with both evidence for correct specifi-
cation and goodness of fit (see Fig. 13).

4.2  The IM test as a support tool to model selection

As we argued in the introduction, practitioners almost invariably ignore the poten-
tial pitfalls stemming from misspecification and implicitly assume that ordinal data 
arise from a pre-specified distribution. This is often the case with CUB models, 
on the grounds of their attractiveness in terms of interpretation of parameters and 
parsimony.

In this section, we give a practical example on the way the IM test can be used 
to validate ex post a CUB model when its specification is chosen by relying on 
information criteria, as is common with models with covariates. In these cases, the 
process of variable selection for the most significant and relevant predictors of the 
feeling and uncertainty components is a challenging task. Classical backward and 
forward algorithms are not straightforward to apply since variable selection should 
proceed jointly for both model components. For this reason, in principle best-sub-
set variable selection is a candidate algorithm to pursue a joint identification of 
response drivers.5

We use the BIC criterion here to conform to the vast majority of empirical appli-
cations of CUB models. In fact, recent research (Lv and Liu 2014) has proposed 

Fig. 13  Rating distributions within univer survey: estimated CUB and CUB with shelter at c = 7 prob-
ability models are superimposed to the bar plot of observed frequencies

5 Clearly, an efficient computation strategy is needed. See (e.g. Simone 2021, 2020).
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modified versions of the BIC and AIC which take possible misspecification into 
account. Here, however, we try to stick as closely as possible to common empirical 
practice and just exemplify the usage of the IM test as a diagnostic procedure.

We consider a survey run by the Italian National Office of Statistics (ISTAT) on 
the professional placement of PhDs (see https:// www. istat. it/ en/ archi vio/ 87789), and 
we focus on the overall satisfaction in the doctoral experience.6 All the ratings were 
collected on a scale with 11 ordered categories (from 0 to 10): the rating scale has 
been subsequently modified to a scale with 8 ordered categories because of zero-
scores observed in certain categories, with higher scores corresponding to higher 
satisfaction levels. We consider the 2012 and 2014 surveys, and after omitting miss-
ing values for the variables of interest, we have n = 2053 and n = 1777 observations, 
respectively.

For this case study, several covariates are available, including subject-specific 
ones (gender, current employment status, residence, discipline of the PhD study, 
marital status and others) and PhD-specific ones (participation in research projects, 
geographical location of the University, a binary variable indicating if the PhD can-
didate took periods abroad, scholarships, standardized number of published papers 
during PhD courses, and more).

First, for the selected set of covariates, we estimate a CUB model with full covar-
iate specification on both feeling and uncertainty parameters: the resulting model 
consists of several non-significant covariate effects. Therefore, we omit the non-
significant effects and pursue a best-subset variable specification to select the best 
model using the BIC criterion. The resulting model is as follows:

parameter estimates are reported in Table 10:
Subsequently, we selected the models estimated within the best-subset search 

that are closest to the best one ( M1 ), according to the given criterion (in this case, 
those with low difference in BIC from the best one: ΔBIC < 5 ), and perform the IM 

�(�i) = �0 + �1����i

�(�i) = �0 + �1������i + �2 ������i;

6 Satisfaction in the PhD experience was rated with reference to several aspects (quality of teaching 
courses, spaces and tools at disposal, etc): here we concentrate on overall satisfaction.

Table 10  Estimated parameters 
and standard errors for the best 
model ( M1 ) with respect to BIC 
criterion

Estimates SE Wald

Uncertainty
�0 − 0.1336 0.1323 − 1.0095
�1 1.1015 0.1917 5.7467
Feeling
�0 − 0.816 0.0439 − 18.581
�1 0.232 0.0623 3.717
�2 − 0.157 0.0314 − 5.016

https://www.istat.it/en/archivio/87789
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test for all of them: Table 11 reports the relevant information. It turns out that the 
hypothesis of correct specification can be rejected only for model 5 (see Tables 11 
and 12 for details on estimated models). In general, the IM test can be used as a 

Table 11  Ranking of best 
models, with relevant 
information on IM test results

Model Delta

 Ranking BIC IM statistic df p val

M1 0 13.038 8 0.111
M2 0.973 15.716 15 0.401
M3 1.864 15.555 11 0.158
M4 3.332 16.192 19 0.644
M5 4.814 27.228 12 0.007

Table 12  Best fitting CUB 
models for which correct 
specification can be assumed at 
5% significance level according 
to the IM test

Estimates SE Wald

M2 ( Loglik = −3951.77)
Uncertainty
�0 − 0.518 0.210 − 2.470
� : teaching 0.555 0.219 2.529
� : stem 1.073 0.193 5.533
Feeling
�0 − 0.813 0.044 − 18.621
� : gender 0.229 0.062 3.687
� : Npaper − 0.1587 0.0315 − 5.040
M3 ( Loglik = −3952.217)
Uncertainty
�0 − 0.402 0.180 − 2.229
� : gender 0.482 0.204 2.363
� : stem 1.202 0.201 5.976
Feeling
�0 − 0.827 0.046 − 17.893
� : gender 0.252 0.063 4.001
� : Npaper − 0.161 0.032 − 5.080
M4 ∶ (Loglik = −3949.137)

Uncertainty
�0 − 0.759 0.239 − 3.178
� : gender 0.463 0.205 2.264
� : teaching 0.538 0.220 2.447
� : stem 1.161 0.202 5.748
Feeling
�0 − 0.825 0.0463 − 17.969
� : gender 0.249 0.063 3.972
� : Npaper − 0.163 0.032 − 5.092
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supplement procedure when performing model selection, being a tool to further 
investigate the appropriateness of a model beyond its fitting and predictive abilities.

5  Conclusions

In this paper, we study the application of the information matrix test to perform diag-
nostics of the correct specification of statistical models for rating data, with focus on 
the class of CUB mixture models to account for heterogeneity. Our approach is very 
general and makes it also possible to determine groups of models which are homo-
geneous with respect to fitting performances, by inspecting simultaneously which 
ones can be considered correctly specified according to the proposed testing pro-
cedure. Then, all attempts to perform multi-model inference should be preferably 
based on the subset of models that pass this check.

The code to perform the proposed testing procedure to check for correct specifi-
cation of CUB models has been programmed for both R and Gretl environments: the 
procedures are available upon request from Authors, and they will be released soon 
on the official repositories.

Appendix A: Analytical derivatives: CUB models

Given the observed sample (r1,… , rn) , for notational convenience consider the fol-
lowing notation for i = 1,… , n:

A.1 Score vector

• For j = 0,… , p , if ỹi = (1, yi) , then: 

pi = Pr(Ri = ri|�, yi,wi)

�i =
�i bri(�i)

pi

vi =
m − ri

�i
−

ri − 1

1 − �i

qi =
m − ri

�2
i

+
ri − 1

(1 − �i)
2

�̃i = �i(1 − �i)

�̃i = �i(1 − �i)

hi = vi(1 − 2�i) − qi�̃i + v2
i
�̃i
1 − �i
m pi
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• For j = 0,… , q , if w̃i = (1,wi) , then: 

A.2 Hessian matrix

• For j, h = 0,… , p , if ỹi = (1, yi) , then: 

• For j, h, 0,… , q , if w̃i = (1,wi) , then: 

• For j = 0,… , q , for h, 0,… , p , if w̃i = (1,wi) and ỹi = (1, yi) , then: 

Appendix B: Analytical score and Hessian for CUB with shelter

For the CUB  with shelter specification, let:

where yi, xi,wi are row-vectors of by-subject covariates in which the first position is 
1, so as to accommodate for intercepts ( �0, �0, �0).

Letting vi = (m − ri)(1 − �i) − (ri − 1)�i , so that �vi
��j

= −(m − 1) yij �i(1 − �i) , then 
the score vector equals

��i

��j
=

1

pi
ỹij �̃i

(
bri(�i) −

1

m

)

��i

��j
= �i vi w̃ij �̃i

�2�i

��j��h
= ỹij ỹih �̃i

bri(�i) −
1

m

pi

⎡
⎢⎢⎢⎣
(1 − 2�i) − �̃i

�
bri(�i) −

1

m

�

pi

⎤
⎥⎥⎥⎦

�2�i

��j��h
= w̃ij w̃ih �i �̃i hi

�2�i

��j��h
=

w̃ij ỹih �̃i �̃i vi bri(�i)

mp2
i

(B1)�(�i) =wi �

(B2)�(�i) =xi �

(B3)�(�i) =yi �
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As for the Hessian, we have

Using �pi
��j

= �i yij bri(�i) vi , we have

Finally, using 
�bri (�i)

��k
= yikbri(�i) vi yields

Appendix C: The CUB estimator as QMLE for the discretized Beta 
distribution

In this section, we offer a more detailed treatment of the situation analyzed in 
Sect. 3.2.3, where the asymptotic properties of the test statistic may break down 
because the pseudo-true parameter �∗ is on the boundary of the parameter space.

Therefore, we assume that the true model (DGP) is a discretized beta model 
DB(a, b) , and the pseudo-true model (assumed under the null) is a CUB model 
when the DB model has a unique inner mode and a CUB with shelter when the 
DB(a, b) has a U-shaped distribution: see Simone (2022) for details on the DB 
model and its mixtures.

𝜕�i

𝜕𝛼k
=
1

p̃i

(
D(c)

ri
− pi

)
𝛿i (1 − 𝛿i)wik

𝜕�i

𝜕𝛽j
=
1

p̃i
(1 − 𝛿i)

(
bri(𝜉i) −

1

m

)
𝜋i (1 − 𝜋i) xij

𝜕�i

𝜕𝜂k
=
1

p̃i
𝜋i (1 − 𝛿i) bri(𝜉i) yik vi

𝜕2�i

𝜕𝛼k𝜕𝛼j
=
(D(c)

ri
− pi)

p̃i
wij wik 𝛿i(1 − 𝛿i)

(
1 − 2𝛿i −

𝛿i(1 − 𝛿i)

p̃i
(D(c)

ri
− pi)

)

𝜕2�i

𝜕𝛽j𝜕𝛽k
=
(1 − 𝛿i)

p̃i
xij xik

(
bri(𝜉i) −

1

m

)
𝜋i(1 − 𝜋i)×

×

[
1 − 2𝜋i −

(
bri(𝜉i) −

1

m

) (1 − 𝛿i)𝜋i(1 − 𝜋i)

p̃i

]

𝜕2�i

𝜕𝛼k𝜕𝛽j
= −

𝛿i(1 − 𝛿i)

p̃i
wik xij

(
bri(𝜉i) −

1

m

)
𝜋i(1 − 𝜋i)

[
1 + (1 − 𝛿i)

(D(c)
ri

− pi)

p̃i

]

𝜕2�i

𝜕𝛼k𝜕𝜂j
=

𝛿i(1 − 𝛿i)

p̃i
wik

(
−(1 − 𝛿i)

(D(c)
ri

− pi)

p̃i
− 1

)
𝜕pi
𝜕𝜂j

.

𝜕2�i

𝜕𝛽j𝜕𝜂k
=

(1 − 𝛿i)𝜋i(1 − 𝜋i)xij

p̃i

𝜕bri(𝜉i)

𝜕𝜂k

[
1 −

(1 − 𝛿i)

p̃i
𝜋i

(
bri(𝜉i) −

1

m

)]
.
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Since the QMLE �̂� can be thought of as the minimizer of a criterion function 
whose probability limit is the KL divergence between the two distributions, we plot 
the contour lines of the Kullback–Leibler divergence

where p is the “true” vector of probabilities generated by the DGP ( DB(a, b) ) while 
q is the corresponding CUB model with parameters (�, �) ranging over the param-
eter space. This plot is meant to put in evidence the location of the pseudo-true 
parameter �∗.

Assume first that a = 1.5 and b = 2 : Fig. 14 displays contour lines of theoretical 
values of KL[DB(a, b), CUB(�, �)] as a function of (�, �) ranging over the parameter 
space. Red points indicate average estimated CUB parameters in the Monte Carlo 
experiment for selected sample sizes n. Results do not change for varying m and n: 
thus, for illustrative purposes, only m = 10 and n = 1024 are considered. As can be 
seen, the pseudo-true vector �∗ is in the interior of the parameter space and �̂� is a 
proper QML estimator.

Next, assume that the true model p is a U-shaped DB model. In this case, the feel-
ing parameter of a pseudo-true CUB model with shelter will be necessarily close to 
boundaries of the unit interval to model one of the two extreme modal values (the 
shelter category is c = 1 for Model 1, where a = 0.5, b = 0.3 and c = m for Model 2, 
where a = 0.2, b = 0.8).

KL(p, q) =

m∑
r=1

pr log

(
pr

qr

)
.

Fig. 14  Contour lines of theoretical KL(DB,CUB) divergence; average sample estimates of (�, �) for 
n = 1024 highlighted in red
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Figures  15 display contour lines of the KL(DB,CUB − she) divergence, with 
model 1 in the left pane and model 2 in the right pane7, for various levels of the 
shelter parameter � . As can be seen in both cases the minimum is attained on the 
border of the parameter space.
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