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Abstract

The effects of kinetic-energy preservation errors
due to Runge-Kutta (RK) temporal integrators have
been analyzed for the case of large-eddy simulations
of incompressible turbulent channel flow. Simulations
have been run using the open-source solver Xcom-
pact3D with an implicit spectral vanishing viscosity
model and a variety of temporal Runge-Kutta integra-
tors. Explicit pseudo-symplectic schemes, with im-
proved energy preservation properties, have been com-
pared to standard RK methods. The results show a
marked decrease in the temporal error for higher-order
pseudo-symplectic methods, and suggest that these
schemes could be used to attain results comparable to
traditional methods at a reduced computational cost.

1 Introduction

Guaranteeing the conservation of linear and
quadratic invariants of the Navier-Stokes equations at
a discrete level is considered to be of great importance
for both direct and large-eddy simulations (LES) of
turbulent flows (Coppola et al. (2019b)). For incom-
pressible flows, the lack of kinetic energy preserva-
tion, either due to spatial or to temporal schemes, can
lead to contamination of the energy cascade mecha-
nism with artificial dissipation.

This work focuses on analyzing and quantifying
the dissipative errors by the temporal integrator for
large-eddy simulations (LES) of a turbulent channel
flow. Research on the time-integration errors in nu-
merical simulations of turbulent flows is relatively
scarce in the existing literature. Choi and Moin (1994)
investigated the effect of large time steps for the tur-
bulent channel flow, determining that they might be
responsible for unphysical behaviour on the turbulent
structures or the laminarization of the flow. A sys-
tematic study about time-integration errors in LES of
Taylor-Green-Vortex has been carried out by Capuano
et al. (2019), emphasizing the benefits and efficiency
of Runge-Kutta methods with improved energy con-
servation properties, such as the pseudo-symplectic
schemes.

The aim of this work is to investigate the time-

integration errors (particularly the dissipative compo-
nent) of standard and pseudo-symplectic RK schemes
for turbulent wall-bounded flows, at time steps close
to the ones dictated by the linear stability limit.

The high-order finite-difference flow solver Xcom-
pact3D (Bartholomew et al. (2020)) has been em-
ployed to run the simulations: the implicit LES
(AiLES) model is adopted through the use of a spec-
tral vanishing viscosity operator, so that the extra-
dissipation is enforced directly in the second deriva-
tive scheme of the diffusive term of the Navier-Stokes
equations (Lamballais et al. (2011)).

Classical and innovative Runge-Kutta (RK) time
integrators have been implemented in addition to the
ones already present in the code.

2 Mathematical formulations

Classical RK schemes of s stages are usually con-
structed to maximize the temporal order of accuracy p.
For these schemes, p also coincides with the pseudo-
symplectic order ¢, defined so that the discrete evolu-
tion of the global kinetic energy for Re — oo is
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A pseudo-symplectic method is one for which ¢ >
p (Capuano et al. (2017)). The schemes investigated
in this analysis are 3p5q(4), 3p6q(5), 4p7q(6); the
naming convention npmgq(s) indicates a method with
p = n temporal order of accuracy, ¢ = m pseudo-
symplectic order, and s stages.

The dissipative effects of the temporal error can
be efficiently investigated introducing the effective
Reynolds number Recs (Capuano et al. (2017)), that
can be defined, starting from the discrete evolution of
the global kinetic energy, as
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where the term ﬁ@ represents the physical dissipa-
tion rate, whereas egg is the temporal numerical dissi-
pation. The second term indeed represents a source of
error, due to the lack of the summation by parts rule of
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Figure 1: Comparison of the effective Reynolds number for
the Taylor-Green-Vortex at Re = 3000, N =
65, for different temporal and spatial schemes, at
CFL = 1.

the RK integrator (Capuano and Vallefuoco (2018)).
By deriving the fully discrete evolution energy equa-
tion for a general RK scheme, one can obtain an ex-
pression for the discrete counterpart of the physical
dissipation rate, and for the RK temporal error for ki-
netic energy, which read respectively
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where u; represents the j-th intermediate velocity
field inside the s inner stages of the RK procedure,
F; = —C(u;) + vL = F(uj), F(u;) = PF(u;)
and P = I — GL™'M, with M , C, L and G being
the discretization of the divergence, convective, diffu-

sion and gradient operators, respectively.

3 Results

The numerical results presented in this section
have all been performed with the open-source solver
Xcompact3D. A skew-symmetric form of the convec-
tive term is employed, therefore the spatial discretiza-
tion globally preserves kinetic energy (Coppola et al.
(2019a)). As a first step, to determine the influence
of the spatial schemes on the effective Reynolds num-
ber (which is indicative of the temporal kinetic-energy
preservation error), the numerical simulation of the
Taylor-Green-Vortex at Re = 3000 and CFL = 1 has
been performed in a triperiodic square domain of side
length L = 2, discretized using N = 652 nodes. In
particular, the temporal error of classical and innova-
tive RK schemes have been compared by employing
different spatial schemes: central 2nd order, compact
4th and 6th order Padé schemes.

In Figure 1 the evolution in time of the effective
Reynolds number Ree/Re = —=*— is reported, in
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which e, = ®/Re is the physical dissipation rate.

For both RK3 and 3p6q(5), the use of the higher
order spatial schemes leads to a higher production of
artificial dissipation than the central second order spa-
tial scheme. The origin of this behaviour has been
investigated by studying the physical dissipation rate
€, and temporal error gk independently. The influ-
ence of the spatial discretization order on ¢, is much
smaller than the effect on gk, so it is the last one that
is responsible for the noticeable change in the effec-
tive Reynolds number. The same behaviour has been
found to hold also for the other temporal integrators
tested, with higher order spatial schemes leading to
a higher artificial viscosity. This particular behaviour
may be explained by considering that higher order spa-
tial schemes resolve smaller scales more accurately
and that leads to a higher dissipation. Indeed, the range
of scales that are well-represented for the compact
schemes are wider, capturing thoroughly the small-
est length scales, i.e. the highest wavenumbers (Lele
(1992)), up to the dissipative scales, because of the
spectral-like accuracy of the compact schemes. In Fig-
ure 2 the effective Reynolds number for the central-
second order, compact fourth order and sixth order are
reported.

Numerical Results for the Channel Flow

The channel flow configuration has been investi-
gated for Re, = 180, 395, and 590. Several im-
plicit large-eddy simulations have been performed in
a domain of size 47 x 2 x 3 for Re; = 180 and
in a domain of size 2w x 2 x 7 for the other cases.
The iLES has been carried out using a spectral van-
ishing viscosity operator (Lamballais et al. (2011)),
by means of 6th order compact Padé scheme, hence
no explicit subgrid model has been used. In addi-
tion to the pseudo-symplectic schemes, the third-order
Runge-Kutta-Wray (RK3) and classical fourth-order
RK (RK4) schemes have been used to compare the
results. The numerical grid is uniform in the homo-
geneous directions (z and z), while the grid in the
wall normal direction is nonuniform and gradually
stretched with the particular use of a tangent hyper-
bolic function. Therefore, the bilinear forms of the
€, and egg have been modified according to the use
of a mapping metric term, to take into account the
non-uniform grid in the wall direction (Capuano and
Vallefuoco (2018)). Note that the discrete global ki-
netic energy equation, Eq. (2), has been written for
sake of simplicity in the absence of forcing terms.
Obviously, in this case, a forcing is added to drive
the flow through the channel (particularly, a constant
pressure gradient is used). The main parameters for
each simulations are summarized and reported in Ta-
ble 1. In Figures 3a, 3b and 3c the ratio of the ef-
fective Reynolds number with respect to the nominal
Reynolds number for Re, = 180, 395 and 590 are
shown as a function of time. The second drop cor-
responds to the starting point of the transition to tur-
bulence, until it reaches a condition where the ratio
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Figure 2: Ratio of effective to nominal Reynolds number at CFL = 1 for the Taylor-Green-Vortex at Re = 3000, N = 65°

with different spatial schemes.

Re, L, L, NxxNyxDNz At CFL
180 4wd wo 50 x 33 x 34 0.17 0.8
395 276 @O 54 x 55 x 54 0.058 0.7
590 276 @O0 84 x129x94  0.0262 0.5

Table 1: Main parameters and numerical setup for the simu-
lation of the turbulent channel flow.

Relative max error

Scheme — —— 780 Re, =395 Re. = 590
RK3 14.2% 16% 8.6%
RK4 4.9% 4% 0.7%

3pSqd)  6.4% 4% 0.7%

3p6q(5)  0.9% 0.1% 0.2%

4p7q(6)  0.7% 0.07% 0.1%

Table 2: Maximum error of the effective Reynolds number
compared to nominal Reynolds number, for various
temporal schemes and Re, = 180, 395 and 590.

can be considered to be stationary; hence the channel
flow has reached the condition of being fully devel-
oped. The figures do not show noticeable differences
between the pseudo-symplectic schemes of higher or-
der, i.e., 4p7q(6) and 3p6q(5), while on the other hand
RK3, RK4 and 3p5q(4) schemes vary significantly,
reaching a deviation from the nominal Reynolds num-
ber up to 16% for the RK3 and up to 4% for the four-
stage RK schemes at Re, = 395.

In Table 2 the maximum deviation of the effec-
tive Reynolds number from the nominal value for dif-
ferent temporal schemes are reported. The pseudo-
symplectic schemes of higher-order are able to keep
the lowest level of production of artificial dissipation,
with a maximum error below 1%.

Performance Analysis

A more meaningful comparison can be achieved by
means of a cost analysis, where the minimum of the
ratio of effective to nominal Reynolds number is re-
ported with respect to a cost function, which is defined
as the number of the right-hand side evaluations re-

quired to reach the fully developed channel flow with
different time steps. As it is shown in Figures 4, 5
and 6, the analysis shows that higher order methods,
in particular 3p6q(5) and 4p7q(6), are the most cost-
effective and efficient among the temporal schemes
investigated, as they require the minimum cost for a
given value of the error. However, the 3p6q(5) per-
forms slightly better than the more accurate pseudo-
symplectic scheme of higher-order 4p7q(6), as already
shown for different boundary and initial conditions
and numerical setup by Capuano et al. (2019), which
is confirmed within the range of Re investigated.

4 Conclusions

The temporal error of standard and pseudo-
symplectic RK methods has been investigated for in-
compressible flows. Firstly, the influence of the spatial
schemes upon the time-integration error of the tem-
poral schemes has been studied. The results show
that high-order spatial schemes lead to a significant
increase in the production of artificial dissipation. In-
deed, low order spatial schemes, such as the central
second order finite difference method does not re-
solve well a wide range of length scales, while on
the other hand the set of the well-resolved waves for
compact schemes stay close to the exact differentia-
tion over a wider range of wavenumbers, up to the
smallest scales, which are the most active in the dis-
sipative spectrum. The improved energy-conservation
properties of pseudo-symplectic schemes have been
assessed also for a turbulent channel flow, being able
to keep the error on the preservation of global kinetic
energy below 1%, and minimizing the temporal error.
Furthermore, a performance analysis for the channel
flow results shows that high-order pseudo-symplectic
schemes, such as the 3p6q(5) method, are the most
efficient and cost-effective ones among other pseudo-
symplectic schemes and standard RK methods.
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Figure 3: Ratio of effective to nominal Reynolds number for the numerical simulation of the turbulent channel flow.
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Figure 4: Minimum of the ratio of effective to nominal
Reynolds number for the LES as a function of
number of right-hand side evaluations for Re, =
180 and CFL varying from 0.08 to 0.8.
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Figure 5: Minimum of the ratio of effective to nominal
Reynolds number for the LES as a function of
number of right-hand side evaluations for Re, =
395 and CFL varying from 0.06 to 0.7.
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