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Abstract: Lifting is one of the most potentially harmful activities for work-related musculoskeletal
disorders (WMSDs), due to exposure to biomechanical risk. Risk assessment for work activities
that involve lifting loads can be performed through the NIOSH (National Institute of Occupational
Safety and Health) method, and specifically the Revised NIOSH Lifting Equation (RNLE). Aim of this
work is to explore the feasibility of a logistic regression model fed with time and frequency domains
features extracted from signals acquired through one inertial measurement unit (IMU) to classify risk
classes associated with lifting activities according to the RNLE. Furthermore, an attempt was made to
evaluate which are the most discriminating features relating to the risk classes, and to understand
which inertial signals and which axis were the most representative. In a simplified scenario, where
only two RNLE variables were altered during lifting tasks performed by 14 healthy adults, inertial
signals (linear acceleration and angular velocity) acquired using one IMU placed on the subject’s
sternum during repeated rhythmic lifting tasks were automatically segmented to extract several
features in the time and frequency domains. The logistic regression model fed with significant features
showed good results to discriminate “risk” and “no risk” NIOSH classes with an accuracy, sensitivity
and specificity equal to 82.8%, 84.8% and 80.9%, respectively. This preliminary work indicated that
a logistic regression model—fed with specific inertial features extracted by signals acquired using
a single IMU sensor placed on the sternum—is able to discriminate risk classes according to the
RNLE in a simplified context, and therefore could be a valid tool to assess the biomechanical risk in
an automatic way also in more complex conditions (e.g., real working scenarios).

Keywords: biomechanical risk assessment; feature extraction; health monitoring; inertial measurement
unit; lifting; occupational ergonomics; Revised NIOSH Lifting Equation; statistical learning; wearable
sensors; work-related musculoskeletal disorders

1. Introduction

Musculoskeletal disorders are injuries affecting muscles, bones, nerves, tendons,
ligaments, joints, cartilages, spinal discs [1]. According to the National Institute for Occu-
pational Safety and Health (NIOSH), several epidemiological studies have showed a causal
relationship between physical exertion at work and work-related musculoskeletal disorders
(WMSD) [2]. Several factors have been correlated with WMSD, such as repetitive motion,
extreme force, awkward and sustained postures, prolonged sitting and standing [1]. Biome-
chanical risk factor during physical work is mainly due to three main factors: intensity,
repetition and duration [3].
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In addition to the more traditional quantitative and semiquantitative observational
methods to assess biomechanical risk to which workers are exposed during their work
activities [4–7], wearable sensors are spreading in the occupational ergonomics field since
they offer greater agility, precision and duration of measurement [8]. Wearable technologies,
in fact, constitute an emerging approach [9] able to support human activities and improve
the quality of life [10]. Moreover, these technologies have the power to increase work
efficiency among workers, improving their physical well-being and reducing work-related
injuries [11,12]. The success of these technologies in the biomechanical risk assessment is
due to their capabilities to measure several physiological, kinematic, kinetics parameters,
assess human performance, monitor human movements also in a real manufacturing
scenario [13–15]. Among the wearable technologies, the ones based on inertial measurement
units (IMUs) play an important role in the biomechanical risk assessment [16] and they
look very promising for occupational medicine and ergonomic applications [17].

Moreover, machine learning (ML) and statistical learning algorithms are gaining pop-
ularity also in the ergonomic field, showing a role in the primary prevention of WMSD [18].
Some authors, in fact, have reviewed ML applications closely related to WMSD prevention,
such as artificial intelligence for injury risk assessment and performance prediction in team
sports [19], fuzzy decision support systems for musculoskeletal disorder diagnoses [20],
analysis of occupational accident [21] and textual injury surveillance analyses [22].

Among the work activities involving biomechanical overload, material handling and
lifting are one of the most studied in the scientific literature and their causal associa-
tion with WSMD is widely debated [23]. With a view of prevention, NIOSH established
a methodology for assessing biomechanical risk associated with lifting activities [24].

The question remains whether it is possible to classify biomechanical risk classes,
computed by means of the Revised NIOSH Lifting Equation (RNLE), using a logistic
regression model fed with time and frequency domains features extracted from inertial
signals (linear acceleration and angular velocity) acquired by means of a single IMU sensor
placed on the subject’s sternum. To this aim, this paper proposes a first application in
this direction, detailing a strategy, of potential direct practical application in the context of
biomechanical risk assessment (e.g., monitor workers in a real scenario), combing a single
IMU sensor and a statistical learning analysis.

2. Materials and Methods
2.1. IMU-Based Wearable System: The Mobility Lab System

Mobility Lab System (APDM Inc., Portland, OR, USA) is a commercial IMU-based
wearable system for motion capture. The system is composed of both hardware and soft-
ware. The hardware components are movement monitors, access point, docking station,
while the software component consists of a dedicated software named Mobility Lab soft-
ware (Figure 1). The movement monitors, also named Opal sensors, are essentially IMUs
composed of a 3-axes accelerometer with 14-bit resolution, a 3-axes gyroscope with a 16-bit
resolution and a 3-axes magnetometer with a 12-bit resolution. The linear acceleration and
angular velocity signals are sampled at a frequency of 20 Hz. Opal sensors transfer data
by means of a Bluetooth 3.0 communication protocol. The wireless access control point,
named access point for short, allows for wireless communication between a host computer
and Opal movement monitors. The docking station is used to charge and configure the
movement monitors. Finally, the Mobility Lab software is used to configure the hardware
components and to record movement data and inertial signals. A single Opal sensor,
harnessed with an elastic band on the subject’s sternum (Figure 2), was employed in the
present study. The Mobility Lab System has proved to be repeatable [25], reliable [26,27]
and accurate [28]. Moreover, its use has appeared in numerous scientific studies [29–35].
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mission from Donisi et al., Sensors; published by Multidisciplinary Publishing Institute (MDPI), 
2021. 
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2.2. Revised NIOSH Lifting Equation

The RNLE methodology assesses the biomechanical risk to which subjects are exposed
during manual lifting of loads [36–38]. The following equation—through a multiplicative
model with seven variables relating to a lifting task—gives the Recommended Weight Limit
(RWL), which is the weight limit for a healthy worker to safely perform a lifting activity:

RWL = LC × HM × VM × DM × AM × FM × GM, (1)

where (see [38] Appendix A1 for a deeper explanation):

• LC: Load Constant 25/20 kg (males, <45/>45 years old, respectively), 20/15 kg
(females, <45/>45 years old, respectively);
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• HM: Horizontal Multiplier;
• VM: Vertical Multiplier;
• DM: Distance Multiplier;
• AM: Asymmetric Multiplier;
• FM: Frequency Multiplier;
• GM: Grab Multiplier.

By knowing RWL and Actual Weight Lifted (AWL), it is possible to calculate the
Lifting Index (LI) as follow:

LI = AWL/RWL, (2)

The LI indicates the potential biomechanical risk associated with lifting activity [39].
In short, LI values less than 1 assume an acceptable situation (absence of potential biome-
chanical risk) while LI values greater than 1 indicate a potential biomechanical risk, with
a risk that increases with increasing LI. In this study, LI values less and greater than 1 were
used for the classification analysis.

2.3. Study Population

Fourteen healthy volunteers—medical doctors and physiotherapist of the Institute
of Care and Scientific Research Maugeri of Montescano (Pavia, Italy)—were enrolled in
this study. The participants were not suffering from musculoskeletal disorders or other
occupational diseases according to self-reports. Data relating to one participant was not
considered in the study, due to the impossibility of segmenting the signal. Table 1 shows
the anthropometric characteristics of the study population. The study was approved
by the Ethics Committee of the Maugeri Institute. The participants provided written
informed consent.

Table 1. Anthropometric characteristics of the study population.

Characteristic

Sex 6 male, 7 female
Age [years] 39.31 ± 12.72
Weight [kg] 67.31 ± 11.35
Height [cm] 171.50 ± 9.13

Manual laterality 10 right, 3 left
Age, Weight and Height are reports as mean ± standard deviation.

2.4. Study Protocol

Each subject performed a task session based on two trials. Each trial consisted of
20 consecutive lifting tasks with a horizontal gripping distance of approximately 40 cm.
A pause between the two trials was envisioned to allow subjects to recover before carrying
out the next task. Specifically, the first trial consisted of repeated rhythmic lifting of a load
in a condition of LI less than 1, named NO RISK class as reported in the Table 2. The
second trial consisted of repeated rhythmic lifting of a load in a condition of LI greater
than 1, named RISK class as reported in the Table 3. In this preliminary study a simplified
scenario was considered, in which the frequency (4/min) and the duration (5 min) of
the two lifting trials were constant, while only two variables of the RNLE (load weight
and vertical displacement) were manipulated. This was dictated by the intention both to
prepare a test that is not excessively demanding for the subjects, and to limit the variability
of the factors determining the risk according to the RNLE.
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Table 2. Calculation of LI < 1 as a function of sex, age, load weight, lifting frequency and vertical
displacement according to the RNLE.

Subject Sex and
Age

Load Weight
[kg]

Lifting
Frequency

[Lifting/min]

Vertical Displacement
(Start–End) 1

[cm]
LI

Male < 45 6.5 4 70–120 0.57
Male > 45 5.5 4 70–120 0.60

Female 3.5 4 70–120 0.50
1 Start and end were calculated considering the handle of the basket and not its base.

Table 3. Calculation of LI > 1 as a function of sex, age, load weight, lifting frequency and vertical
displacement according to the RNLE.

Subject Sex and
Age

Load Weight
[kg]

Lifting
Frequency

[Lifting/min]

Vertical Displacement
(Start–End) 1

[cm]
LI

Male < 45 12.5 4 20–120 1.48
Male > 45 10.5 4 20–120 1.55

Female 10.5 4 70–120 1.64
1 Start and end were calculated considering the handle of the basket and not its base.

A plastic container with weights equally distributed inside was used for the trials.
Subjects were instructed to adopt a stable upright posture with the lower limb slightly apart
and to perform the squat technique with a two-handed grip. The rhythm of lifting/lowering
of the load was indicated acoustically and visually by a digital metronome, signaling the
moment of gripping and releasing the load at each act. The phases of the lifting tasks are
reported in Figure 3.
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2.5. Feature Extraction

Inertial signals, namely linear acceleration and angular velocity, underwent a digital
signal processing consisting of filtering and segmentation. Inertial signals were filtered
with an 8 order Butterworth band-pass filter, with a band pass ranging from 1 Hz to 50 Hz.
Successively, the signals were rectified and a Savitzky-Golay filter [40] was applied, choos-
ing a polynomial order equal to 3 and a frame length equal to 1001. Finally, an empirical
threshold was set on the signal envelope obtained through the Savitzky-Golay filter to
calculate the start and end points (Figure 4) so as to segment the original signal and extract
the related Region of Interest (ROI) corresponding to window time during the which the
subject performed the lifting.
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the application of Savitzky-Golay filter on the inertial signal (e.g., x-axis acceleration) and an empiri-
cal threshold.

For each ROI, several features were extracted for each signal (linear acceleration and
angular velocity) and for each axis (x, y, z) both in the time and frequency domains. The
x-axis is the vertical direction, the y-axis is the horizontal direction, while the z-axis is the
direction perpendicular to the sensor plane.

The following time-domain features were extracted:

• Rectified signal area (RSA) [m/s];
• Peak to peak amplitude (PPA) [m/s2];
• Mean (MEAN) [m/s2];
• Standard Deviation (SD) [m/s2];
• Harmonic mean (HM) [m/s2];
• 25-percentile (25P) [m/s2];
• 75-percentile (75P) [m/s2];
• Zero-crossing (ZC) [adim];
• Cumulative length (CL) [m/s2];
• Fractal dimension (FD) [adim];
• Number of slope changes (NSC) [adim].

Starting from the power spectrum of the inertial signals computed by means of the
fast Fourier transform algorithm, the following frequency-domain features were extracted:

• Entropy (EN) [adim];
• Kurtosis (KU) [adim];
• Skewness (SK) [adim];
• Power (POW) [m/s2];
• Median frequency (MDF) [Hz];
• Mean frequency (MNF) [Hz];
• Peak of the power spectrum (PPS) [m/s];
• Peak frequency (PF) [Hz].

The digital signal processing was performed using MATLAB (MathWorks, R2020a,
Natick, MA, USA).
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2.6. Statistical Learning Analysis

Firstly, a Shapiro-Wilk normality test (Confidence level equal to 95%) was carried out
to assess the normality of each feature and consequently to choose a parametric or a non-
parametric test. A two-tailed paired t-test—if the assumption of normality was assessed—
was implemented in order to verify if each feature was differentiated in a significant
statistically way between the two classes (RISK, NO RISK) otherwise a non-parametric
Wilcoxon test was performed. For both cases, the Confidence level was set to 95% (definition
of statistical significance: p-value < 0.05).

Secondly, a binary logistic regression was computed to build a predictive model to
classify the two risk classes (RISK, NO RISK) according to the RNLE using the features
above reported. In order to have a reliable and robust model, the following assumptions
were verified [41–43]:

1. Absence of multicollinearity;
2. Absence of outliers;
3. Ratio between the sample size of the smallest class and the number of independent

variables (the features extracted) greater than 10 [44].

The multicollinearity was solved by means of a correlation study calculating the
Pearson correlation coefficient. A feature whose correlation was greater than 0.7 was
removed from the binary logistic regression model. The outlier’s detection was performed
by computing Cook’s distance and the Center Leverage Value. The features considered
in the model creation were the statistically significant ones (p-value < 0.05) and the ones
with an odd ratio next to 1. The performance of the binary logistic regression model was
assessed using the following evaluation metrics: confusion matrix, accuracy, sensitivity
and specificity.

Statistical analyses were performed using SPSS Statistics (IBM®, v. 28, Armonk,
NY, USA).

3. Results

First, a statistical analysis by means of a paired t-test was performed in order to
assess if any differences—between the two biomechanical risk classes (NO RISK, RISK)
for each feature—were presented. This analysis was performed for each inertial signal
(linear acceleration and angular velocity) acquired by an IMU placed on the sternum and
for each axis (x, y, z). Tables 4–6 report the results for the linear acceleration along the x, y, z
axes, respectively, while Tables 7–9 report the results for angular velocity along the x, y, z
axes, respectively.

Second, a binary logistic regression model built starting from the features mentioned
above was implemented, in order to classify biomechanical risk classes (NO RISK, RISK)
according to the RNLE and to study the feasibility of the proposed methods to classify
the risk classes. From the correlation analysis, needed to avoid the multicollinearity,
36 out 114 features were used to build the binary logistic regression model considering
a threshold of Pearson correlation coefficient equal to 0.7. Moreover, an outlier’s detection
was performed by computing Cook’s distance and the Center Leverage Value dimensionless
coefficients; 7 instances (3 belonging to the class NO RISK, 4 belonging to the class RISK)
out of 520 were removed from the dataset. Successively, we removed from the binary
logistic regression model the not statistically significant (p-value > 0.05) features and those
with an odd ratio close to 1, obtaining a final model fed with 21 out of 36 features. This
model respects the condition that the ratio between the sample size (256 instances) of the
smallest class (RISK) and the number of independent features (21) is greater than 10 [44];
this ratio resulted in fact greater than 12. Table 10 shows the confusion matrix of the model,
while Table 11 reports the evaluation metric scores of the model.
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Table 4. Paired t-test NO RISK/RISK classes for each feature extracted from x-axis acceleration (ax).

Features * NO RISK
Mean ± Std

RISK
Mean ± Std p-Value

RSAax 405.33 ± 110.37 464.06 ± 116.47 <0.001
PPAax 4.15 ± 1.47 4.79 ± 1.26 <0.001
SDax 0.57 ± 0.17 0.64 ± 0.14 <0.001
HMax 0.44 ± 5.47 0.87 ± 19.09 0.1340
75Pax 0.22 ± 0.05 0.26 ± 0.05 <0.001
25Pax −0.26 ± 0.06 −0.31 ± 0.07 <0.001

MEANax 0.14 ± 0.04 0.17 ± 0.05 <0.001
ZCax 78.71 ± 20.28 84.75 ± 21.76 <0.001
CLax 75.50 ± 24.03 99.72 ± 26.92 <0.001
FDax 1.00 ± 0.00 1.01 ± 0.00 <0.001

NSCax 319.31 45.20 324.22 50.43 0.0076
ENax 0.51 ± 0.06 0.55 ± 0.05 <0.001
KUax 132.80 59.07 118.81 59.99 <0.001
SKax 10.31 ± 2.27 9.58 ± 2.39 <0.001

POWax 186.96 109.31 228.56 116.66 <0.001
MDFax 1.87 ± 0.51 2.20 ± 0.71 <0.001
MNFax 3.01 ± 0.94 3.66 ± 1.10 <0.001
PPSax 21.21 ± 15.03 21.89 ± 12.77 0.149
PFax 1.38 ± 0.27 1.53 0.35 <0.001

Definition of statistical significance: p-value < 0.05. * Rectified signal area (RSA); Peak to peak amplitude (PPA);
Mean (MEAN); Standard Deviation (SD); Harmonic mean (HM); 25-percentile (25P); 75-percentile (75P); Zero-
crossing (ZC); Cumulative length (CL); Fractal dimension (FD); Number of slope changes (NSC); Entropy (EN);
Kurtosis (KU); Skewness (SK); Power (POW); Median frequency (MDF); Mean frequency (MNF); Peak of the
power spectrum (PPS); Peak frequency (PF).

Table 5. Paired t-test NO RISK/RISK classes for each feature extracted from y-axis acceleration (ay).

Features * NO RISK
Mean ± Std

RISK
Mean ± Std p-Value

RSAay 143.70 ± 44.34 182.36 ± 64.92 <0.001
PPAay 1.60 ± 0.57 2.15 ± 0.75 <0.001
SDay 0.20 ± 0.06 0.25 ± 0.08 <0.001
HMay 0.05 ± 0.74 0.91 ± 8.13 0.939
75Pay 0.09 ± 0.02 0.11 ± 0.03 <0.001
25Pay −0.09 ± 0.03 −0.11 ± 0.03 <0.001

MEANay 0.38 ± 0.10 0.44 ± 0.09 <0.001
ZCay 138.27 ± 24.54 137.88 ± 23.58 0.6520
Clay 50.77 ± 17.97 64.91 ± 23.79 <0.001
FDay 1.00 ± 0.00 1.01 ± 0.00 <0.001

NSCay 412.34 ± 50.82 407.90 ± 56.37 0.9780
ENay 0.65 ± 0.03 0.66 ± 0.03 <0.001
KUay 49.79 ± 31.04 48.03 ± 32.89 0.1230
SKay 5.85 ± 1.68 5.68 ± 1.76 0.0550

POWay 21.96 ± 15.90 36.68 ± 30.18 <0.001
MDFay 5.41 ± 1.96 5.67 ± 2.11 0.0130
MNFay 6.85 ± 1.41 7.04 ± 1.59 <0.001
PPSay 0.91 ± 0.65 1.52 ± 2.26 <0.001
PFay 3.44 ± 2.71 3.62 ± 2.94 0.9600

Definition of statistical significance: p-value < 0.05. * Rectified signal area (RSA); Peak to peak amplitude (PPA);
Mean (MEAN); Standard Deviation (SD); Harmonic mean (HM); 25-percentile (25P); 75-percentile (75P); Zero-
crossing (ZC); Cumulative length (CL); Fractal dimension (FD); Number of slope changes (NSC); Entropy (EN);
Kurtosis (KU); Skewness (SK); Power (POW); Median frequency (MDF); Mean frequency (MNF); Peak of the
power spectrum (PPS); Peak frequency (PF).
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Table 6. Paired t-test NO RISK/RISK classes for each feature extracted from z-axis acceleration (az).

Features * NO RISK
Mean ± Std

RISK
Mean ± Std p-Value

RSAaz 260.34 ± 75.91 349.12 ± 89.93 <0.001
PPAaz 3.12 ± 1.21 4.30 ± 1.48 <0.001
SDaz 0.36 ± 0.11 0.49 ± 0.13 <0.001
HMaz 0.08 ± 1.23 0.08 ± 2.34 0.6760
75Paz 0.16 ± 0.04 0.21 ± 0.06 <0.001
25Paz −0.16 ± 0.04 −0.22 ± 0.06 <0.001

MEANaz 0.25 ± 0.07 0.33 ± 0.08 <0.001
ZCaz 119.74 ± 32.32 123.01 ± 37.84 0.0470
CLaz 79.73 ± 32.82 109.49 ± 39.40 <0.001
FDaz 1.00 ± 0.00 1.01 ± 0.00 <0.001

NSCaz 418.80 ± 51.49 420.51 ± 73.58 0.1560
ENaz 0.59 ± 0.06 0.61 ± 0.06 <0.001
KUaz 143.35 ± 68.52 118.38 ± 60.15 <0.001
SKaz 10.48 ± 2.62 9.39 ± 2.59 <0.001

POWaz 74.16 ± 46.93 134.43 ± 83.27 <0.001
MDFaz 3.21 ± 2.22 3.61 ± 2.67 <0.001
MNFaz 5.21 ± 1.67 5.64 ± 1.91 <0.001
PPSaz 7.01 ± 4.79 11.39 ± 9.24 <0.001
PFaz 1.32 ± 0.24 1.63 ± 1.83 0.6950

Definition of statistical significance: p-value < 0.05. * Rectified signal area (RSA); Peak to peak amplitude (PPA);
Mean (MEAN); Standard Deviation (SD); Harmonic mean (HM); 25-percentile (25P); 75-percentile (75P); Zero-
crossing (ZC); Cumulative length (CL); Fractal dimension (FD); Number of slope changes (NSC); Entropy (EN);
Kurtosis (KU); Skewness (SK); Power (POW); Median frequency (MDF); Mean frequency (MNF); Peak of the
power spectrum (PPS); Peak frequency (PF).

Table 7. Paired t-test NO RISK/RISK classes for each feature extracted from x-axis angular velocity (vx).

Features * NO RISK
Mean ± Std

RISK
Mean ± Std p-Value

RSAvx 44.04 ± 10.68 53.42 ± 13.44 <0.001
PPAvx 0.46 ± 0.19 0.60 ± 0.19 <0.001
SDvx 0.06 ± 0.01 0.07 ± 0.02 <0.001
HMvx 0.48 ± 7.14 0.07 ± 0.50 0.5010
75Pvx 0.02 ± 0.01 0.03 ± 0.01 <0.001
25Pvx −0.02 ± 0.01 −0.03 ± 0.01 <0.001

MEANvx 0.04 ± 0.01 0.05 ± 0.01 <0.001
ZCvx 82.54 ± 18.53 89.13 ± 21.74 <0.001
CLvx 10.16 ± 3.46 13.30 ± 4.15 <0.001
FDvx 1.00 ± 0.00 1.01 ± 0.00 <0.001

NSCvx 313.75 ± 44.28 321.82 ± 51.81 0.0030
ENvx 0.56 ± 0.05 0.58 ± 0.04 <0.001
KUvx 125.56 ± 62.74 107.40 ± 54.84 <0.001
SKvx 9.79 ± 2.37 8.96 ± 2.22 <0.001

POWvx 1.94 ± 1.06 2.85 ± 1.35 <0.001
MDFvx 2.36 ± 0.58 2.71 ± 0.76 <0.001
MNFvx 3.87 ± 0.86 4.41 ± 1.01 <0.001
PPSvx 0.19 ± 0.11 0.23 ± 0.14 <0.001
PFvx 1.58 ± 0.38 1.67 ± 0.42 0.0010

Definition of statistical significance: p-value < 0.05. * Rectified signal area (RSA); Peak to peak amplitude (PPA);
Mean (MEAN); Standard Deviation (SD); Harmonic mean (HM); 25-percentile (25P); 75-percentile (75P); Zero-
crossing (ZC); Cumulative length (CL); Fractal dimension (FD); Number of slope changes (NSC); Entropy (EN);
Kurtosis (KU); Skewness (SK); Power (POW); Median frequency (MDF); Mean frequency (MNF); Peak of the
power spectrum (PPS); Peak frequency (PF).
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Table 8. Paired t-test NO RISK/RISK classes for each feature extracted from y-axis angular velocity (vy).

Features * NO RISK
Mean ± Std

RISK
Mean ± Std p-Value

RSAvy 109.69 ± 28.76 135.25 ± 34.67 <0.001
PPAvy 1.34 ± 0.56 1.59 ± 0.69 <0.001
SDvy 0.15 ± 0.04 0.19 ± 0.05 <0.001
HMvy 0.21 ± 1.88 −0.21 ± 4.16 0.5380
75Pvy 0.07 ± 0.02 0.08 ± 0.02 <0.001
25Pvy −0.07 ± 0.02 −0.09 ± 0.02 <0.001

MEANvy 0.10 ± 0.03 0.13 ± 0.03 <0.001
ZCvy 68.85 ± 24.58 74.23 ± 30.07 <0.001
CLvy 22.95 ± 11.30 29.77 ± 10.97 <0.001
FDvy 1.00 ± 0.00 1.01 ± 0.00 <0.001

NSCvy 324.49 ± 52.89 334.78 ± 68.65 <0.001
ENvy 0.49 ± 0.07 0.51 ± 0.07 <0.001
KUvy 194.42 ± 74.38 199.58 ± 86.44 0.5540
SKvy 12.65 ± 2.63 12.77 ± 2.99 0.6830

POWvy 13.37 ± 7.19 19.71 ± 11.09 <0.001
MDFvy 1.68 ± 0.52 1.86 ± 0.99 0.0140
MNFvy 3.20 ± 1.17 3.67 ± 1.43 <0.001
PPSvy 1.97 ± 1.11 2.88 ± 1.95 <0.001
PFvy 1.27 ± 0.18 1.24 ± 0.19 0.0460

Definition of statistical significance: p-value < 0.05. * Rectified signal area (RSA); Peak to peak amplitude (PPA);
Mean (MEAN); Standard Deviation (SD); Harmonic mean (HM); 25-percentile (25P); 75-percentile (75P); Zero-
crossing (ZC); Cumulative length (CL); Fractal dimension (FD); Number of slope changes (NSC); Entropy (EN);
Kurtosis (KU); Skewness (SK); Power (POW); Median frequency (MDF); Mean frequency (MNF); Peak of the
power spectrum (PPS); Peak frequency (PF).

Table 9. Paired t-test NO RISK/RISK classes for each feature extracted from z-axis angular velocity (vz).

Features * NO RISK
Mean ± Std

RISK
Mean ± Std p-Value

RSAvz 32.94 ± 9.08 43.54 ± 13.65 <0.001
PPAvz 0.33 ± 0.11 0.49 ± 0.16 <0.001
SDvz 0.04 ± 0.01 0.06 ± 0.02 <0.001
HMvz −0.01 ± 0.28 −0.01 ± 0.25 0.2170
75Pvz 0.02 ± 0.01 0.03 ± 0.01 <0.001
25Pvz −0.02 ± 0.01 −0.03 ± 0.01 <0.001

MEANvz 0.03 ± 0.01 0.04 ± 0.01 <0.001
ZCvz 75.30 ± 14.85 79.12 ± 17.35 <0.001
CLvz 7.14 ± 2.29 10.08 ± 3.31 <0.001
FDvz 1.00 ± 0.00 1.01 ± 0.00 <0.001

NSCvz 284.87 ± 40.98 287.71 ± 46.58 0.0030
ENvz 0.56 ± 0.04 0.58 ± 0.04 <0.001
KUvz 99.84 ± 49.40 98.46 ± 51.43 0.4540
SKvz 8.67 ± 2.10 8.50 ± 2.17 0.1970

POWvz 1.11 ± 0.62 2.00 ± 1.23 <0.001
MDFvz 2.66 ± 0.69 2.92 ± 0.79 <0.001
MNFvz 3.83 ± 0.66 4.24 ± 0.90 <0.001
PPSvz 0.09 ± 0.06 0.16 ± 0.12 <0.001
PFvz 1.72 ± 0.66 1.85 ± 0.78 0.0430

Definition of statistical significance: p-value < 0.05. * Rectified signal area (RSA); Peak to peak amplitude (PPA);
Mean (MEAN); Standard Deviation (SD); Harmonic mean (HM); 25-percentile (25P); 75-percentile (75P); Zero-
crossing (ZC); Cumulative length (CL); Fractal dimension (FD); Number of slope changes (NSC); Entropy (EN);
Kurtosis (KU); Skewness (SK); Power (POW); Median frequency (MDF); Mean frequency (MNF); Peak of the
power spectrum (PPS); Peak frequency (PF).
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Table 10. Confusion Matrix of the Binary Logistic Regression Model.

NO RISK RISK Percentage of Correctness [%]

NO RISK 218 39 84.8
RISK 49 207 80.9

Table 11. Evaluation metric scores of the Binary Logistic Regression Model expressed in percentage value.

Accuracy [%] Sensitivity [%] Specificity [%]

82.8 84.8 80.9

4. Discussion

The main objective of the present research paper was to explore the feasibility of
a binary logistic regression model—fed with time and frequency domains features ex-
tracted from sternum inertial signals (linear acceleration and angular velocity)—to classify
biomechanical risk classes associated with lifting activities according to the RNLE.

Moreover, a preliminary statistical analysis based on a paired t-test was performed to
assess the most discriminative features in classifying risk classes and to understand which
inertial signal (linear acceleration, angular velocity) and which axis (x, y, z) were the most
representative ones.

The statistical analysis presented in the Tables 4–9—based on the paired t-test—showed
that 96 features out of 114 (84.21%) resulted statistically significant (p-value < 0.05) between
the two biomechanical risk classes (NO RISK, RISK) underling the discriminative power of
the proposed features for the specific objective.

In particular, about the sternum linear acceleration, the statistically significant features
were 46 out of 57 (80.70%) while for the sternum angular velocity, the statistically significant
features were 50 out of 57 (87.72%). This result would imply that, between the two inertial
signals, the angular velocity was more representative compared to linear acceleration to
distinguish the two risk classes (NO RISK, RISK) according to the RNLE.

Considering both the linear acceleration and angular velocity, it emerged that for the
x-axis 35 features out of 38 (92.11%) were statistically significant to discriminate the two
risk classes while for the y-axis the significant features were 29 out of 38 (76.32%), finally
about the z-axis the significant features were 32 out of 38 (84.21%). This result would imply
that the most representative axis was the x-axis, namely the vertical axis along which the
lifting movement of the load develops. However, this evidence is not the unique possible
one, since in [8] we found the y axis (namely, the mediolateral axis) proved informative to
discriminate the NIOSH classes, although the load being moved along the x axis (namely,
the vertical direction).

From this analysis, it also emerged that the HM feature was not statistically significant
in distinguishing risk classes for no axis and no inertial signal. On the other hand, the most
representative (namely, statistically significant) features, considering both the x, y and z axes
and the inertial signals, were PPA, SD, 25P, 75P, MEAN, CL, FD, EN, POW, MDF, and MNF.
Though several of these features do not have a clear physical significance, it is known POW
and RSA are closely related to energy dissipation during physical activity, while MEAN
could provide an idea of how the body is oriented with respect to the direction of gravity. In
addition, we report Entropy is used in the activity recognition field; finally, we report also
we have proved, in a previous work [8], the importance of SD for similar investigations.
7 out of 11 (63.64%) time-domain features and 4 out of 8 (50%) frequency-domain features
emerged among the most representative features. This result would imply that among
the selected and extracted features the time-domain features were most representative to
discriminate risk classes compared to the frequency-domain ones.

As shown in Table 10, the binary logistic regression model was able to classify correctly
425 out of 513 instances, reaching an overall accuracy of 82.8% (Table 11). This represents
a good result and also robust and reliable since the dataset was balanced between the
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two classes. Moreover, also, the sensitivity and specificity of the regression model reached
good results, with a value of 84.8 and 80.9, respectively.

This is the second study that considers risk classification according to the RNLE using
a single IMU placed on the subject’s body. In the first study, Donisi et al. [8] used an IMU
sensor placed on the lumbar region to acquire linear acceleration and angular velocity
on a study population composed of 7 volunteer healthy subjects. In that work [8], the
authors extracted only four time-domain features through accurate but time-consuming
manual segmentation and implemented sophisticated ML algorithms. The present work, by
a simpler model and using an automatic procedure to segment the inertial signals extracting
the ROI corresponding to the lifting, reached comparable results in evaluation metrics.
Other authors attempted to discriminate biomechanical risk classes according to the RNLE
starting from bio-signals. In the work of Varrecchia et al. [45], the authors proposed
an artificial neural network—fed with time and frequency domains features extracted
from both surface electromyographic signal (sEMG) and signals acquired by means of
optoelectronic system—to classify three biomechanical risk classes according to the RNLE
reaching an accuracy up to 90%. In another work proposed by the same authors [46],
a new feature named Lifting Energy Consumption [47] was used to feed an artificial neural
network able to reach an accuracy up to 100%. Even though greater evaluation metric
scores were attained in these works [45–47] compared to ours, the complex methodologies
adopted based on deep learning algorithms, sEMG and optoelectronic systems make this
procedure not very applicable in the workplace. Instead, the methodology we propose in
this work, based on a single wearable inertial sensor placed on the sternum, is very adapted
to monitor the workers’ condition and the potential biomechanical risk to which workers
are exposed during work activity (e.g., lifting activity, manual handling).

Mudiyanselage et al. [48] used 2 wireless sEMG muscle sensors placed on thoracic and
multifidus muscles to acquire sEMG and therefore to extract some features to feed several
ML algorithms, reaching an accuracy greater than 98%. In their work [48], the authors
solved the problems of the portability of the system in the workplace while using sEMG—
well studied signals in occupational ergonomics but were more prone to noises compared
to inertial signals. On the same line of Mudiyanselage et al., Donisi et al. [49] proposed
a biomechanical risk classification according to the RNLE using tree-based machine learning
algorithms fed with time and frequency domains features extracted from bicep sEMG
during lifting activities.

With a similar objective to ours, Brandt et al. [50] attempted to classify lifting activities
into low- and high-risk categories according to the guidelines of the Danish Working
Environment Authority; using a Linear Discriminant Analysis algorithm, they reached
an accuracy of 65%, significantly lower than that achieved by our model.

Results from our study suggest that the automatic segmentation procedure and the
combination of time domain and frequency domain features with binary logistic regression
model proved to be a valid methodology to assess and monitor the risk of WMSD—
according to the RNLE—for manual lifting activities in a relatively low complex context.

5. Conclusions

In conclusion, the results showed that the proposed strategy (which combines time
and frequency domain features extracted from linear acceleration and angular velocity—
acquired by a single IMU placed on the sternum—and a binary logistic regression model)
demonstrates early viability—since only two (out of five) RNLE multipliers were modified—
to automatically discriminate biomechanical risk classes according to the RNLE during
manual handling (e.g., lifting of a load).

This procedure—that includes also an automatic segmentation of the ROI associated
to the lifting—is of direct practical relevance for occupational ergonomics, since it presents
the opportunity for automatic, economic and non-invasive detection of the risk associated
with lifting. Differently from previous literature, which using sEMG and/or optoelectronic



Diagnostics 2022, 12, 2624 13 of 15

methodologies, more suited for a laboratory setting, this strategy has proved potentially
applicable in a real working scenario, since the strategy requests only a single IMU sensor.

Future investigation on an enriched dataset that will involve several scenarios and
risk classes, also determined by the manipulation of several variables of the RNLE, could
confirm the potentiality of the proposed methodology. Moreover, the next step will be to
figure out which is the best positioning of the IMU sensor on the human body or, possibly,
which is the best combination of positioning of more sensors.

Author Contributions: Conceptualization, L.D. and E.C.; methodology, L.D. and E.C.; software,
L.D.; validation, L.D., E.C. and M.P.; formal analysis, L.D.; investigation, L.D., E.C., M.P. and G.D.;
resources, E.C., M.P., G.D. and M.C.; data curation, L.D. and E.C.; writing—original draft preparation,
L.D. and G.C.; writing—review and editing, F.A., M.C. and E.C.; visualization, L.D. and G.C.;
supervision, F.A., M.C. and E.C.; project administration, E.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Istituti Clinici
Scientifici Maugeri Spa SB (protocol code 2475 CE and date of approval 6 October 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets generated and analyzed in this study are not publicly
available due to privacy policy, but are available from the corresponding author on reasonable request.

Acknowledgments: The authors thank Engg. Giuseppe Prisco, Davide Palermo, Marcello Dioneo
and Fernando Pascale for their technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Da Costa, B.R.; Vieira, E.R. Risk factors for work–related musculoskeletal disorders: A systematic review of recent longitudinal

studies. Am. J. Ind. Med. 2010, 53, 285–323. [CrossRef] [PubMed]
2. Bernard, B.P.; Putz-Anderson, V. Musculoskeletal Disorders and Workplace Factors—A Critical Review of Epidemiologic Evidence for

Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back; DHHS (NIOSH) Publication: Cincinnati, OH,
USA, 1997; pp. 97–141.

3. Winkel, J.; Mathiassen, S.E. Assessment of physical work load in epidemiologic studies: Concepts, issues and operational
considerations. Ergonomics 1994, 37, 979–988. [CrossRef] [PubMed]

4. McAtamney, L.; Corlett, E.N. RULA: A survey method for the investigation of work-related upper limb disorders. Appl. Ergon.
1993, 24, 91–99. [CrossRef]

5. Hignett, S.; McAtamney, L. Rapid entire body assessment (REBA). App. Ergon. 2000, 31, 201–205. [CrossRef]
6. Battevi, N.; Menoni, O.; Ricci, M.G.; Cairoli, S. MAPO index for risk assessment of patient manual handling in hospital wards:

A validation study. Ergonomics 2006, 49, 671–687. [CrossRef]
7. Waters, T.R.; Putz-Anderson, V.; Garg, A.; Fine, L.J. Revised NIOSH equation for the design and evaluation of manual lifting

tasks. Ergonomics 1993, 36, 749–776. [CrossRef] [PubMed]
8. Donisi, L.; Cesarelli, G.; Coccia, A.; Panigazzi, M.; Capodaglio, E.M.; D’Addio, G. Work-related risk assessment according to

the revised NIOSH lifting equation: A preliminary study using a wearable inertial sensor and machine learning. Sensors 2021,
21, 2593. [CrossRef] [PubMed]

9. Fu, J.; Ma, L.; Tsao, L.; Zhang, Z. Continuous measurement of muscle fatigue using wearable sensors during light manual
operations. In Proceedings of the International Conference on Human-Computer Interaction, Orlando, FI, USA, 26–31 July 2019.

10. Duval, S.; Hashizume, H. Questions to improve quality of life with wearables: Humans, technology, and the world. In Proceedings
of the 2006 International Conference on Hybrid Information Technology, Cheju, Korea, 9–11 November 2006.

11. Khakurel, J.; Melkas, H.; Porras, J. Tapping into the wearable device revolution in the work environment: A systematic review.
Inf. Technol. People 2018, 31, 791–818. [CrossRef]

12. Stefana, E.; Marciano, F.; Rossi, D.; Cocca, P.; Tomasoni, G. Wearable devices for ergonomics: A systematic literature review.
Sensors 2021, 21, 777. [CrossRef]

13. Chander, H.; Burch, R.F.; Talegaonkar, P.; Saucier, D.; Luczak, T.; Ball, J.E.; Turner, A.; Arachchige, S.N.K.K.; Carrol, W.;
Smith, B.K.; et al. Wearable stretch sensors for human movement monitoring and fall detection in ergonomics. Int. J. Environ. Res.
Public Health 2020, 17, 3554. [CrossRef] [PubMed]

http://doi.org/10.1002/ajim.20750
http://www.ncbi.nlm.nih.gov/pubmed/19753591
http://doi.org/10.1080/00140139408963711
http://www.ncbi.nlm.nih.gov/pubmed/8026455
http://doi.org/10.1016/0003-6870(93)90080-S
http://doi.org/10.1016/S0003-6870(99)00039-3
http://doi.org/10.1080/00140130600581041
http://doi.org/10.1080/00140139308967940
http://www.ncbi.nlm.nih.gov/pubmed/8339717
http://doi.org/10.3390/s21082593
http://www.ncbi.nlm.nih.gov/pubmed/33917206
http://doi.org/10.1108/ITP-03-2017-0076
http://doi.org/10.3390/s21030777
http://doi.org/10.3390/ijerph17103554
http://www.ncbi.nlm.nih.gov/pubmed/32438649


Diagnostics 2022, 12, 2624 14 of 15

14. Schall Jr, M.C.; Sesek, R.F.; Cavuoto, L.A. Barriers to the adoption of wearable sensors in the workplace: A survey of occupational
safety and health professionals. Hum. Factors 2018, 60, 351–362. [CrossRef] [PubMed]

15. Conforti, I.; Mileti, I.; Del Prete, Z.; Palermo, E. Measuring Biomechanical Risk in Lifting Load Tasks Through Wearable System
and Machine-Learning Approach. Sensors 2020, 20, 1557. [CrossRef]

16. Ranavolo, A.; Draicchio, F.; Varrecchia, T.; Silvetti, A.; Iavicoli, S. Wearable Monitoring Devices for Biomechanical Risk Assessment
at Work: Current Status and Future Challenges—A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 2001. [CrossRef]
[PubMed]

17. Lim, S.; D’Souza, C. A narrative review on contemporary and emerging uses of inertial sensing in occupational ergonomics. Int. J.
Ind. Ergon. 2020, 76, 102937. [CrossRef]

18. Chan, V.C.; Ross, G.B.; Clouthier, A.L.; Fischer, S.L.; Graham, R.B. The role of machine learning in the primary prevention of
work-related musculoskeletal disorders: A scoping review. Appl. Ergon. 2022, 98, 103574. [CrossRef]

19. Claudino, J.G.; Capanema, D.D.O.; de Souza, T.V.; Serrão, J.C.; Machado Pereira, A.C.; Nassis, G.P. Current approaches to the use
of artificial intelligence for injury risk assessment and performance prediction in team sports: A systematic review. Sports Med-Int.
Open 2019, 5, 1–12. [CrossRef]

20. Farzandipour, M.; Nabovati, E.; Saeedi, S.; Fakharian, E. Fuzzy decision support systems to diagnose musculoskeletal disorders:
A systematic literature review. Comput. Methods Program Biomed. 2018, 163, 101–109. [CrossRef] [PubMed]

21. Sarkar, S.; Maiti, J. Machine learning in occupational accident analysis: A review using science mapping approach with citation
network analysis. Saf. Sci. 2020, 131, 104900. [CrossRef]

22. Vallmuur, K. Machine learning approaches to analysing textual injury surveillance data: A systematic review. Accid. Anal. Prev.
2015, 79, 41–49. [CrossRef]

23. Hales, T.R.; Bernard, B.P. Epidemiology of work-related musculoskeletal disorders. Orthop. Clin. North Am. 1996, 27, 679–709.
[CrossRef]

24. Waters, T.R. Revised NIOSH lifting equation. In Biomechanics in Ergonomics, 2nd ed.; Kumar, S., Ed.; CRC Press: Boca Raton, FL,
USA, 2007; pp. 531–564.

25. Donisi, L.; Pagano, G.; Cesarelli, G.; Coccia, A.; Amitrano, F.; D’Addio, G. Benchmarking between two wearable inertial systems
for gait analysis based on a different sensor placement using several statistical approaches. Measurement 2021, 173, 108642.
[CrossRef]

26. Mancini, M.; Horak, F.B. Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Rev.
Med. Devices 2016, 13, 455–462. [CrossRef] [PubMed]

27. Morris, R.; Stuart, S.; McBarron, G.; Fino, P.C.; Mancini, M.; Curtze, C. Validity of Mobility Lab (version 2) for gait assessment in
young adults, older adults and Parkinson’s disease. Physiol. Meas. 2019, 40, 095003. [CrossRef] [PubMed]

28. Schmitz-Hübsch, T.; Brandt, A.U.; Pfueller, C.; Zange, L.; Seidel, A.; Kühn, A.A.; Paul, F.; Minnerop, M.; Doss, S. Accuracy and
repeatability of two methods of gait analysis—GaitRite™ und Mobility Lab™—In subjects with cerebellar ataxia. Gait Posture
2016, 48, 194–201. [CrossRef] [PubMed]

29. Pagano, G.; D’Addio, G.; De Campi, M.; Donisi, L.; Biancardi, A.; Cesarelli, M. Rehabilitation Outcome in Patients undergone Hip
or Knee Replacement Surgery using Inertial Technology for Gait Analysis. In Proceedings of the 2020 IEEE International Symposium
on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; Institute of Electrical and Electronics Engineers
(IEEE): Piscataway, NJ, USA, 2020.

30. D’Addio, G.; Donisi, L.; Pagano, G.; Improta, G.; Biancardi, A.; Cesarelli, M. Agreement between opal and G-walk wearable
inertial systems in gait analysis on normal and pathological subjects. In Proceedings of the 2019 41st Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019.

31. Coccia, A.; Lanzillo, B.; Donisi, L.; Amitrano, F.; Cesarelli, G.; D’Addio, G. Repeatability of Spatio-Temporal Gait Measurements
in Parkinson’s Disease. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA),
Bary, Italy, 1 June–1 July 2020; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; pp. 1–6.

32. Donisi, L.; Cesarelli, G.; Balbi, P.; Provitera, V.; Lanzillo, B.; Coccia, A.; D’Addio, G. Positive impact of short-term gait rehabilitation
in Parkinson patients: A combined approach based on statistics and machine learning. MBE 2021, 18, 6995–7009. [CrossRef]

33. Mancini, M.; King, L.; Salarian, A.; Holmstrom, L.; McNames, J.; Horak, F.B. Mobility lab to assess balance and gait with
synchronized body-worn sensors. J. Bioeng. Biomed. Sci. 2011, 12 (Suppl. 1), 007.

34. Voss, S.; Joyce, J.; Biskis, A.; Parulekar, M.; Armijo, N.; Zampieri, C.; Tracy, R.; Palmer, A.S.; Fefferman, M.; Ouyang, B.; et al.
Normative database of spatiotemporal gait parameters using inertial sensors in typically developing children and young adults.
Gait Posture 2020, 80, 206–213. [CrossRef] [PubMed]

35. Fang, X.; Liu, C.; Jiang, Z. Reference values of gait using APDM movement monitoring inertial sensor system. R. Soc. Open Sci.
2018, 5, 170818. [CrossRef]

36. Waters, T.R.; Lu, M.-L.; Piacitelli, L.A.; Werren, D.; Deddens, J.A. Efficacy of the Revised NIOSH Lifting Equation to Predict Risk
of Low Back Pain Due to Manual Lifting. J. Occup. Environ. Med. 2011, 53, 1061–1067. [CrossRef]

37. Lu, M.L.; Waters, T.R.; Krieg, E.; Werren, D. Efficacy of the revised NIOSH lifting equation to predict risk of low-back pain
associated with manual lifting: A one-year prospective study. Hum. Factors 2014, 56, 73–85. [CrossRef]

38. Waters, T.R.; Baron, S.L.; Piacitelli, L.A.; Anderson, V.P.; Skov, T.; Haring-Sweeney, M.; Wall, D.K.; Fine, L.J. Evaluation of the
Revised NIOSH Lifting Equation. Spine 1999, 24, 386–394. [CrossRef] [PubMed]

http://doi.org/10.1177/0018720817753907
http://www.ncbi.nlm.nih.gov/pubmed/29320232
http://doi.org/10.3390/s20061557
http://doi.org/10.3390/ijerph15092001
http://www.ncbi.nlm.nih.gov/pubmed/30217079
http://doi.org/10.1016/j.ergon.2020.102937
http://doi.org/10.1016/j.apergo.2021.103574
http://doi.org/10.1186/s40798-019-0202-3
http://doi.org/10.1016/j.cmpb.2018.06.002
http://www.ncbi.nlm.nih.gov/pubmed/30119845
http://doi.org/10.1016/j.ssci.2020.104900
http://doi.org/10.1016/j.aap.2015.03.018
http://doi.org/10.1016/S0030-5898(20)32117-9
http://doi.org/10.1016/j.measurement.2020.108642
http://doi.org/10.1586/17434440.2016.1153421
http://www.ncbi.nlm.nih.gov/pubmed/26872510
http://doi.org/10.1088/1361-6579/ab4023
http://www.ncbi.nlm.nih.gov/pubmed/31470423
http://doi.org/10.1016/j.gaitpost.2016.05.014
http://www.ncbi.nlm.nih.gov/pubmed/27289221
http://doi.org/10.3934/mbe.2021348
http://doi.org/10.1016/j.gaitpost.2020.05.010
http://www.ncbi.nlm.nih.gov/pubmed/32531757
http://doi.org/10.1098/rsos.170818
http://doi.org/10.1097/JOM.0b013e31822cfe5e
http://doi.org/10.1177/0018720813513608
http://doi.org/10.1097/00007632-199902150-00019
http://www.ncbi.nlm.nih.gov/pubmed/10065524


Diagnostics 2022, 12, 2624 15 of 15

39. Spector, J.T.; Lieblich, M.; Bao, S.; McQuade, K.; Hughes, M. Automation of Workplace Lifting Hazard Assessment for Muscu-
loskeletal Injury Prevention. Ann. Occup. Environ. Med. 2014, 26, 15. [CrossRef] [PubMed]

40. Press, W.H.; Teukolsky, S.A. Savitzky–Golay smoothing filters. Comput. Phys. 1990, 4, 669–672. [CrossRef]
41. Scrutinio, D.; Ricciardi, C.; Donisi, L.; Losavio, E.; Battista, P.; Guida, P.; Cesarelli, M.; Pagano, G.; D’Addio, G. Machine learning

to predict mortality after rehabilitation among patients with severe stroke. Sci. Rep. 2020, 10, 1–10.
42. D’Addio, G.; Donisi, L.; Cesarelli, G.; Amitrano, F.; Coccia, A.; La Rovere, M.T.; Ricciardi, C. Extracting Features from Poincaré

Plots to Distinguish Congestive Heart Failure Patients According to NYHA Classes. Bioengineering 2021, 8, 138. [CrossRef]
[PubMed]

43. Donisi, L.; Ricciardi, C.; Cesarelli, G.; Coccia, A.; Amitrano, F.; Adamo, S.; D’addio, G. Bidimensional and Tridimensional Poincaré
Maps in Cardiology: A Multiclass Machine Learning Study. Electronics 2022, 11, 448. [CrossRef]

44. van Smeden, M.; Moons, K.G.; de Groot, J.A.; Collins, G.S.; Altman, D.G.; Eijkemans, M.J.; Reitsma, J.B. Sample size for binary
logistic prediction models: Beyond events per variable criteria. Stat. Methods Med. Res. 2019, 28, 2455–2474. [CrossRef]

45. Varrecchia, T.; De Marchis, C.; Rinaldi, M.; Draicchio, F.; Serrao, M.; Schmid, M.; Conforto, S.; Ranavolo, A. Lifting activity
assessment using surface electromyographic features and neural networks. Int. J. Ind. Ergon. 2018, 66, 1–9. [CrossRef]

46. Varrecchia, T.; De Marchis, C.; Draicchio, F.; Schmid, M.; Conforto, S.; Ranavolo, A. Lifting Activity Assessment Using Kinematic
Features and Neural Networks. Appl. Sci. 2020, 10, 1989. [CrossRef]

47. Ranavolo, A.; Varrecchia, T.; Iavicoli, S.; Marchesi, A.; Rinaldi, M.; Serrao, M.; Conforto, S.; Cesarelli, M.; Draicchio, F. Surface
electromyography for risk assessment in work activities designed using the e “revisedNIOSH lifting equation”. Int. J. Ind. Ergon.
2018, 68, 34–45. [CrossRef]

48. Mudiyanselage, S.E.; Nguyen, P.H.D.; Rajabi, M.S.; Akhavian, R. Automated workers’ ergonomic risk assessment in manual
material handling using sEMG wearable sensors and machine learning. Electronics 2021, 10, 2558. [CrossRef]

49. Donisi, L.; Capodaglio, E.M.; Pagano, G.; Amitrano, F.; Cesarelli, M.; Panigazzi, M.; D’Addio, G. Feasibility of Tree-based Machine
Learning algorithms fed with surface electromyographic features to discriminate risk classes according to NIOSH. In Proceeding
of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022.

50. Brandt, M.; Madeleine, P.; Samani, A.; Jakobsen, M.D.; Skals, S.; Vinstrup, J.; Andersen, L.L. Accuracy of identification of low or
high risk lifting during standardised lifting situations. Ergonomics 2017, 61, 710–719. [CrossRef] [PubMed]

http://doi.org/10.1186/2052-4374-26-15
http://www.ncbi.nlm.nih.gov/pubmed/24987523
http://doi.org/10.1063/1.4822961
http://doi.org/10.3390/bioengineering8100138
http://www.ncbi.nlm.nih.gov/pubmed/34677211
http://doi.org/10.3390/electronics11030448
http://doi.org/10.1177/0962280218784726
http://doi.org/10.1016/j.ergon.2018.02.003
http://doi.org/10.3390/app10061989
http://doi.org/10.1016/j.ergon.2018.06.003
http://doi.org/10.3390/electronics10202558
http://doi.org/10.1080/00140139.2017.1408857
http://www.ncbi.nlm.nih.gov/pubmed/29171789

	Introduction 
	Materials and Methods 
	IMU-Based Wearable System: The Mobility Lab System 
	Revised NIOSH Lifting Equation 
	Study Population 
	Study Protocol 
	Feature Extraction 
	Statistical Learning Analysis 

	Results 
	Discussion 
	Conclusions 
	References

