
Assessing Black-box Test Case
Generation Techniques for Microservices

Luca Giamattei(B) , Antonio Guerriero , Roberto Pietrantuono ,
and Stefano Russo

DIETI, Università Degli Studi di Napoli Federico II, Napoli, Italy
{luca.giamattei,antonio.guerriero,

roberto.pietrantuono,stefano.russo}@unina.it

Abstract. Testing of microservices architectures (MSA) – today a pop-
ular software architectural style - demands for automation in its sev-
eral tasks, like tests generation, prioritization and execution. Automated
black-box generation of test cases for MSA currently borrows techniques
and tools from the testing of RESTful Web Services.

This paper: i) proposes the uTest stateless pairwise combinatorial
technique (and its automation tool) for test cases generation for func-
tional and robustness microservices testing, and ii) experimentally com-
pares - with three open-source MSA used as subjects - four state-of-the-
art black-box tools conceived for Web Services, adopting evolutionary-,
dependencies- and mutation-based generation techniques, and the pro-
posed uTest combinatorial tool.

The comparison shows little differences in coverage values; uTest
pairwise testing achieves better average failure rate with a considerably
lower number of tests. Web Services tools do not perform for MSA as
well as a tester might expect, highlighting the need for MSA-specific
techniques.

Keywords: Microservices · Black-box testing · Robustness testing

1 Introduction

Microservice Architectures (MSA) are a service-oriented software architectural
style where services are loosely coupled, run in their own processes, and interact
via lightweight mechanisms [1]. These characteristics favours services’ develop-
ment by different teams and possibly in various programming languages, and
their independent deployment. MSA are often engineered with agile practices,
enabling rapid and frequent software releases (even many per day).

Testing automation is essential to fully benefit from the MSA architectural
paradigm and related practices. Techniques for black-box (or specification-based)
automated generation of test cases for microservices are mainly borrowed from
testing of RESTful web services, enabled by documentation of their interfaces [2].
The most notable open format for specifying web services and MSA Application
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 46–60, 2022.
https://doi.org/10.1007/978-3-031-14179-9_4



Black-box Test Case Generation for Microservices 47

Programming Interfaces (API) is OpenAPI/Swagger [3].1 Specifications include
service Uniform Resource Identifier (URI), HTTP method, type and name of
every parameter, and HTTP body. OpenAPI allows to automatically retrieve
the interface of a microservice of interest from its IP address and port number.

Testing RESTful services may be challenging, due to dependencies of tests
from the state of internal resources (e.g., a database) or from external services
[2]. Thus, many test generation techniques are stateful [4–6]. They aim at max-
imizing coverage values, like those defined by Martin-Lopez et al. [7].

With respect to generic RESTful web services, microservices are expected
to have finer granularity and to be self-contained (being designed with a single
business responsibility), polyglot and independent. An MSA typically includes
many RESTful services, whose complex dependencies are challenging to cover
by stateful techniques when microservices are tested independently.

This paper provides an empirical comparison of five techniques for test case
generation for microservices. Four of them are state-of-the-art techniques for
RESTful web services, claimed to be applicable to microservices, namely: Evo-
Master [2], RestTestGen [4], RESTler [5] and bBOXRT [8]. The fifth technique
(uTest) is a pairwise combinatorial strategy that we propose here with its sup-
port tool, which automatically retrieves OpenAPI specifications of microservices
to test, generates test cases, executes them and gathers results.

The experimental comparison uses as subjects three well-known open-source
MSA (Train Ticket, SockShop, FTGO), with reference to two scenarios:

i) generation of a suite of tests with only valid inputs, i.e., adhering to the
service API specification; this is a typical functional testing scenario;

ii) generation of a test suite with both valid and invalid inputs (thus includ-
ing tests violating the specification); this may serve to test the service for
robustness against unexpected inputs, or for coverage of return codes.

The results of experiments show that tools reach comparable values for eight
coverage metrics (five input and three output coverage metrics), but exhibit
different average failure rate and test generation/execution cost. The proposed
combinatorial approach shows to be more cost-effective as it generates a lower
number of test cases - thus exhibiting the best average failure rate.

The rest of the paper is so organized: Sect. 2 discusses related work. Section 3
describes uTest. Sections 4 and 5 present experiments and results, respectively.
Section 6 discusses threats to validity. Section 7 contains final remarks.

2 Related Work

Automated black-box generation of test cases specifically for microservices is a
research topic not much investigated so far, yet techniques/tools for Web Services
may by applied to microservices as well.

A state-of-the-art tool for automated testing of RESTful web services is Evo-
Master [2]; initially conceived for white-box testing, it has been extended for
1 https://www.openapis.org.



48 L. Giamattei et al.

black-box testing. This is performed by random testing, adding heuristics to
maximize the HTTP response code coverage. During the evolutionary search,
EvoMaster runs tests as HTTP service requests and evaluates the fitness of
every generation (in the evolutionary meaning) of test cases. The test suite is
produced in several formats (e.g., for JUnit).

RestTestGen is a stateful test generator proposed by Corradini et al. [4], that
infers operation dependencies, first statically from OpenAPI specifications, and
then dynamically, using feedback from executed tests. Input values are generated
from a dictionary, from documentation examples, randomly, or re-using past
observed values. It generates nominal as well as invalid test cases; these are
obtained by mutating successful test cases (those that returned 2xx or 4xx HTTP
codes), e.g. by removing values of mandatory parameters.

RESTler has been proposed by Atlidakis et al. at Microsoft Research [5], as
a tool for stateful input generation via fuzzing, aiming to find security vulner-
abilities. It generates sequences of requests based on data dependencies among
operations. These are detected by first statically inferring producer-consumer
relations from the OpenAPI specification, and then - like RestTestGen - dynam-
ically analyzing responses of executed tests. Input values are selected from a
user-configurable dictionary, or from previously observed values.

bBOXRT is a tool for robustness testing of REST services proposed by Laran-
jeiro et al. [8]. The authors designed a method for injecting faults in requests,
attempting to trigger erroneous behaviors. The tool generates and executes valid
requests with random values compliant with the OpenAPI specification, and
then mutates inputs observing the system behaviour under a faulty workload.
bBOXRT supports a large number of mutations of input parameters values.

Martin-Lopez et al. [6] propose a black-box technique/tool RESTest for
RESTful APIs, based on dependencies among parameters, expressed in an Inter-
parameter Dependency Language (IDL). Results may benefit from available
additional information on dependencies, that however testers need to write in
IDL; this is time-consuming and requires a deep knowledge of the system under
test.

Three further OpenAPI-based techniques are proposed by Ed-douibi et al.
[9], Karlsson et al. [10], and Banias, et al. [11]. The first generates (JUnit) tests
inferring both valid and invalid parameter values. The second (QuickREST)
includes property-based stateless and stateful generators, that are compared in
response codes coverage and fault finding ability. The third performs combi-
natorial generation, adding human intervention to augment the quality of the
generation.

An important empirical comparison of black-box techniques for RESTful
services, based on the coverage metrics of Martin-Lopez et al. [7], has been
presented by Corradini et al. [12]. They analyzed existing tools and selected
a number of them for comparison based on “robustness”, meant as the ability
to run on different case studies. The compared tools include RestTestGen [4],
RESTler [5] and bBOXRT [8], but not EvoMaster, whose black-box version was
not available yet, and RESTest, that did not pass the robustness filtering.



Black-box Test Case Generation for Microservices 49

With respect to the analyzed literature, our contribution is twofold: i) we
propose the uTest automated stateless combinatorial test generation technique
for microservices; ii) we analyze experimentally the performance of the main
existing tools for Web Services when used for testing MSA, and compare uTest

to them. Table 1 summarizes compared tools.2

Table 1. Compared tools/techniques

Tool Test specification Test case generation

EvoMaster [2] State-based Evolutionary

RestTestGen [4] State-based Data/Operation dependencies
random dictionary mutation

RESTler [5] State-based Data/Operation dependencies
dictionary

bBOXRT [8] Classes from API specification Random mutation

uTest Classes from API specification
combinatorial

Random

3 The UTEST combinatorial testing strategy

3.1 Background

Combinatorial design is a consolidated strategy for automatic test generation
[13], extensively studied in the literature [14]. It aims to detect multi-factor faults
with the use of combinatorial methods, that demonstrated good fault detection
ability [15]. The definition of an Input Space Model, to identify factors (and
their values) that might affect the output, is crucial in this strategy. Exhaustive
enumeration of all combinations of factor’s values can be impractical, as these
rapidly explode in number [16]. A solution is to generate a so-called t-way test
suite, composed of (a subset of all) combinations of t factors.

3.2 Combinatorial Test Case Generation Strategy

We adopt a pairwise strategy to generate a 2-way test suite covering combina-
tions of pairs of input classes. Tests are derived from the specification of the
microservice; factors are the parameters of HTTP requests, and their values are
generated in compliance to the specification. For any pair of classes ci, cj of
parameters pi, pj , a test case is generated with values vi ∈ ci and vj ∈ cj ,
respectively.

The generation of a test suite is composed of three main steps:
2 Our comparison does not include the techniques in references [6,9,10], and [11],
whose tools are probably still at proof-of-concept stage. For instance, like Corradini
et al. [12] we did not manage to run RESTest on our case studies. However, differ-
ently from [12], our comparison includes Evomaster, besides RestTestGen, Restler,
bBOXRT.



50 L. Giamattei et al.

1. Input space partitioning. The OpenAPI specification of all microservices in
the MSA is parsed to extract an Input Space Model consisting of HTTP meth-
ods, URIs and body templates, HTTP status codes and parameters’ details
(type, bounds, default value, etc.); equivalence classes for all parameters are
then categorized into valid and invalid.

2. Test cases specification. Based on equivalence classes, test cases specifications
are produced according to a pairwise combinatorial strategy.

3. Test cases generation. Actual test cases are generated, randomly choosing
values from equivalence classes based on the test cases specifications.

Listing 1. A sample microservice OpenAPI specification! "
host : exampleHost :8080
paths : ‘/ c a r t s /{ customerId }/ items ’ :

post :
parameters :

− name : customerId
in : path
r equ i r ed : t rue
type : s t r i n g
example : 579 f21ae98684924944651bf
− name : body
in : body
requ i r ed : t rue
schema : ‘ $ re f ’ : ‘#/ d e f i n i t i o n s /CartItem ’

r e sponse s :
‘ 2 01 ’ : d e s c r i p t i o n : ‘ Created ’
‘ 4 00 ’ : d e s c r i p t i o n : ‘Bad Request ’

d e f i n i t i o n s : CartItem :
type : ob j e c t
p r op e r t i e s :

i temId :
type : In t eg e r

d i scount :
type : boolean

requ i r ed :
− i temId# $

Listing 1 shows a snippet of the OpenAPI specification of a microservice with
three parameters - one in path (customerId, required) and two in body (itemId,
required, and discount, optional). It returns 201 or 400 HTTP status codes.

At step 1, the domain of values of each parameter is partitioned into equiv-
alence classes. We define them like Bertolino et al. [17], based on the parame-
ter type and, when specified, value bounds, example value, default value, and
obligatoriness. Then, we categorize classes into valid or invalid : valid classes
(invalid classes) contain for input parameters only values compliant to (violat-
ing) the microservice specification. An example of input space partitioning for
the microservice of Listing 1 is shown in Table 2.

At step 2, test case specifications are derived. Table 3 shows an example for
the microservice of Listing 1, derived from the partitioning of Table 2. The URI
and body templates include for each parameter the equivalence classes, from
which a value shall be chosen for a test case. For instance, a test case generated
from the specification in Table 3 shall have for p1 (customerId) a value chosen
from class c1,2 (the example value in Listing 1); for p2 (itemId) a value from
class c2,2 (negative value in range), and for p3 (discount) the value true or false.



Black-box Test Case Generation for Microservices 51

Table 2. Input space partitioning for the microservice of Listing 1

Parameter Name Type Equivalence classes Category

p1 (required, in path) customerId string c1,1: string in range valid

c1,2: specified example value(s) valid

c1,3: empty string invalid

c1,4: no string invalid

p2 (required, in body) itemId integer c2,1: positive value in range valid

c2,2: negative value in range valid

c2,3: alphanumeric string invalid

c2,4: no value invalid

p3 (optional, in body) discount boolean c3,1: {true,false} valid

c3,2: no value valid

c3,3: empty string invalid

c3,4: alphanumeric string invalid

Table 3. A test case specification for the microservice of Listing 1

URI template http://examplehost:8080/carts/ {c1,2}/items

HTTP method POST

body template {“itemId”:{c2,2},“discount”:{c3,1}}
HTTP status code 201, 400

A test suite shall entail test cases combining values from input classes accord-
ing to a pairwise strategy. To this aim, uTest uses a recursive algorithm. Two
valid equivalence classes per parameter are selected to generate a nominal test
suite (when available, examples and default values are preferred as valid classes).
Then, for each method of each path uTest builds a binary tree, whose leaves
represent all combinations of classes. The tree for the example of Listing 1 is
shown in Fig. 1, having selected the (only) two valid classes for each parameter
in Table 2; leaves represent all combinations of pairs of selected classes. Test case
specifications like the one in Table 3 shall be generated only for the subset of four
combinations in the red boxes in Fig. 1 (output combinations), which includes all
possible pairs of classes selected for the three parameters; the example of Table 3
corresponds to the combination in the green box. For functional and robustness
testing, one valid and one invalid class are selected per parameter.

At step 3, actual test cases are finally generated, by randomly picking values
from equivalence classes defined in the produced test cases specifications. This is
done statically: no test is generated depending on the result of the execution of
some previous tests. We call valid test cases those containing for all parameters
values belonging to valid equivalence classes. We call invalid test cases those
where the value of at least one parameter belongs to an invalid class.

3.3 The UTEST tool

The proposed pairwise strategy is prototyped in the uTest tool, whose archi-
tecture is in Fig. 2. It is designed as a microservice deployable in a Docker con-
tainer along with the MSA under test; it retrieves the API of microservices in



52 L. Giamattei et al.

Fig. 1. Generation of valid test cases specifications for microservice of Listing 1

Fig. 2. uTest architecture

the MSA, including those not directly accessible by the user perspective (e.g.,
hidden behind a gateway or so-called edge microservices). uTest includes a Gen-
erator of the test suite, a tests’ Executor, and an Analyzer, for the computation
of coverage metrics.

The generator is fed with a specification (currently, in OpenAPI version 2.0)
of the entry points of the microservice under test. uTest automatically retrieves
the specifications of application’s microservices, exposed through an OpenAPI
interface. Otherwise, it is possible to feed specifications to uTest manually.
uTest pairwise generation produces test cases specifications for all combina-
tions of two selected equivalence classes of any pair of input parameters. The
generated test suite is stored inside the Docker container and can be executed
(or exported) by the tester.

Tests are run by the Executor which sends HTTP requests to microservices.
It is possible to execute requests also in case of authentication, credentials or
tokens must be specified in the configuration file. This component provides, as
output, all the request-response pairs. The responses are automatically evaluated
based on the HTTP response code. We consider failures the 5xx codes, as they
point out the inability of the service to perform the request, due to an error
condition, an unhandled exception, or in general an unexpected behaviour.

The Analyzer takes a set of request-response couples as input from the Execu-
tor, and provides a set of basic statistics as output. It provides the results of the
test process as output to console and/or to file.



Black-box Test Case Generation for Microservices 53

Table 4. Experimental subjects

MSA Microservices URIs Methods Lines of code

TrainTicket 34 1,152 1,442 20,015

SockShop 5 24 29 5,287

FTGO 7 16 16 14,976

Further details on the implementation and on usage can be found in the
GitHub repository3.

4 Experimental Comparison

4.1 Subjects

For the experimentation, we consider as subjects three open-source MSA, pub-
licly available on GitHub. They are:
– TrainTicket4: a benchmark MSA (a booking system for train tickets) [18];
– SockShop5: the user-facing part of an online shop that sells socks;
– FTGO6: the Richardson’s book sample MSA [19].

Table 4 lists their characteristics.

4.2 Experiments

To investigate the ability of the tools in generating effective test cases, we con-
sider the following two scenarios:
– Scenario 1 (functional testing): valid test cases;
– Scenario 2 (functional and robustness testing) valid and invalid test cases.

Scenario 1 is meant to test the MSA behavior with inputs complying to the API.
Here we compare EvoMaster and uTest; additionally, we consider as baseline
the generation of a single test per method with randomly chosen valid input
values (in the example in Fig. 1, this corresponds to the leaf at extreme left).

Scenario 2 mixes both valid and invalid inputs; the latter emulate a robust-
ness testing scenario, where input specifications are intentionally violated for
instance to verify return of proper status codes, or to check how the MSA reacts
to unexpected inputs. For this scenario we compare RestTestGen, bBOXRT,
RESTler and uTest (EvoMaster does not generate invalid inputs). The baseline
in this Scenario is the generation of two tests per method, one with all parameter
values chosen from valid classes and one with all values from invalid classes (this
is a sort of 1-way testing).

The compared tools were configured, when possible, with the values that were
shown in the literature to yield the best performance, otherwise with default
values. We ran tests 10 times for each microservice of the three subjects.
3 https://github.com/uDEVOPS2020/uTest.
4 https://github.com/FudanSELab/train-ticket.
5 https://github.com/microservices-demo/microservices-demo.
6 https://github.com/microservices-patterns/ftgo-application.



54 L. Giamattei et al.

Table 5. Coverage metrics (as defined in ref. [12])

Coverage metric Description

Path Ratio of the number of tested paths to the total number of paths
documented in the OpenAPI specification. 100% path coverage if
its tests send at least one request directed to each path of the
API

Operation Ratio of the number of tested operations to the total number of
operations described in the OpenAPI specification. 100%
operation coverage if there exists at least one request directed to
each path for all documented HTTP methods.

Parameter Ratio of the number of input parameters used by test cases to
the total number of parameters documented in the OpenAPI
specification. 100% parameter coverage if all input parameters of
all operations are included in requests at least once.

Parameter value Ratio of the number of the exercised parameter values to the
total number of values that parameters can assume according to
the OpenAPI specification. Applicable only to domain-limited
parameters (es. boolean, enum)

Request content-type Ratio of the number of tested content-types to the total number
of accepted content-types as per the OpenAPI specification.
100% request content-type coverage if there exists at least a test
request for each accepted content-type.

Status code class A test suite reaches 100% status code class coverage when it is
able to trigger both correct and erroneous status codes. If it
triggers only status codes belonging to the same class (either
correct or erroneous), coverage equals 50%. 2XX class represents
a correct execution and 4XX and 5XX classes represent an
erroneous execution.

Status code Ratio of the number of obtained status codes to the total
number of status codes documented in the OpenAPI
specification, for each operation. 100% status code coverage if,
for each operation, all status codes are tested.

Response content-type Ratio of the number of obtained content-types to the total
number of response content-types as per the OpenAPI
specification. 100% response content-type coverage if there exists
at least one test response whose body matches each documented
content-type, for each operation

4.3 Metrics

We adopt the coverage metrics defined by Martin-Lopez et al. [7], used also in
ref. [12]. The definitions are provided in Table 5. The first five metrics concern
the goodness of the generation with respect to the input specification (input
metrics), while the last three are computed on response codes (output metrics).
Coverage metrics are computed with the tools Burp Suite [20] and Restats
[21]. Burp Suite logs each request-response pair; we export logs and compute
metrics with Restats. This is the same process adopted in ref. [12].

In addition with respect to [12], we compare tools in terms of cost, namely
the average number of executed tests, and average failure rate (average number
of failures exposed by executed tests over all microservices).



Black-box Test Case Generation for Microservices 55

5 Results

5.1 Scenario 1: Tests with Valid Input

We compare the effectiveness of uTest and EvoMaster, when testing MSA
microservices as independent services, with inputs complying to their API.

Figure 3 shows boxplots for the eight metrics. Values are averaged over repeti-
tions for all microservices of all subjects. (For all metrics, the standard deviation
over repetitions is less than 1.2% of the mean.) The results point out comparable
values of uTest and EvoMaster with respect to the baseline, outperforming it
only in parameter value coverage. uTest achieves slightly better results for all
metrics, except for response content-type.

Fig. 3. Scenario 1 (valid test cases): coverage



56 L. Giamattei et al.

Figure 4a shows the average failure rate. uTest achieves a slightly better
rate than EvoMaster. As for cost, Fig. 4b shows that the average number of
tests executed by EvoMaster is one order of magnitude greater than the other
two. Among these, uTest generates a test suite approximately three times bigger
than the baseline, but detecting almost six times more failures.

Fig. 4. Scenario 1 (valid test cases): average failure rate and executed tests

5.2 Scenario 2: Tests with Valid and Invalid Input

We evaluate coverage, average failure rate, and cost of test suites containing
both valid and invalid test cases genereted by RestTestGen, bBOXRT, RESTler,
uTest, and compare them to the baseline.

Figure 5 shows boxplots of the average coverage. The tools reveal compa-
rable performance, except for parameter value coverage (Fig. 3d): in this case,
RestTestGen and bBOXRT show full coverage, whereas RESTler, uTest and
baseline test boolean values with either true or false, and coverage equals 0.5.

As for failure rate, Fig. 6a shows that uTest and baseline achieve higher
values. As for cost, Fig. 6b shows that the average number of tests needed by
bBOXRT, RestTestGen and RESTler is an order of magnitude higher than
uTest and the baseline. Similarly to Scenario 1, the pairwise strategy generates
a test suite approximately three times bigger than the baseline, but detecting
almost five times more failures. In addition, the higher average failure rate and
the comparable values of coverage metrics of the combinatorial approach with
respect to the other tools are confirmed. The results achieved by the baseline are
particularly interesting, as it generates only a single test case for each method
in API (greater cost/benefit ratio compared to stateful approaches).

Failures reported by tests execution need to be investigated by debuggers.
Microservices in an MSA may originate more complex invocation paths than
single RESTful services, making the analysis of failure causes challenging. As
for most distributed systems, observability is key to debug and troubleshooting
MSA [22,23]. Solutions exist to monitor systems at the microservice level [24],
or to mock dependencies in the MSA under test [2].



Black-box Test Case Generation for Microservices 57

Fig. 5. Scenario 2 (valid and invalid test cases): coverage

6 Threats to Validity

Concerning internal validity, despite our best efforts, the presence of defects
in the uTest prototype cannot be ruled out and might skew the results. The
prototype is made anonymously available for reproducibility and repeatability.

External validity is threatened by the case studies adopted. While the three
MSA used for experiments are the most used ones in the literature, they are
open-source projects far from realistic MSA. However, finding real-world MSA
for scientific experiments is a recognized problem [25].

An additional remark in respect to output coverage for the case studies is in
order. Stateful tools generate tests trying to cover operation and/or parameter
dependencies. When more dependencies are covered, higher HTTP status code
coverage values can be achieved, because of 2xx codes that may not been covered



58 L. Giamattei et al.

Fig. 6. Scenario 2 (valid and invalid test cases): average failure rate and tests

otherwise. In our experiments, output coverage values are close to the minimum
(e.g., 50% status code class, meaning that on average all tests generated per
method were able to return only codes of 2xx or 4−5xx classes). This points out
the difficulties of tools in finding realistic valid values and/or operation sequences
to cover all successful responses – the majority of codes returned belong to the
4xx class. For an MSA, dependencies are challenging to cover with a black-box
approach that tests microservices independently. We noted that most tools reach
the maximum execution time configured, generating plenty of worthless tests. A
contributing cause might be the poor specifications for the case studies, which
might affect the trustworthiness of results.

7 Conclusions

We presented an experimental comparison of techniques/tools, borrowed from
black-box RESTful Web Services testing, for automatic test case generation
for microservices in an MSA, and compared them to a newly proposed own
combinatorial strategy. This is a more comprehensive comparison of black-box
tools than past studies, as it includes the state-of-the-art tool EvoMaster, and
for the first time it includes a stateless pairwise technique.

The experiments show that specification-based techniques can support MSA
testers both in functional testing (e.g., for system and acceptance testing) and
in robustness testing (e.g., testing fault tolerance means, error handling), indeed
alleviating the burden of manually writing tests. Although results may be threat-
ened by actual representativeness of the three case studies, the proposed com-
binatorial approach demonstrated to achieve coverage comparable to stateful
techniques, while requiring an order of magnitude lower number of test cases.
However, uTest like existing tools reach low values of output coverage.

It might be argued that applying specification-based test generation tech-
niques (often, conceived for RESTful Web Services) to the many individual
microservices of an MSA may be insufficient to cover complex interaction pat-
terns among them. Microservices have probably better not be tested indepen-
dently, but considering the entire architecture they are part of. In future work,
we will investigate grey-box strategies to test microservice architectures.



Black-box Test Case Generation for Microservices 59

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk"lodowska-Curie
grant agreement No. 871342.

References

1. Lewis, J., Fowler, M.: Microservices - a definition of this new architectural term.
http://martinfowler.com/articles/microservices.html (2014)

2. Arcuri, A.: Automated black- and white-box testing of RESTful APIs with Evo-
Master. IEEE Softw. 38(3), 72–78 (2021)

3. Ma, S., Fan, C., Chuang, Y., Lee, W., Lee, S., Hsueh, N.: Using service dependency
graph to analyze and test microservices. In 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), vol. 02, pp. 81–86 (2018)

4. Corradini, D., Zampieri, A., Pasqua, M., Viglianisi, E., Dallago, M., Ceccato, M.:
Automated black-box testing of nominal and error scenarios in RESTful APIs.
Softw. Test. Verification Reliab. 32, e1808 (2022)

5. Atlidakis, V., Godefroid, P., Polishchuk, M.: RESTler: Stateful rest API fuzzing.
In: IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 748–758. IEEE (2019)

6. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: RESTest: black-box constraint-
based testing of RESTful web APIs. In: Kafeza, E., Benatallah, B., Martinelli,
F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol.
12571, pp. 459–475. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
65310-1 33

7. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Test coverage criteria for RESTful
web APIs. In: Proceedings of the 10th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation (A-TEST), pp. 15–21.
ACM (2019)

8. Laranjeiro, N., Agnelo, J., Bernardino, J.: A black box tool for robustness testing
of rest services. IEEE Access 9, 24738–24754 (2021)

9. Ed-douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic generation of test cases for
REST APIs: a specification-based approach. In: IEEE 22nd International Enter-
prise Distributed Object Computing Conference (EDOC), pp. 181–190. IEEE
(2018)

10. Karlsson, S., Čaušević, A., Sundmark. D.: QuickREST: property-based test gen-
eration of OpenAPI-described RESTful APIs. In: 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST), pp. 131–141.
IEEE (2020)

11. Bania, O., Florea, D., Gyalai, R., Curiac, D.: Automated specification-based testing
of REST APIs. Sensors 21(16), 5375 (2021)

12. Corradini, D., Zampieri, A., Pasqua, M., Ceccato, M.: Empirical comparison of
black-box test case generation tools for RESTful APIs. In: 2021 IEEE 21st Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 226–236. IEEE (2021)

13. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design
approach to automatic test generation. IEEE Software 13(5), 83–88 (1996)

14. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
1–29 (2011)



60 L. Giamattei et al.

15. Hu, L., Wong, W.E., Kuhn, D.R., Kacker, R.N.: How does combinatorial testing
perform in the real world: an empirical study. Empirical Software Eng. 25(4),
2661–2693 (2020). https://doi.org/10.1007/s10664-019-09799-2

16. Pezzè, M., Young, M.: Software Testing and Analysis - Process, Principles and
Techniques. Wiley, Hoboken (2007)

17. Bertolino, A., De Angelis, G., Guerriero, A., Miranda, B., Pietrantuono, R.. Russo,
S.: DevOpRET: continuous reliability testing in DevOps. J. Softw. Evol. Process.
e2298 (2020). smr.2298

18. Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W., Ding, D.: Fault analysis
and debugging of microservice systems: industrial survey, benchmark system, and
empirical study. IEEE Trans. Softw. Eng. 47(2), 243–260 (2021)

19. Richardson, C.: Microservices Patterns. Manning Publications, Shelter Island
(2018)

20. Portswigger: burp suite. https://portswigger.net/burp
21. Corradini, D., Zampieri, A.. Pasqua, M., Ceccato, M.: Restats: a test coverage tool

for RESTful APIs. CoRR, abs/2108.08209 (2021)
22. Indrasiri, K., Siriwardena, P.: Microservices for the Enterprise: Designing, Devel-

oping, and Deploying, 1st edn. Apress, USA (2018)
23. Waseem, M., Liang, P., Shahin, M., Di Salle, A., Márquez, G.: Design, monitoring,

and testing of microservices systems: the practitioners’ perspective. J. Syst. Softw.
182, 111061 (2021)

24. Cinque, M., Della Corte, R., Pecchia, A.: Microservices monitoring with event logs
and black box execution tracing. IEEE Trans. Serv. Comput. 15(1), 294–307 (2022)

25. Zhou, X., et al.: Poster: benchmarking microservice systems for software engi-
neering research. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering: Companion (ICSE-Companion), pp. 323–324. IEEE (2018)


