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Abstract— Inspecting and maintaining industrial plants is
an important and emerging field in robotics. A particular
case is represented by the inspection of oil and gas refinery
facilities consisting of different long pipe racks to be inspected
repeatedly. This task is costly in terms of human safety and
operation costs due to the high altitude location in which
the pipes are placed. In this domain, we propose a visual
inspection system for unmanned aerial vehicles (UAVs), allowing
the autonomous tracking and navigation of the center line of the
industrial pipe. The proposed approach exploits a depth sensor
to generate the control data for the aerial platform and, at the
same time, highlight possible pipe defects. A set of simulated
and real experiments in a GPS-denied environment have been
carried out to validate the visual inspection system.

I. INTRODUCTION

The transport of fluids like steam, heating water and oil
or liquid chemicals is made through a network of pipelines.
Pipelines are typically grouped in a steel-framed structure
called pipe racks (see Fig. 1). Typically, pipe racks are
laid between different units in any chemical processing
or power plant and are placed on elevated locations to
preserve the ground space of the plant used for operators’
mobility. Pipelines must be regularly inspected to assess their
external/internal status. Their damage can be detected as a
weakening of the external covering or the corrosion of its
structure (i.e., rust on the pipe surface). Besides, damaged
pipes can cause dangerous situations like explosions or
chemical incidents. Pipeline cracks in oil and gas companies
produce financial loss and environmental pollution rather
than heavy casualties. For this reason, the early detection of
defective pipe sections plays a crucial role in preventing un-
necessary loss faced by oil and gas companies, ensuring safe
working conditions as well. However, pipe racks often extend
for miles and are located on elevated structures. Visually
inspecting all the sections of the pipes is an expensive and
demanding task. In particular, manual inspection of pipelines
can be done regularly, but it is time-consuming and unsafe
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Fig. 1: Pipe racks structures

in hazardous areas. In addition, expensive scaffolding should
be assembled to allow operators to reach inspection points.

In this context, using unmanned aerial vehicles (UAVs)
equipped with vision sensors represents a low-cost and
reliable solution to perform similar inspection tasks [1],
[2]. Aerial systems can follow the surface of the pipelines,
processing the information captured from a vision sensor to
detect eventual defects. Automating such a task is not trivial,
and different challenges must be addressed. First, the drone
should be able to see the pipe to inspect and consequently
follow its shape, regulating its position and orientation to
track the pipeline. At the same time, during the navigation
of the UAV, pipe defects must be detected. Different flaws
can be present in the pipe structure, both externally and
internally. In the latter case, the internal structure of the pipe
is corrupted, and its thickness decreases. Here, the defects are
detected using conventional non-destructive testing (NDT)
with ultrasonic probes in contact with the inspected surface.
Differently, our work focuses on external corrosion flaws
visible on the pipeline structures.

This work’s main contributions are the definition of a
computer vision technique to detect and characterize pipeline
structures, a UAV navigation strategy to track the pipes’
surface and a method to highlight pipe defects based on
vision data autonomously. A simulated case study using
different pipe shapes has been carried out based on ROS
and Gazebo [3], [4] simulator. Preliminary real-world ex-
periments in a GPS-denied environment have also been
performed to demonstrate approach effectiveness.

The remainder of the paper is organized as follows. In
Section II, a brief overview of related works is presented
while, in Section III, the sensor elaboration module to detect
and extract salient information on the pipelines is discussed
along with the UAV navigation controller strategy. Section IV
describes the system architecture and, finally, Section V
presents simulated and real-world experiments.



II. RELATED WORKS

Pipelines damages can be caused by several natural and
artificial factors, like overgrown vegetation, material deteri-
oration or internal and external corrosion, among others [5].
Even though some of these causes are not predictable,
inspecting pipelines can be essential in early damage detec-
tion and preventive maintenance. In this context, nowadays,
pipelines are visually inspected or inspected by contact (i.e.,
using ultrasonic probes) with specialized operators walking
close to the pipes on pre-built structures [6].

For this reason, in this work, we propose a comprehensive
pipe inspection system that combines surface detection,
tracking, and defect detection. In this context, different
robotic and mechatronic solutions have been proposed to
simplify the inspection task [7] that can also work in direct
contact with the pipe surface. Robots that can directly walk
internally [8]–[10] or externally [11]–[15] the pipeline have
been developed. These robots can climb the surface to inspect
adhering to it due to particular magnetic mechanisms to
get information from the material integrity. For instance,
in [16], the authors proposed an open-source car-like robotic
platform to inspect internal pipe sections using an ultrasonic
sensor. These solutions are not helpful when the pipes are
placed in altitude locations due to the difficulties in reaching
the inspecting surfaces. Moreover, magnetic wheels can not
work if the tube presents external insulation. For this rea-
son, the most prominent technology adopted to accomplish
inspection tasks considers using UAVs. Aerial vehicles can
hover in the air and are highly versatile systems that have
been extensively used in different applications related to the
inspection of industrial plants [17], [18].

Several works propose UAV applications to inspect in-
dustrial pipes close to our domain. In [19], the authors
proposed a method to coordinate UAVs with maintenance
crews to alert when a failure is detected. However, only the
coordination phase between the ground crew and the UAVs is
considered. In [20], pipeline structures are used to improve
the localization performance of a UAV in the GPS-denied
environment of industrial facilities. There, only numerical
results were presented. A control approach to solving the
pipeline tracking problem is presented in [21], while an
application similar to the one presented in this paper is
proposed in [22]. In this latter work, authors rely on deep
learning techniques to segment the industrial pipes and gather
video data to analyze offline to detect structural defects and
the control of the UAV is not considered.

As for damage detection, many solutions have been de-
ployed exploiting different sensors. The most diffuse is
the camera sensors, like the one used in our application.
In [23] and [24], the authors develop a neural network to
detect corrosion in water, oil and gas pipelines. However,
only data elaboration is considered without considering the
pipe detection and tracking processes. Differently, we rely
on model-based approaches to assess the status of the pipe.
Other approaches consider the use of thermal camera sen-
sors [25], [26] or NDT performed with UAVs [27], [28].

III. MODULES DESCRIPTION

This paper presents a visual inspection system for UAVs
that enables autonomous detection and navigation along the
centre line of pipelines. The proposed approach exploits
an RGB-D camera that provides image and depth data to
generate control input for the aerial platform. Figure 2 shows
the reference frames of the system.

First, the pipe to inspect is detected and characterized.
To this scope, the location and the shape of the pipe must
be identified. This information is crucial for determining
the starting point of the inspection path and direction. This
information provides the initial inspection point for the
UAV. Then, the inspection is performed using a vision-based
approach, in which the drone follows the shape of the pipe
while capturing information from it using an inspection sen-
sor. To follow the shape of the pipe, the UAV is commanded
to maintain a path along the central axis of the pipe in the
inspection direction. In this context, the axis of the pipe is
extracted from the depth image, thanks to a combination
of image processing techniques based on distance and pipe
size parameters. The axis is then used to identify the next
position and orientation to which the drone should navigate.
This process is repeated for each camera frame to control
the drone’s motion throughout the entire inspection.

During the tracking process, the inspection sensor captures
data for defect detection. Specifically, we present a prelimi-
nary, straightforward approach to detecting corrosion.

(a) (b)

Fig. 2: Drone, inspection sensor and world reference frames.
Also, a pipe and first pose of the drone to start the inspection
are shown.

A. Pipeline detection and characterization
The location of the pipe and its shape must be extracted

from the depth sensor to start the inspection. One key aspect
of the proposed approach is the ability to divide the pipe
into different sections based on changes in shape and growth
direction. Such an aspect enables specific inspections at
different areas without the need for a full inspection of the
pipeline. This way, defects in certain pipeline areas could be
easily detected.

The first step is to cluster the different objects in the
point cloud using a region growing segmentation algorithm.
The point cloud is segmented into different clusters based
on the similarity of the angles between the points’ normal
within each cluster. The algorithm starts with selecting an
initial seed point and then iteratively adds nearby points with
similar characteristics to the seed point to the cluster. This
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Fig. 3: Pipeline detection and sectioning process. (a) Visu-
alization of the point cloud of the scene. (b) Final result.
Spheres indicate the starting and ending points of each
section, and the arrows indicate their direction

algorithm helps identify the pipe in the point cloud data, as it
can effectively separate it from other environmental surfaces.
After this step, planar regions such as the floor and walls are
filtered out to eliminate noise and improve the accuracy of
pipeline localization.

In our system, the pipe structure is represented as a set of
cylinders, each identifying a distinct section of the pipe with
its own set of parameters. This method segments the pipe into
various sections based on variations in shape and direction
of growth. The process involves iteratively fitting cylinders
to each group of points and refining the cylinder parameters
until the entire pipe can be described as a combination of
cylinders. We use an algorithm based on random sample
consensus (RANSAC) [29] to fit the cylinders to the 3D
points of the cluster. The obtained cylinders are defined with
the following coefficients: a point in the cylinder axis, the
axis direction vector, and the estimated radius.

After modelling each section of the pipe as cylinders, the
boundaries of each section are determined by identifying the
point at which the axes of consecutive sections intersect,
based on their position in space, as illustrated in Fig. 3.
The tracking algorithm uses this information to determine
the drone’s starting position and the direction of its scan.

B. Pipeline tracking

The vision-based pipe tracking method proposed in this
work aims to monitor the central line of the pipe contin-
uously. This method begins with the drone reaching the
previously determined initial point of inspection, where the
direction is also estimated in the previous step.

To this scope, the pipe is segmented with respect to the rest
of the environment based on the depth information provided
by the RGB-D sensor. During the inspection, the sensor is
positioned close to the pipe. Therefore, the pipe is identified
as the object closest to the camera. The closest points to the
camera are selected from the depth information considering a
range of distances, discarding objects far from the camera or
small clusters due to sensor noise, including those between
the sensor and the pipe. After this process, a binary image
is obtained with the points belonging to this range (Figs.4a
and 4b), including points close to the pipeline that are not
necessarily part of it, see Fig. 4c. The image is processed
by applying an opening morphological operation to remove

small isolated pixels while preserving the overall shape of
the pipe.

Finally, when more than one cluster is generated, the
one with the most points is selected as the pipe. This is
done using connected component analysis, which labels each
connected component in the binary image and counts the
number of pixels in each component.

The result of this process is a binary image, known as the
mask image, in which the pixels associated with the pipe
are assigned a value of 1 and all other pixels are assigned a
value of 0 (see Fig. 4d).

(a) (b)

(c) (d)

Fig. 4: Process of obtaining the mask image of the pipe.
(a) RGB image. (b) Depth image. (c) Resulting image after
obtaining the nearest cluster to the camera. (d) Final result.
Pixels in white belong to the pipe.

Once the pipe is identified, the method extracts its central
axis. A thinning algorithm is applied to the binary mask to
obtain the skeleton (see Fig.5a). The thinning algorithm is
a morphological operation used to extract the centerline or
skeleton of an object in a binary image. It works by iter-
atively removing pixels from the object’s boundaries while
preserving the overall structure of the object. This is achieved
by using morphological operations such as erosion and dila-
tion to selectively remove pixels until a thinned version of the
object is obtained. However, the skeleton image obtained by
the thinning algorithm may contain noise and inaccuracies,
as can be seen in Fig. 5a. The distance transforms of the
binary image are being considered to enhance the precision
of the skeleton. The distance transform computes the shortest
distance from each pixel to the closest non-zero pixel, as
shown in Fig. 5b. This data is then employed to refine
the accuracy of the skeleton by eliminating pixels with low
distance transform values from the skeleton (see Fig. 5c).

After obtaining the skeleton of the pipe, the next step
is to improve the skeleton and obtain a more accurate
representation of the pipe’s axis. Our approach uses a 3-
degree polynomial fitting to approximate the skeleton points
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Fig. 5: Central axis extraction from pipe mask image and (a)
Result of thinning algorithm. (b) Result of distance transform
algorithm. (c) Pipe skeleton (d) Final result: Both skeleton
(blue line) and final axis (pink line) in mask image. Also,
green dot represents the tracking point.

according to equation 1.

y = a0 + a1x+ a2x
2 + a3x

3, (1)

describing the polynomial fitting method used. The input is
the skeleton of the pipe, which is represented as a set of
points. The output is a smooth curve that provides a more
accurate representation of the pipe’s axis. a0, a1, a2 and
a3 are the coefficients obtained by solving a linear least
square problem, which minimizes the sum of the squares
of the residuals between the data points and the polynomial
function. Once the polynomial coefficients are obtained, the
pipe axis pixels can be obtained by evaluating the polynomial
function for the range of skeleton values. The degree of
the polynomial affects the smoothness and precision of
the curve. A 3-degree polynomial was selected to find the
right compromise between the characteristics above for this
application. The choice of the independent variable (x or y)
in the polynomial function depends on the orientation of the
pipe in the image. This can be determined by comparing the
range of x and y coordinates.

The position and orientation of the drone to continue with
the tracking in the next instant are estimated starting from
this axis. For the position, one point is selected as the next
tracking point. Accurately predicting the next tracking point
during pipeline inspection is vital. Both the direction of the
inspection and the pipeline are considered to guide the drone.
The tracking point is selected in the direction of inspection
and in line with the pipe growth. This point on the axis is
transformed into a 3D point in the world reference frame
to guide the drone. This process is repeated for each frame
until the pipe inspection is complete. A pin-hole model is
assumed to model the camera. According to this model, the

vector pC
p 2 R3 describing the position of the point lying on

the pipe in camera frame C, recovered by using the 2D pixel
p(u, v) the depth value d(u, v) obtained from the depth map,
and the intrinsic parameters of the camera using

pCp,x = d(u, v)((u� cx)f
�1
x ),

pCp,y = d(u, v)((v � cy)f
�1
y ),

pCp,z = dinsp � d(u, v),

(2)

where (cx, cy) are the principal point of the camera and
(fx, fy) the focal length of the camera in the x and y
direction, respectively. Also, a minimum distance inspection
(dinsp) is set considering drone construction factors, such as
blade size, when determining the proximity distance to the
pipeline.

The process of transforming a 3D point in the camera
coordinate system to the world coordinate system involves
utilizing the following

pW
d = TW

B TB
Cp

C
p . (3)

This equation utilizes the extrinsic parameters of the camera,
which include the rotation and translation of the camera with
respect to the body frame of the drone B, represented by
the transformation matrix TB

C , obtained during the mounting
of the camera on the drone. Additionally, the equation also
utilizes the transformation matrix TW

B between the body
frame and the world frame W , which is provided by the
localization system. Combining these two transformation
matrices allows the desired point to be transformed into
the world coordinate system. Once the transformation is
complete, the resulting point in the world coordinate system,
represented by pW

d , is sent to the drone controller.
The desired yaw angle  d, which allows the drone to face

the pipeline, is calculated based on the pipeline axis. The
angle between the camera’s z-axis and the pipeline direction
axis should be 90 degrees. The following equation

� = acos
✓

vaxis ⇥ vforward

kvaxisk kvforwardk

◆
(4)

calculates the angle between the pipeline axis and the cam-
era’s forward direction. The pipeline axis is represented by
the vector vaxis, in the camera’s reference frame, and it is
obtained by subtracting the starting point of the axis from
its ending point in the 3D space. The forward direction of
the camera is represented by vforward, which is considered
to be unitary in the z direction, i.e. [0, 0, 1]. By adjusting
the current yaw angle of the drone with the calculated angle,
the drone can be oriented towards the inspected pipe. This
adjustment yields the desired yaw in the world reference
coordinate system.

C. Defect detection
Defect detection is performed using the data recorded

during the inspection. We present a straightforward approach
to detecting corrosion by processing the RGB image captured
during the inspection. In this work, our contribution mainly
considers the capacity of the UAV to highlight possible
corrupted areas of the pipe.
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The first step of the detection algorithm aims to remove
the colour of the pipeline from the image to identify potential
defects in the pipeline. The pipeline colour is assumed to be
the most frequent in the image and is used as a reference to
differentiate it from the potential defects.

The pipe mask obtained during the tracking is applied to
the RGB images only to retain the pixels corresponding to
the pipe. Then, a medium blur is applied to the pipe image
to reduce noise and smooth the image, which makes it easier
to identify the colour of the pipe. The HSV colour space is
considered to continue the image elaboration process. In this
context, the hue channel represents the pixel’s colour, while
the saturation and value channels represent the intensity
and brightness of the colour, respectively. By converting the
image to the HSV colour space, we can separate the colour
information from the saturation and brightness information,
which makes it easier to identify the colour of the pipe.

The k-means clustering algorithm is used to group the
pixels of the image into k clusters according to their colour
and find the predominant colour of the pipeline. The number
of clusters has been experimentally set to 4. The k-means
algorithm is a widely used technique for clustering, which
assigns each pixel to the cluster whose centroid (mean value)
is closest to it.

We assume that the most significant cluster corresponds to
the colour of the pipe, as it is the most frequent in the image
that is then removed to leave only the potential defects. The
output of the defect detection process is a new image in
which the potential defects of the pipe are superimposed, as
discussed in the case study section.

Once potential defects are identified, the next step is to
search for corrosion by characterizing its color in the HSV
color space and searching for corresponding color values
within the image of potential defects. A common range of
color values associated with corrosion is employed to achieve
this task.

IV. SYSTEM ARCHITECTURE

The system architecture is depicted in Fig. 6. The main
contribution of this work is grouped in the container with the

azure background. As for the autonomy of the aerial system,
the onboard Position Control module implemented on the
UAV autopilot is used. The UAV is equipped with a standard
PixHawk autopilot, running the PX4 control stack. The input
of this module is the current position (pW ) with respect to a
fixed frame, the heading orientation (namely, the yaw,  ) and
the desired ones (pW

d ,  d), respectively. Running on onboard
autopilot, this information is used to generate the attitude
control signals used in the low-level control of the plat-
form. As for the estimated current position, inspection and
maintenance applications require precise vehicle localisation
during the operation. In almost all industrial scenarios using
a mobile robot, the global positioning system (GPS) is absent
or very degraded, which means that alternative localisation
methods are required to allow a drone to navigate in this kind
of environment. Stricter are the requirements on the accuracy
of the movements, and more critical becomes the role of
the position estimation algorithm. For this reason, alternative
state estimation systems are one of the most explored topics
in the mobile robots field. When localisation via GPS is not
reliable because the UAV operates in GPS-denied and GPS-
spoofed environments, like the domain considered in this
work due to the vicinity of iron structures, visual odometry
or SLAM techniques can be adopted.

The SLAM module of the system architecture fuses plat-
form motion odometry data with the depth sensor informa-
tion to generate the estimated position pW and orientation
 in the world frame. This information is exploited from the
detection and tracking modules to generate the desired point
to control the platform during the inspection task. In this
context, the UAV is equipped with an Intel T265 tracking
camera device 1 that directly provides an initial estimation
of the 6 DOF pose of the platform (i.e. the odometry).
Odometry is fused with the depth information from the
Realsense D435 2 depth sensor from the SLAM module. In
this work, RTABMap [30] module is used.

1https://www.intelrealsense.com/
tracking-camera-t265/

2https://www.intelrealsense.com/
depth-camera-d435/

https://www.intelrealsense.com/tracking-camera-t265/
https://www.intelrealsense.com/tracking-camera-t265/
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/


Finally, the estimated position, along with the sensor data
from the depth sensor mounted on the UAV frame, are
used firstly by the Pipeline Detection module to extract
information from the pipe structure and later by the Pipeline
Tracking module, which calculates the next point to navigate
to follow the pipeline surface. Finally, image data from the
depth sensor are used from the Defect Detection module of
the system architecture to check the quality of the pipeline.

V. CASE STUDIES

In order to evaluate the performance of the proposed
framework for pipeline inspection, several experiments were
conducted. The experiments were divided into two parts, sim-
ulation and real-world experiments. Video available online 3.

A. Simulations
The simulations were performed to experiment with dif-

ferent pipeline shapes and test the proposed approach in a
controlled environment. The Gazebo simulator was used to
replicate an environment with pipelines of various shapes,
as well as to simulate the drone and inspection system. The
aerial platform used in the simulation experiments is an Iris
quadcopter, and the inspection sensor is a RealSense D435.
The simulation environment and the simulated drone model
can be seen in Fig. 7.

Fig. 7: Gazebo simulation environment with multiple pipes
of different shapes.

Figure 8a shows the result of the pipe detection, where an
orange circle marks the point selected as the starting point
of inspection and an arrow points the direction in which the
drone is supposed to move for further tracking. Fig.8b shows
the path performed by the drone to reach the initial point of
the inspection.

The results of pipeline tracking with multiple pipelines in
the environment are presented in Fig.9. Instead, Figure 9a
shows the simulated environment in Gazebo with several
pipes one after the other. Figure 9b shows a frame captured
during the tracking process of the pipe closest to the camera.
The pink line represents the pipe’s central axis, which
has been extracted accurately by our algorithm. It can be
observed that even in the presence of multiple pipes in the
environment, the algorithm developed can correctly identify
and track the pipe closest to the camera. The green dot

3https://www.youtube.com/watch?v=f16qlqEjVc0

(a) (b)

Fig. 8: (a) Result of pipe detection. The orange circle
marks the point chosen as the initial point of inspection,
and the arrow marks the tracking direction. (b) Trajectory
visualization. The trajectory followed by the drone to achieve
the initial point of the inspection is shown in green.

represents the next tracking point selected from the centre
axis; in this case, the drone moves downwards.

(a) (b)

Fig. 9: Experiment with different pipes in the same scene.
The one in front is inspected. (a) Simulated scene in Gazebo.
(b) A frame during the tracking process. The pink line
represents the central axis of the pipe, and the green dot
is the next tracking point.

As shown in Fig. 10, additional simulations were con-
ducted to evaluate the performance of our algorithm on pipes
of different shapes. The first one, shown in Fig. 10a, involves
a pipe with a simple shape, while the second one, presented
in Fig. 10b, features a pipe with a more complex shape.

The results of both simulations demonstrate the drone’s
capability to effectively follow the central axis of the pipes,
enabling it to perform a comprehensive inspection. The
complete trajectory of the drone is illustrated in green in
both figures. These results further confirm the effectiveness
of our algorithm in tracking objects of varying shapes and its
potential for use in various industrial settings where accurate
pipe inspection is essential.

B. Real-case experiments
The real-world experiments were conducted to test the

proposed approach in a real-world scenario (see Fig. 11a).
A quadcopter with an RGB-D camera and a tracking camera
located at the front of the drone was used. As written before,
the sensors chosen are the Realsense D435 for the depth
information and a Realsense T265 for the tracking module.
The tracking camera gave the odometry feedback input to
RTABMap, which, using the information from the depth
sensors, computed the position of the base link of the drone

https://www.youtube.com/watch?v=f16qlqEjVc0


(a) (b)

Fig. 10: The trajectory performed by the UAV to inspect the
pipe is shown in green in different experiments.

with respect to a fixed map frame. Figure 11b shows the point
cloud of the pipe and the trajectory of the base frame of the
drone during the experiment. The results obtained from the
real-world experiments are similar to the ones obtained in
the simulation environment.

(a) (b)

Fig. 11: Environment in which the actual experiments were
conducted. (a) The drone used and the pipe to be inspected
are shown. (b) Dense reconstruction of the pipe from SLAM
and drone base link

Figure 12 depicts the results obtained during a real-world
experiment involving the tracking of a pipeline. The pink line
represents the estimated central axis of the pipeline, which
serves as a reference point for the drone’s navigation. The
green dot, meanwhile, represents the next tracking point that
the drone uses to guide its movement along the pipeline. The
black dot in the centre of the image represents the centre
of the camera, and the goal is to align it with the axis so
that its next position is the green dot. These images visually
represent the drone’s progress as it moves along the pipeline.

C. Defect detection
Figure 13 presents the results of corrosion detection on

RGB images obtained during a real-case inspection process.
The image shows several areas of corrosion, which are
visible as discolouration or texture changes on the surface of
the material. The blue lines in the figure delimit the areas of
corrosion, making it easy to identify and quantify the extent
of the damage.

It is worth noticing that the proposed approach to detect
pipe defects represents a starting point with a relatively naive
method. It is based on the assumption that the pipeline colour
is consistent and distinct from the colour of the defects,

(a) (b)

(c) (d)

Fig. 12: Results obtained in real experiments during the
tracking of the pipeline. The pink line represents the central
axis of the pipeline and the green dot is the next tracking
point used to guide the drone.

(a) (b)

(c) (d)

Fig. 13: Corrosion detection results on RGB images obtained
during the inspection process in real-case experiments. De-
fects are delimited by the blue lines

so it can fail to accurately identify the pipeline colour in
certain situations, such as when the pipeline colour is not
consistent or when some reflections or shadows affect the
colour of the pipeline. In addition, it is only based on colour
information. If the pipeline colour is not distinctive from
the background, other information, such as shape or texture,
should be considered. With machine learning techniques, it
is possible to improve the accuracy and efficiency of the
detection process. For example, deep learning algorithms
such as convolutional neural networks (CNNs) can provide
a more robust and automated approach to identifying image



defects.
Our approach can serve as a support tool for human

workers by providing them with a quick and easy way to
identify areas of corrosion on a surface. However, incorpo-
rating machine learning algorithms can increase the accuracy
and efficiency of the detection process, making it more
reliable and less dependent on human interpretation. With
machine learning, the system can learn to detect subtle signs
of corrosion that may not be visible to the human eye, and
it can also handle a large amount of data for large-scale
inspections. This can ultimately increase the effectiveness of
the inspection process and reduce the risk of human error.

VI. CONCLUSION

This work presents a visual-based system to track and
inspect industrial pipes using UAVs. The proposed approach
utilizes a depth sensor to generate control data for the aerial
platform to track the pipe following its central axis and detect
possible defects. The system has been validated through
a set of simulations and real experiments. The results of
our experiments demonstrate that the proposed system can
accurately track the central axis of the industrial pipe, allow-
ing the detection of defects. In particular, our work focuses
on external corrosion flaws. Further research is needed to
enhance the system’s accuracy and robustness, but this work
provides a solid foundation for future advancements in this
field. In addition, a more extensive evaluation with real-world
experiments involving more complex pipeline structures,
along with quantitative data, must be performed to better
assess the inspection system’s performance.
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